import logging import operator import sys from argparse import Namespace from datetime import datetime, timedelta from typing import Any, Dict, List, NamedTuple, Optional, Tuple import arrow from pandas import DataFrame, to_datetime import pandas as pd from tabulate import tabulate import freqtrade.optimize as optimize from freqtrade.optimize.backtesting import BacktestResult from freqtrade import DependencyException, constants from freqtrade.arguments import Arguments from freqtrade.configuration import Configuration from freqtrade.exchange import Exchange from freqtrade.misc import file_dump_json from freqtrade.persistence import Trade from freqtrade.strategy.interface import SellType from freqtrade.strategy.resolver import IStrategy, StrategyResolver from freqtrade.optimize.backtesting import Backtesting from collections import OrderedDict import numpy as np import timeit import utils_find_1st as utf1st from time import sleep from pandas import set_option logger = logging.getLogger(__name__) class Edge(): config: Dict = {} def __init__(self, config: Dict[str, Any], exchange = None) -> None: """ constructor """ self.config = config self.strategy: IStrategy = StrategyResolver(self.config).strategy self.ticker_interval = self.strategy.ticker_interval self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe self.get_timeframe = Backtesting.get_timeframe self.populate_buy_trend = self.strategy.populate_buy_trend self.populate_sell_trend = self.strategy.populate_sell_trend self.edge_config = self.config.get('edge', {}) self._last_updated = None self._cached_pairs = [] self._total_capital = self.edge_config['total_capital_in_stake_currency'] self._allowed_risk = self.edge_config['allowed_risk'] ### # ### if exchange is None: self.config['exchange']['secret'] = '' self.config['exchange']['password'] = '' self.config['exchange']['uid'] = '' self.config['dry_run'] = True self.exchange = Exchange(self.config) else: self.exchange = exchange self.fee = self.exchange.get_fee() self.stop_loss_value = self.strategy.stoploss #### backslap config ''' Numpy arrays are used for 100x speed up We requires setting Int values for buy stop triggers and stop calculated on # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6 ''' self.np_buy: int = 0 self.np_open: int = 1 self.np_close: int = 2 self.np_sell: int = 3 self.np_high: int = 4 self.np_low: int = 5 self.np_stop: int = 6 self.np_bto: int = self.np_close # buys_triggered_on - should be close self.np_bco: int = self.np_open # buys calculated on - open of the next candle. self.np_sto: int = self.np_low # stops_triggered_on - Should be low, FT uses close self.np_sco: int = self.np_stop # stops_calculated_on - Should be stop, FT uses close # self.np_sto: int = self.np_close # stops_triggered_on - Should be low, FT uses close # self.np_sco: int = self.np_close # stops_calculated_on - Should be stop, FT uses close self.debug = False # Main debug enable, very print heavy, enable 2 loops recommended self.debug_timing = False # Stages within Backslap self.debug_2loops = False # Limit each pair to two loops, useful when debugging self.debug_vector = False # Debug vector calcs self.debug_timing_main_loop = False # print overall timing per pair - works in Backtest and Backslap self.backslap_show_trades = False # prints trades in addition to summary report self.backslap_save_trades = True # saves trades as a pretty table to backslap.txt self.stop_stops: int = 9999 # stop back testing any pair with this many stops, set to 999999 to not hit def calculate(self) -> bool: pairs = self.config['exchange']['pair_whitelist'] heartbeat = self.config['edge']['process_throttle_secs'] if ((self._last_updated is not None) and (self._last_updated + heartbeat > arrow.utcnow().timestamp)): return False data = {} logger.info('Using stake_currency: %s ...', self.config['stake_currency']) logger.info('Using stake_amount: %s ...', self.config['stake_amount']) logger.info('Using local