import logging from functools import reduce import pandas as pd import talib.abstract as ta from pandas import DataFrame from freqtrade.strategy import DecimalParameter, IntParameter, IStrategy, merge_informative_pair logger = logging.getLogger(__name__) class ReinforcementLearningExample5ac(IStrategy): """ Test strategy - used for testing freqAI functionalities. DO not use in production. """ minimal_roi = {"0": 0.1, "240": -1} plot_config = { "main_plot": {}, "subplots": { "prediction": {"prediction": {"color": "blue"}}, "target_roi": { "target_roi": {"color": "brown"}, }, "do_predict": { "do_predict": {"color": "brown"}, }, }, } process_only_new_candles = True stoploss = -0.05 use_exit_signal = True startup_candle_count: int = 300 can_short = True linear_roi_offset = DecimalParameter( 0.00, 0.02, default=0.005, space="sell", optimize=False, load=True ) max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True) def informative_pairs(self): whitelist_pairs = self.dp.current_whitelist() corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"] informative_pairs = [] for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]: for pair in whitelist_pairs: informative_pairs.append((pair, tf)) for pair in corr_pairs: if pair in whitelist_pairs: continue # avoid duplication informative_pairs.append((pair, tf)) return informative_pairs def populate_any_indicators( self, pair, df, tf, informative=None, set_generalized_indicators=False ): coin = pair.split('/')[0] if informative is None: informative = self.dp.get_pair_dataframe(pair, tf) # first loop is automatically duplicating indicators for time periods for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]: t = int(t) informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t) informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t) informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t) informative[f"%-{coin}pct-change"] = informative["close"].pct_change() informative[f"%-{coin}raw_volume"] = informative["volume"] # The following features are necessary for RL models informative[f"%-{coin}raw_close"] = informative["close"] informative[f"%-{coin}raw_open"] = informative["open"] informative[f"%-{coin}raw_high"] = informative["high"] informative[f"%-{coin}raw_low"] = informative["low"] indicators = [col for col in informative if col.startswith("%")] # This loop duplicates and shifts all indicators to add a sense of recency to data for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1): if n == 0: continue informative_shift = informative[indicators].shift(n) informative_shift = informative_shift.add_suffix("_shift-" + str(n)) informative = pd.concat((informative, informative_shift), axis=1) df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True) skip_columns = [ (s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"] ] df = df.drop(columns=skip_columns) # Add generalized indicators here (because in live, it will call this # function to populate indicators during training). Notice how we ensure not to # add them multiple times if set_generalized_indicators: df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7 df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25 # For RL, there are no direct targets to set. This is filler (neutral) # until the agent sends an action. df["&-action"] = 2 return df def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe = self.freqai.start(dataframe, metadata, self) return dataframe def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame: enter_long_conditions = [df["do_predict"] == 1, df["&-action"] == 1] if enter_long_conditions: df.loc[ reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"] ] = (1, "long") enter_short_conditions = [df["do_predict"] == 1, df["&-action"] == 3] if enter_short_conditions: df.loc[ reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"] ] = (1, "short") return df def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame: exit_long_conditions = [df["do_predict"] == 1, df["&-action"] == 2] if exit_long_conditions: df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1 exit_short_conditions = [df["do_predict"] == 1, df["&-action"] == 4] if exit_short_conditions: df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1 return df