# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument import logging from unittest.mock import MagicMock from typing import NamedTuple, List from pandas import DataFrame import pytest import arrow from freqtrade.optimize.backtesting import Backtesting from freqtrade.strategy.interface import SellType from freqtrade.tests.conftest import patch_exchange, log_has ticker_start_time = arrow.get(2018, 10, 3) ticker_interval_in_minute = 60 class BTrade(NamedTuple): """ Minimalistic Trade result used for functional backtesting """ sell_r: SellType open_tick: int close_tick: int class BTContainer(NamedTuple): """ Minimal BacktestContainer defining Backtest inputs and results. """ data: List[float] stop_loss: float roi: float trades: List[BTrade] profit_perc: float def _get_frame_time(offset): return ticker_start_time.shift( minutes=(offset * ticker_interval_in_minute)).datetime def _build_dataframe(ticker_with_signals): columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell'] frame = DataFrame.from_records(ticker_with_signals, columns=columns) frame['date'] = frame['date'].apply(_get_frame_time) # Ensure floats are in place for column in ['open', 'high', 'low', 'close', 'volume']: frame[column] = frame[column].astype('float64') return frame # Test 0 Minus 8% Close # Test with Stop-loss at 1% # TC1: Stop-Loss Triggered 1% loss tc0 = BTContainer(data=[ [0, 10000.0, 10050, 9950, 9975, 12345, 1, 0], [1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle) [2, 9975, 10025, 9200, 9200, 12345, 0, 0], # exit with stoploss hit [3, 9950, 10000, 9960, 9955, 12345, 0, 0], [4, 9955, 9975, 9955, 9990, 12345, 0, 0], [5, 9990, 9990, 9990, 9900, 12345, 0, 0]], stop_loss=-0.01, roi=1, profit_perc=-0.01, trades=[BTrade(sell_r=SellType.STOP_LOSS, open_tick=1, close_tick=2)] ) # Test 1 Minus 4% Low, minus 1% close # Test with Stop-Loss at 3% # TC2: Stop-Loss Triggered 3% Loss tc1 = BTContainer(data=[ [0, 10000, 10050, 9950, 9975, 12345, 1, 0], [1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle) [2, 9975, 10025, 9925, 9950, 12345, 0, 0], [3, 9950, 10000, 9600, 9925, 12345, 0, 0], # exit with stoploss hit [4, 9925, 9975, 9875, 9900, 12345, 0, 0], [5, 9900, 9950, 9850, 9900, 12345, 0, 0]], stop_loss=-0.03, roi=1, profit_perc=-0.03, trades=[BTrade(sell_r=SellType.STOP_LOSS, open_tick=1, close_tick=3)] ) # Test 3 Candle drops 4%, Recovers 1%. # Entry Criteria Met # Candle drops 20% # Candle Data for test 3 # Test with Stop-Loss at 2% # TC3: Trade-A: Stop-Loss Triggered 2% Loss # Trade-B: Stop-Loss Triggered 2% Loss tc2 = BTContainer(data=[ [0, 10000, 10050, 9950, 9975, 12345, 1, 0], [1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle) [2, 9975, 10025, 9600, 9950, 12345, 0, 0], # exit with stoploss hit [3, 9950, 10000, 9900, 9925, 12345, 1, 0], [4, 9950, 10000, 9900, 9925, 12345, 0, 0], # enter trade 2 (signal on last candle) [5, 9925, 9975, 8000, 8000, 12345, 0, 0], # exit with stoploss hit [6, 9900, 9950, 9950, 9900, 12345, 0, 0]], stop_loss=-0.02, roi=1, profit_perc=-0.04, trades=[BTrade(sell_r=SellType.STOP_LOSS, open_tick=1, close_tick=2), BTrade(sell_r=SellType.STOP_LOSS, open_tick=4, close_tick=5)] ) # Test 4 Minus 3% / recovery +15% # Candle Data for test 3 – Candle drops 3% Closed 15% up # Test with Stop-loss at 2% ROI 6% # TC4: Stop-Loss Triggered 2% Loss tc3 = BTContainer(data=[ [0, 10000, 10050, 9950, 9975, 12345, 1, 0], [1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle) [2, 9975, 11500, 9700, 11500, 12345, 0, 0], # Exit with stoploss hit [3, 9950, 10000, 9900, 9925, 12345, 0, 0], [4, 9925, 