backtesting data (using whitelist in given config) ...') timerange = Arguments.parse_timerange(None if self.config.get( 'timerange') is None else str(self.config.get('timerange'))) data = optimize.load_data( self.config['datadir'], pairs=pairs, ticker_interval=self.ticker_interval, refresh_pairs=self.config.get('refresh_pairs', False), exchange=self.exchange, timerange=timerange ) if not data: logger.critical("No data found. Edge is stopped ...") return preprocessed = self.tickerdata_to_dataframe(data) # Print timeframe min_date, max_date = self.get_timeframe(preprocessed) logger.info( 'Measuring data from %s up to %s (%s days) ...', min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days ) headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low'] # Max open trades need not be considered in Edge positioning max_open_trades = 0 realistic = False stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01)) stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05)) stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001)) stoploss_range = np.arange(stoploss_range_min, stoploss_range_max, stoploss_range_step) trades = [] trade_count_lock: Dict = {} ########################### Call out BSlap Loop instead of Original BT code bslap_results: list = [] for pair, pair_data in preprocessed.items(): # Sorting dataframe by date and reset index pair_data = pair_data.sort_values(by=['date']) pair_data = pair_data.reset_index(drop=True) ticker_data = self.populate_sell_trend( self.populate_buy_trend(pair_data))[headers].copy() # call backslap - results are a list of dicts for stoploss in stoploss_range: bslap_results += self.backslap_pair(ticker_data, pair, round(stoploss, 6)) # Switch List of Trade Dicts (bslap_results) to Dataframe # Fill missing, calculable columns, profit, duration , abs etc. bslap_results_df = DataFrame(bslap_results) if len(bslap_results_df) > 0: # Only post process a frame if it has a record bslap_results_df = self.vector_fill_results_table(bslap_results_df) else: bslap_results_df = [] bslap_results_df = DataFrame.from_records(bslap_results_df, columns=BacktestResult._fields) self._cached_pairs = self._process_result(data, bslap_results_df, stoploss_range) self._last_updated = arrow.utcnow().timestamp return True def sort_pairs(self, pairs) -> bool: if len(self._cached_pairs) == 0: self.calculate() edge_sorted_pairs = [x[0] for x in self._cached_pairs] return [x for _, x in sorted(zip(edge_sorted_pairs,pairs), key=lambda pair: pair[0])] def vector_fill_results_table(self, bslap_results_df: DataFrame): """ The Results frame contains a number of columns that are calculable from othe columns. These are left blank till all rows are added, to be populated in single vector calls. Columns to be populated are: - Profit - trade duration - profit abs :param bslap_results Dataframe :return: bslap_results Dataframe """ debug = self.debug_vector # stake and fees # stake = 0.015 # 0.05% is 0.0005 # fee = 0.001 stake = self.config.get('stake_amount') fee = self.fee open_fee = fee / 2 close_fee = fee / 2 bslap_results_df['trade_duration'] = bslap_results_df['close_time'] - bslap_results_df['open_time'] bslap_results_df['trade_duration'] = bslap_results_df['trade_duration'].map(lambda x: int(x.total_seconds() / 60)) ## Spends, Takes, Profit, Absolute Profit # print(bslap_results_df) # Buy Price bslap_results_df['buy_vol'] = stake / bslap_results_df['open_rate'] # How many target are we buying bslap_results_df['buy_fee'] = stake * open_fee bslap_results_df['buy_spend'] = stake + bslap_results_df['buy_fee'] # How much we're spending # Sell price bslap_results_df['sell_sum'] = bslap_results_df['buy_vol'] * bslap_results_df['close_rate'] bslap_results_df['sell_fee'] = bslap_results_df['sell_sum'] * close_fee bslap_results_df['sell_take'] = bslap_results_df['sell_sum'] - bslap_results_df['sell_fee'] # profit_percent bslap_results_df['profit_percent'] = (bslap_results_df['sell_take'] - bslap_results_df['buy_spend']) \ / bslap_results_df['buy_spend'] # Absolute profit bslap_results_df['profit_abs'] = bslap_results_df['sell_take'] - bslap_results_df['buy_spend'] return bslap_results_df def np_get_t_open_ind(self, np_buy_arr, t_exit_ind: int, np_buy_arr_len: int, stop_stops: int, stop_stops_count: int): """ The purpose of this def is to return the next "buy" = 1 after t_exit_ind. This function will also check is the stop limit for the pair has been reached. if stop_stops is the limit and stop_stops_count it the number of times the stop has been hit. t_exit_ind is the index the last trade exited on or 0 if first time around this loop. stop_stops i """ debug = self.debug # Timers, to be called if in debug def s(): st = timeit.default_timer() return st def f(st): return (timeit.default_timer() - st) st = s() t_open_ind: int """ Create a view on our buy index starting after last trade exit Search for next buy """ np_buy_arr_v = np_buy_arr[t_exit_ind:] t_open_ind = utf1st.find_1st(np_buy_arr_v, 1, utf1st.cmp_equal) ''' If -1 is returned no buy has been found, preserve the value ''' if t_open_ind != -1: # send back the -1 if no buys found. otherwise update index t_open_ind = t_open_ind + t_exit_ind # Align numpy index if t_open_ind == np_buy_arr_len - 1: # If buy found on last candle ignore, there is no OPEN in next to use t_open_ind = -1 # -1 ends the loop if stop_stops_count >= stop_stops: # if maximum number of stops allowed in a pair is hit, exit loop t_open_ind = -1 # -1 ends the loop if debug: print("Max stop limit ", stop_stops, "reached. Moving to next pair") return t_open_ind def _process_result(self, data: Dict[str, Dict], results: DataFrame, stoploss_range) -> str: """ This is a temporary version of edge positioning calculation. The function will be eventually moved to a plugin called Edge in order to calculate necessary WR, RRR and other indictaors related to money management periodically (each X minutes) and keep it in a storage. The calulation will be done per pair and per strategy. """ # Removing open trades from dataset results = results[results.open_at_end == False] ################################### # Removing pairs having less than min_trades_number min_trades_number = self.edge_config.get('min_trade_number', 15) results = results.groupby('pair').filter(lambda x: len(x) > min_trades_number) ################################### # Removing outliers (Only Pumps) from the dataset # The method to detect outliers is to calculate standard deviation # Then every value more than (standard deviation + 2*average) is out (pump) # # Calculating standard deviation of profits std = results[["profit_abs"]].std() # # Calculating average of profits avg = results[["profit_abs"]].mean() # # Removing Pumps if self.edge_config.get('remove_pumps', True): results = results[results.profit_abs < float(avg + 2*std)] ########################################################################## # Removing trades having a duration more than X minutes (set in config) max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440) results = results[results.trade_duration < max_trade_duration] ####################################################################### # Win Rate is the number of profitable trades # Divided by number of trades def winrate(x): x = x[x > 0].count() / x.count() return x ############################# # Risk Reward Ratio # 1 / ((loss money / losing trades) / (gained money / winning trades)) def risk_reward_ratio(x): x = abs(1/ ((x[x<0].sum() / x[x < 0].count()) / (x[x > 0].sum() / x[x > 0].count()))) return x ############################## # Required Risk Reward # (1/(winrate - 1) def required_risk_reward(x): x = (1/(x[x > 0].count()/x.count()) -1) return x ############################## # The difference between risk reward ratio and required risk reward # We use it as an indicator to find the most interesting pair to trade def delta(x): x = (abs(1/ ((x[x < 0].sum() / x[x < 0].count()) / (x[x > 0].sum() / x[x > 0].count())))) - (1/(x[x > 0].count()/x.count()) -1) return x ############################## final = results.groupby(['pair', 'stoploss'])['profit_abs'].