# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement # --- Do not remove these libs --- import numpy # noqa import pandas # noqa from pandas import DataFrame from freqtrade.strategy.interface import IStrategy # -------------------------------- # Add your lib to import here import talib.abstract as ta import freqtrade.vendor.qtpylib.indicators as qtpylib class BBRSI(IStrategy): """ You must keep: - the lib in the section "Do not remove these libs" - the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend, populate_sell_trend, hyperopt_space, buy_strategy_generator """ # Strategy interface version - allow new iterations of the strategy interface. INTERFACE_VERSION = 2 # Minimal ROI designed for the strategy. # Will override config file. minimal_roi = { "0": 100 } # Optimal stoploss designed for the strategy. # Will override config file. stoploss = -0.99 # Trailing stoploss trailing_stop = False # trailing_only_offset_is_reached = False # trailing_stop_positive = 0.01 # trailing_stop_positive_offset = 0.0 # Disabled / not configured # Optimal timeframe for the strategy. timeframe = '1h' # Run "populate_indicators()" only for new candle. process_only_new_candles = False # These values can be overridden in the "ask_strategy" section in the config. use_sell_signal = True sell_profit_only = False ignore_roi_if_buy_signal = False # Number of candles the strategy requires before producing valid signals startup_candle_count: int = 20 # Optional order type mapping. order_types = { 'buy': 'limit', 'sell': 'limit', 'stoploss': 'market', 'stoploss_on_exchange': False } # Optional order time in force. order_time_in_force = { 'buy': 'gtc', 'sell': 'gtc' } plot_config = { # Main plot indicators (Moving averages, ...) 'main_plot': { 'tema': {}, 'sar': {'color': 'white'}, }, 'subplots': { # Subplots - each dict defines one additional plot "MACD": { 'macd': {'color': 'blue'}, 'macdsignal': {'color': 'orange'}, }, "RSI": { 'rsi': {'color': 'red'}, } } } def informative_pairs(self): """ Define additional, informative pair/interval combinations to be cached from the exchange. These pair/interval combinations are non-tradeable, unless they are part of the whitelist as well. For more information, please consult the documentation :return: List of tuples in the format (pair, interval) Sample: return [("ETH/USDT", "5m"), ("BTC/USDT", "15m"), ] """ return [] def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: # RSI dataframe['rsi'] = ta.RSI(dataframe) # Bollinger Bands bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) dataframe['bb_lowerband'] = bollinger['lower'] dataframe['bb_middleband'] = bollinger['mid'] dataframe['bb_upperband'] = bollinger['upper'] return dataframe def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe.loc[ ( (dataframe['rsi'] > 30) & # RSI above 30 (dataframe['close'] < dataframe['bb_lowerband']) # close price under low bb ), 'buy'] = 1 return dataframe def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe.loc[ ( (dataframe['close'] > dataframe['bb_middleband']) # close price above the middle bb ), 'sell'] = 1 return dataframe