9975, 9875, 9900, 12345, 0, 0], [5, 9900, 9950, 9850, 9900, 12345, 0, 0]], stop_loss=-0.02, roi=0.06, profit_perc=-0.02, trades=[BTrade(sell_r=SellType.STOP_LOSS, open_tick=1, close_tick=2)] ) # Test 4 / Drops 0.5% Closes +20% # Set stop-loss at 1% ROI 3% # TC5: ROI triggers 3% Gain tc4 = BTContainer(data=[ [0, 10000, 10050, 9960, 9975, 12345, 1, 0], [1, 10000, 10050, 9960, 9975, 12345, 0, 0], # enter trade (signal on last candle) [2, 9975, 10050, 9950, 9975, 12345, 0, 0], [3, 9950, 12000, 9950, 12000, 12345, 0, 0], # ROI [4, 9925, 9975, 9945, 9900, 12345, 0, 0], [5, 9900, 9950, 9850, 9900, 12345, 0, 0]], stop_loss=-0.01, roi=0.03, profit_perc=0.03, trades=[BTrade(sell_r=SellType.ROI, open_tick=1, close_tick=3)] ) # Test 6 / Drops 3% / Recovers 6% Positive / Closes 1% positve # Candle Data for test 6 # Set stop-loss at 2% ROI at 5% # TC6: Stop-Loss triggers 2% Loss tc5 = BTContainer(data=[ [0, 10000, 10050, 9950, 9975, 12345, 1, 0], [1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle) [2, 9975, 10600, 9700, 10100, 12345, 0, 0], # Exit with stoploss [3, 9950, 10000, 9900, 9925, 12345, 0, 0], [4, 9925, 9975, 9945, 9900, 12345, 0, 0], [5, 9900, 9950, 9850, 9900, 12345, 0, 0]], stop_loss=-0.02, roi=0.05, profit_perc=-0.02, trades=[BTrade(sell_r=SellType.STOP_LOSS, open_tick=1, close_tick=2)] ) # Test 7 - 6% Positive / 1% Negative / Close 1% Positve # Candle Data for test 7 # Set stop-loss at 2% ROI at 3% # TC7: ROI Triggers 3% Gain tc6 = BTContainer(data=[ [0, 10000, 10050, 9950, 9975, 12345, 1, 0], [1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle) [2, 9975, 10600, 9900, 10100, 12345, 0, 0], # ROI [3, 9950, 10000, 9900, 9925, 12345, 0, 0], [4, 9925, 9975, 9945, 9900, 12345, 0, 0], [5, 9900, 9950, 9850, 9900, 12345, 0, 0]], stop_loss=-0.02, roi=0.03, profit_perc=0.03, trades=[BTrade(sell_r=SellType.ROI, open_tick=1, close_tick=2)] ) TESTS = [ tc0, tc1, tc2, tc3, tc4, tc5, tc6, ] @pytest.mark.parametrize("data", TESTS) def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None: """ run functional tests """ default_conf["stoploss"] = data.stop_loss default_conf["minimal_roi"] = {"0": data.roi} mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) # TODO: don't Mock fee to for now mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.0)) patch_exchange(mocker) frame = _build_dataframe(data.data) backtesting = Backtesting(default_conf) backtesting.advise_buy = lambda a, m: frame backtesting.advise_sell = lambda a, m: frame caplog.set_level(logging.DEBUG) pair = 'UNITTEST/BTC' # Dummy data as we mock the analyze functions data_processed = {pair: DataFrame()} results = backtesting.backtest( { 'stake_amount': default_conf['stake_amount'], 'processed': data_processed, 'max_open_trades': 10, } ) print(results.T) assert len(results) == len(data.trades) assert round(results["profit_percent"].sum(), 3) == round(data.profit_perc, 3) # if data.sell_r == SellType.STOP_LOSS: # assert log_has("Stop loss hit.", caplog.record_tuples) # else: # assert not log_has("Stop loss hit.", caplog.record_tuples) # log_test = (f'Force_selling still open trade UNITTEST/BTC with ' # f'{results.iloc[-1].profit_percent} perc - {results.iloc[-1].profit_abs}') # if data.sell_r == SellType.FORCE_SELL: # assert log_has(log_test, # caplog.record_tuples) # else: # assert not log_has(log_test, # caplog.record_tuples) for c, trade in enumerate(data.trades): res = results.iloc[c] assert res.sell_reason == trade.sell_r assert res.open_time == _get_frame_time(trade.open_tick) assert res.close_time == _get_frame_time(trade.close_tick)