\ agg([winrate, risk_reward_ratio, required_risk_reward, delta]).\ reset_index().sort_values(by=['delta', 'stoploss'], ascending=False)\ .groupby('pair').first().sort_values(by=['delta'], ascending=False) # Returning an array of pairs in order of "delta" return final.reset_index().values def backslap_pair(self, ticker_data, pair, stoploss): ### backslap debug wrap # debug_2loops = False # only loop twice, for faster debug # debug_timing = False # print timing for each step # debug = False # print values, to check accuracy debug_2loops = self.debug_2loops # only loop twice, for faster debug debug_timing = self.debug_timing # print timing for each step debug = self.debug # print values, to check accuracy # Read Stop Loss Values and Stake #stop = self.stop_loss_value stop = stoploss p_stop = (stop + 1) # What stop really means, e.g 0.01 is 0.99 of price if debug: print("Stop is ", stop, "value from stragey file") print("p_stop is", p_stop, "value used to multiply to entry price") if debug: set_option('display.max_rows', 5000) set_option('display.max_columns', 8) pd.set_option('display.width', 1000) pd.set_option('max_colwidth', 40) pd.set_option('precision', 12) def s(): st = timeit.default_timer() return st def f(st): return (timeit.default_timer() - st) #### backslap config ''' Numpy arrays are used for 100x speed up We requires setting Int values for buy stop triggers and stop calculated on # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6 ''' ####### # Use vars set at top of backtest np_buy: int = self.np_buy np_open: int = self.np_open np_close: int = self.np_close np_sell: int = self.np_sell np_high: int = self.np_high np_low: int = self.np_low np_stop: int = self.np_stop np_bto: int = self.np_bto # buys_triggered_on - should be close np_bco: int = self.np_bco # buys calculated on - open of the next candle. np_sto: int = self.np_sto # stops_triggered_on - Should be low, FT uses close np_sco: int = self.np_sco # stops_calculated_on - Should be stop, FT uses close ### End Config pair: str = pair # ticker_data: DataFrame = ticker_dfs[t_file] bslap: DataFrame = ticker_data # Build a single dimension numpy array from "buy" index for faster search # (500x faster than pandas) np_buy_arr = bslap['buy'].values np_buy_arr_len: int = len(np_buy_arr) # use numpy array for faster searches in loop, 20x faster than pandas # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 np_bslap = np.array(bslap[['buy', 'open', 'close', 'sell', 'high', 'low']]) # Build a numpy list of date-times. # We use these when building the trade # The rationale is to address a value from a pandas cell is thousands of # times more expensive. Processing time went X25 when trying to use any data from pandas np_bslap_dates = bslap['date'].values loop: int = 0 # how many time around the loop t_exit_ind = 0 # Start loop from first index t_exit_last = 0 # To test for exit stop_stops = self.stop_stops # Int of stops within a pair to stop trading a pair at stop_stops_count = 0 # stop counter per pair st = s() # Start timer for processing dataframe if debug: print('Processing:', pair) # Results will be stored in a list of dicts bslap_pair_results: list = [] bslap_result: dict = {} while t_exit_ind < np_buy_arr_len: loop = loop + 1 if debug or debug_timing: print("-- T_exit_Ind - Numpy Index is", t_exit_ind, " ----------------------- Loop", loop, pair) if debug_2loops: if loop == 3: print( "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Loop debug max met - breaking") break ''' Dev phases Phase 1 1) Manage buy, sell, stop enter/exit a) Find first buy index b) Discover first stop and sell hit after buy index c) Chose first instance as trade exit Phase 2 2) Manage dynamic Stop and ROI Exit a) Create trade slice from 1 b) search within trade slice for dynamice stop hit c) search within trade slice for ROI hit ''' if debug_timing: st = s() ''' 0 - Find next buy entry Finds index for first (buy = 1) flag Requires: np_buy_arr - a 1D array of the 'buy' column. To find next "1" Required: t_exit_ind - Either 0, first loop. Or The index we last exited on Requires: np_buy_arr_len - length of pair array. Requires: stops_stops - number of stops allowed before stop trading a pair Requires: stop_stop_counts - count of stops hit in the pair Provides: The next "buy" index after t_exit_ind If -1 is returned no buy has been found in remainder of array, skip to exit loop ''' t_open_ind = self.np_get_t_open_ind(np_buy_arr, t_exit_ind, np_buy_arr_len, stop_stops, stop_stops_count) if debug: print("\n(0) numpy debug \nnp_get_t_open, has returned the next valid buy index as", t_open_ind) print("If -1 there are no valid buys in the remainder of ticker data. Skipping to end of loop") if debug_timing: t_t = f(st) print("0-numpy", str.format('{0:.17f}', t_t)) st = s() if t_open_ind != -1: """ 1 - Create views to search within for our open trade The views are our search space for the next Stop or Sell Numpy view is employed as: 1,000 faster than pandas searches Pandas cannot assure it will always return a view, it may make a slow copy. The view contains columns: buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 Requires: np_bslap is our numpy array of the ticker DataFrame Requires: t_open_ind is the index row with the buy. Provides: np_t_open_v View of array after buy. Provides: np_t_open_v_stop View of array after buy +1 (Stop will search in here to prevent stopping in the past) """ np_t_open_v = np_bslap[t_open_ind:] np_t_open_v_stop = np_bslap[t_open_ind + 1:] if debug: print("\n(1) numpy debug \nNumpy view row 0 is now Ticker_Data Index", t_open_ind) print("Numpy View: Buy - Open - Close - Sell - High - Low") print("Row 0", np_t_open_v[0]) print("Row 1", np_t_open_v[1], ) if debug_timing: t_t = f(st) print("2-numpy", str.format('{0:.17f}', t_t)) st = s() ''' 2 - Calculate our stop-loss price As stop is based on buy price of our trade - (BTO)Buys are Triggered On np_bto, typically the CLOSE of candle - (BCO)Buys are Calculated On np_bco, default is OPEN of the next candle. This is as we only see the CLOSE after it has happened. The back test assumption is we have bought at first available price, the OPEN Requires: np_bslap - is our numpy array of the ticker DataFrame Requires: t_open_ind - is the index row with the first buy. Requires: p_stop - is the stop rate, ie. 0.99 is -1% Provides: np_t_stop_pri - The value stop-loss will be triggered on ''' np_t_stop_pri = (np_bslap[t_open_ind + 1, np_bco] * p_stop) if debug: print("\n(2) numpy debug\nStop-Loss has been calculated at:", np_t_stop_pri) if debug_timing: t_t = f(st) print("2-numpy", str.format('{0:.17f}', t_t)) st = s() ''' 3 - Find candle STO is under Stop-Loss After Trade opened. where [np_sto] (stop tiggered on variable: "close", "low" etc) < np_t_stop_pri Requires: np_t_open_v_stop Numpy view of ticker_data after buy row +1 (when trade was opened) Requires: np_sto User Var(STO)StopTriggeredOn. Typically set to "low" or "close" Requires: np_t_stop_pri The stop-loss price STO must fall under to trigger stop Provides: np_t_stop_ind The first candle after trade open where STO is under stop-loss ''' np_t_stop_ind = utf1st.find_1st(np_t_open_v_stop[:, np_sto], np_t_stop_pri, utf1st.cmp_smaller) # plus 1 as np_t_open_v_stop is 1 ahead of view np_t_open_v, used from here on out. np_t_stop_ind = np_t_stop_ind + 1 if debug: print("\n(3) numpy debug\nNext view index with STO (stop trigger on) under Stop-Loss is", np_t_stop_ind - 1, ". STO is using field", np_sto, "\nFrom key: buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5\n") print( "If -1 or 0 returned there is no stop found to end of view, then next two array lines are garbage") print("Row", np_t_stop_ind - 1, np_t_open_v[np_t_stop_ind]) print("Row", np_t_stop_ind, np_t_open_v[np_t_stop_ind + 1]) if debug_timing: t_t = f(st) print("3-numpy", str.format('{0:.17f}', t_t)) st = s() ''' 4 - Find first sell index after trade open First index in the view np_t_open_v where ['sell'] = 1 Requires: np_t_open_v - view of ticker_data from buy onwards Requires: no_sell - integer '3', the buy column in the array Provides: np_t_sell_ind index of view where first sell=1 after buy ''' # Use numpy array for faster search for sell # Sell uses column 3. # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 # Numpy searches 25-35x quicker than pandas on this data np_t_sell_ind = utf1st.find_1st(np_t_open_v[:, np_sell], 1, utf1st.cmp_equal) if debug: print("\n(4) numpy debug\nNext view index with sell = 1 is ", np_t_sell_ind) print("If 0 or less is returned there is no sell found to end of view, then next lines garbage") print("Row", np_t_sell_ind, np_t_open_v[np_t_sell_ind]) print("Row", np_t_sell_ind + 1, np_t_open_v[np_t_sell_ind + 1]) if debug_timing: t_t = f(st) print("4-numpy", str.format('{0:.17f}', t_t)) st = s() ''' 5 - Determine which was hit first a stop or sell To then use as exit index price-field (sell on buy, stop on stop) STOP takes priority over SELL as would be 'in candle' from tick data Sell would use Open from Next candle. So in a draw Stop would be hit first on ticker data in live Validity of when types of trades may be executed can be summarised as: Tick View index index Buy Sell open low close high Stop price open 2am 94 -1 0 0 ----- ------ ------ ----- ----- open 3am 95 0 1 0 ----- ------ trg buy ----- ----- open 4am 96 1 0 1 Enter trgstop trg sel ROI out Stop out open 5am 97 2 0 0 Exit ------ ------- ----- ----- open 6am 98 3 0 0 ----- ------ ------- ----- ----- -1 means not found till end of view i.e no valid Stop found. Exclude from match. Stop tiggering and closing in 96-1, the candle we bought at OPEN in, is valid. Buys and sells are triggered at candle close Both will open their postions at the open of the next candle. i/e + 1 index Stop and buy Indexes are on the view. To map to the ticker dataframe the t_open_ind index should be summed. np_t_stop_ind: Stop Found index in view t_exit_ind : Sell found in view t_open_ind : Where view was started on ticker_data TODO: fix this frig for logic test,, case/switch/dictionary would be better... more so when later testing many options, dynamic stop / roi etc cludge - Setting np_t_sell_ind as 9999999999 when -1 (not found) cludge - Setting np_t_stop_ind as 9999999999 when -1 (not found) ''' if debug: print("\n(5) numpy debug\nStop or Sell Logic Processing") # cludge for logic test (-1) means it was not found, set crazy high to lose < test np_t_sell_ind = 99999999 if np_t_sell_ind <= 0 else np_t_sell_ind np_t_stop_ind = 99999999 if np_t_stop_ind <= 0 else np_t_stop_ind # Stoploss trigger found before a sell =1 if np_t_stop_ind < 99999999 and np_t_stop_ind <= np_t_sell_ind: t_exit_ind = t_open_ind + np_t_stop_ind # Set Exit row index t_exit_type = SellType.STOP_LOSS # Set Exit type (stop) np_t_exit_pri = np_sco # The price field our STOP exit will use if debug: print("Type STOP is first exit condition. " "At view index:", np_t_stop_ind, ". Ticker data exit index is", t_exit_ind) # Buy = 1 found before a stoploss triggered elif np_t_sell_ind < 99999999 and np_t_sell_ind < np_t_stop_ind: # move sell onto next candle, we only look back on sell # will use the open price later. t_exit_ind = t_open_ind + np_t_sell_ind # Set Exit row index t_exit_type = SellType.SELL_SIGNAL # Set Exit type (sell) np_t_exit_pri = np_open # The price field our SELL exit will use if debug: print("Type SELL is first exit condition. " "At view index", np_t_sell_ind, ". Ticker data exit index is", t_exit_ind) # No stop or buy left in view - set t_exit_last -1 to handle gracefully else: t_exit_last: int = -1 # Signal loop to exit, no buys or sells found. t_exit_type = SellType.NONE np_t_exit_pri = 999 # field price should be calculated on. 999 a non-existent column if debug: print("No valid STOP or SELL found. Signalling t_exit_last to gracefully exit") # TODO: fix having to cludge/uncludge this .. # Undo cludge np_t_sell_ind = -1 if np_t_sell_ind == 99999999 else np_t_sell_ind np_t_stop_ind = -1 if np_t_stop_ind == 99999999 else np_t_stop_ind if debug_timing: t_t = f(st) print("5-logic", str.format('{0:.17f}', t_t)) st = s() if debug: ''' Print out the buys, stops, sells Include Line before and after to for easy Human verification ''' # Combine the np_t_stop_pri value to bslap dataframe to make debug # life easy. This is the current stop price based on buy price_ # This is slow but don't care about performance in debug # # When referencing equiv np_column, as example np_sto, its 5 in numpy and 6 in df, so +1 # as there is no data column in the numpy array. bslap['np_stop_pri'] = np_t_stop_pri # Buy print("\n\nDATAFRAME DEBUG =================== BUY ", pair) print("Numpy Array BUY Index is:", 0) print("DataFrame BUY Index is:", t_open_ind, "displaying DF \n") print("HINT, BUY trade should use OPEN price from next candle, i.e ", t_open_ind + 1) op_is = t_open_ind - 1 # Print open index start, line before op_if = t_open_ind + 3 # Print open index finish, line after print(bslap.iloc[op_is:op_if], "\n") # Stop - Stops trigger price np_sto (+1 for pandas column), and price received np_sco +1. (Stop Trigger|Calculated On) if np_t_stop_ind < 0: print("DATAFRAME DEBUG =================== STOP ", pair) print("No STOPS were found until the end of ticker data file\n") else: print("DATAFRAME DEBUG =================== STOP ", pair) print("Numpy Array STOP Index is:", np_t_stop_ind, "View starts at index", t_open_ind) df_stop_index = (t_open_ind + np_t_stop_ind) print("DataFrame STOP Index is:", df_stop_index, "displaying DF \n") print("First Stoploss trigger after Trade entered at OPEN in candle", t_open_ind + 1, "is ", df_stop_index, ": \n", str.format('{0:.17f}', bslap.iloc[df_stop_index][np_sto + 1]), "is less than", str.format('{0:.17f}', np_t_stop_pri)) print("A stoploss exit will be calculated at rate:", str.format('{0:.17f}', bslap.iloc[df_stop_index][np_sco + 1])) print("\nHINT, STOPs should exit in-candle, i.e", df_stop_index, ": As live STOPs are not linked to O-C times") st_is = df_stop_index - 1 # Print stop index start, line before st_if = df_stop_index + 2 # Print stop index finish, line after print(bslap.iloc[st_is:st_if], "\n") # Sell if np_t_sell_ind < 0: print("DATAFRAME DEBUG =================== SELL ", pair) print("No SELLS were found till the end of ticker data file\n") else: print("DATAFRAME DEBUG =================== SELL ", pair) print("Numpy View SELL Index is:", np_t_sell_ind, "View starts at index", t_open_ind) df_sell_index = (t_open_ind + np_t_sell_ind) print("DataFrame SELL Index is:", df_sell_index, "displaying DF \n") print("First Sell Index after Trade open is in candle", df_sell_index) print("HINT, if exit is SELL (not stop) trade should use OPEN price from next candle", df_sell_index + 1) sl_is = df_sell_index - 1 # Print sell index start, line before sl_if = df_sell_index + 3 # Print sell index finish, line after print(bslap.iloc[sl_is:sl_if], "\n") # Chosen Exit (stop or sell) print("DATAFRAME DEBUG =================== EXIT ", pair) print("Exit type is :", t_exit_type) print("trade exit price field is", np_t_exit_pri, "\n") if debug_timing: t_t = f(st) print("6-depra", str.format('{0:.17f}', t_t)) st = s() ## use numpy view "np_t_open_v" for speed. Columns are # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 # exception is 6 which is use the stop value. # TODO no! this is hard coded bleh fix this open np_trade_enter_price = np_bslap[t_open_ind + 1, np_open] if t_exit_type == SellType.STOP_LOSS: if np_t_exit_pri == 6: np_trade_exit_price = np_t_stop_pri t_exit_ind = t_exit_ind + 1 else: np_trade_exit_price = np_bslap[t_exit_ind, np_t_exit_pri] if t_exit_type == SellType.SELL_SIGNAL: np_trade_exit_price = np_bslap[t_exit_ind, np_t_exit_pri] # Catch no exit found if t_exit_type == SellType.NONE: np_trade_exit_price = 0 if debug_timing: t_t = f(st) print("7-numpy", str.format('{0:.17f}', t_t)) st = s() if debug: print("//////////////////////////////////////////////") print("+++++++++++++++++++++++++++++++++ Trade Enter ") print("np_trade Enter Price is ", str.format('{0:.17f}', np_trade_enter_price)) print("--------------------------------- Trade Exit ") print("Trade Exit Type is ", t_exit_type) print("np_trade Exit Price is", str.format('{0:.17f}', np_trade_exit_price)) print("//////////////////////////////////////////////") else: # no buys were found, step 0 returned -1 # Gracefully exit the loop t_exit_last == -1 if debug: print("\n(E) No buys were found in remaining ticker file. Exiting", pair) # Loop control - catch no closed trades. if debug: print("---------------------------------------- end of loop", loop, " Dataframe Exit Index is: ", t_exit_ind) print("Exit Index Last, Exit Index Now Are: ", t_exit_last, t_exit_ind) if t_exit_last >= t_exit_ind or t_exit_last == -1: """ Break loop and go on to next pair. When last trade exit equals index of last exit, there is no opportunity to close any more trades. """ # TODO :add handing here to record none closed open trades if debug: print(bslap_pair_results) break else: """ Add trade to backtest looking results list of dicts Loop back to look for more trades. """ # We added +1 to t_exit_ind if the exit was a stop-loss, to not exit early in the IF of this ELSE # removing the +1 here so prices match. if t_exit_type == SellType.STOP_LOSS: t_exit_ind = t_exit_ind - 1 # Build trade dictionary ## In general if a field can be calculated later from other fields leave blank here ## Its X(number of trades faster) to calc all in a single vector than 1 trade at a time # create a new dict close_index: int = t_exit_ind bslap_result = {} # Must have at start or we end up with a list of multiple same last result bslap_result["pair"] = pair bslap_result["stoploss"] = stop bslap_result["profit_percent"] = "" # To be 1 vector calc across trades when loop complete bslap_result["profit_abs"] = "" # To be 1 vector calc across trades when loop complete bslap_result["open_time"] = np_bslap_dates[t_open_ind + 1] # use numpy array, pandas 20x slower bslap_result["close_time"] = np_bslap_dates[close_index] # use numpy array, pandas 20x slower bslap_result["open_index"] = t_open_ind + 1 # +1 as we buy on next. bslap_result["close_index"] = close_index bslap_result["trade_duration"] = "" # To be 1 vector calc across trades when loop complete bslap_result["open_at_end"] = False bslap_result["open_rate"] = round(np_trade_enter_price, 15) bslap_result["close_rate"] = round(np_trade_exit_price, 15) bslap_result["exit_type"] = t_exit_type bslap_result["sell_reason"] = t_exit_type #duplicated, but I don't care # append the dict to the list and print list bslap_pair_results.append(bslap_result) if t_exit_type is SellType.STOP_LOSS: stop_stops_count = stop_stops_count + 1 if debug: print("The trade dict is: \n", bslap_result) print("Trades dicts in list after append are: \n ", bslap_pair_results) """ Loop back to start. t_exit_last becomes where loop will seek to open new trades from. Push index on 1 to not open on close """ t_exit_last = t_exit_ind + 1 if debug_timing: t_t = f(st) print("8+trade", str.format('{0:.17f}', t_t)) # Send back List of trade dicts return bslap_pair_results def stake_amount(self, pair: str) -> str: info = [x for x in self._cached_pairs if x[0] == pair][0] stoploss = info[1] allowed_capital_at_risk = round(self._total_capital * self._allowed_risk, 5) position_size = abs(round((allowed_capital_at_risk / stoploss), 5)) return (allowed_dollars_at_risk / symbol_strategy_stop_loss) def stoploss(self, pair: str) -> float: info = [x for x in self._cached_pairs if x[0] == pair][0] return info[1]