# pragma pylint: disable=missing-docstring, C0103, C0330 # pragma pylint: disable=protected-access, too-many-lines, invalid-name, too-many-arguments import logging import math from unittest.mock import MagicMock import arrow import numpy as np import pytest from pandas import DataFrame, to_datetime from freqtrade.exceptions import OperationalException from freqtrade.data.converter import ohlcv_to_dataframe from freqtrade.edge import Edge, PairInfo from freqtrade.strategy.interface import SellType from tests.conftest import get_patched_freqtradebot, log_has from tests.optimize import (BTContainer, BTrade, _build_backtest_dataframe, _get_frame_time_from_offset) # Cases to be tested: # 1) Open trade should be removed from the end # 2) Two complete trades within dataframe (with sell hit for all) # 3) Entered, sl 1%, candle drops 8% => Trade closed, 1% loss # 4) Entered, sl 3%, candle drops 4%, recovers to 1% => Trade closed, 3% loss # 5) Stoploss and sell are hit. should sell on stoploss #################################################################### tests_start_time = arrow.get(2018, 10, 3) timeframe_in_minute = 60 _ohlc = {'date': 0, 'buy': 1, 'open': 2, 'high': 3, 'low': 4, 'close': 5, 'sell': 6, 'volume': 7} # Helpers for this test file def _validate_ohlc(buy_ohlc_sell_matrice): for index, ohlc in enumerate(buy_ohlc_sell_matrice): # if not high < open < low or not high < close < low if not ohlc[3] >= ohlc[2] >= ohlc[4] or not ohlc[3] >= ohlc[5] >= ohlc[4]: raise Exception('Line ' + str(index + 1) + ' of ohlc has invalid values!') return True def _build_dataframe(buy_ohlc_sell_matrice): _validate_ohlc(buy_ohlc_sell_matrice) data = [] for ohlc in buy_ohlc_sell_matrice: d = { 'date': tests_start_time.shift( minutes=( ohlc[0] * timeframe_in_minute)).timestamp * 1000, 'buy': ohlc[1], 'open': ohlc[2], 'high': ohlc[3], 'low': ohlc[4], 'close': ohlc[5], 'sell': ohlc[6]} data.append(d) frame = DataFrame(data) frame['date'] = to_datetime(frame['date'], unit='ms', utc=True, infer_datetime_format=True) return frame def _time_on_candle(number): return np.datetime64(tests_start_time.shift( minutes=(number * timeframe_in_minute)).timestamp * 1000, 'ms') # End helper functions # Open trade should be removed from the end tc0 = BTContainer(data=[ # D O H L C V B S [0, 5000, 5025, 4975, 4987, 6172, 1, 0], [1, 5000, 5025, 4975, 4987, 6172, 0, 1]], # enter trade (signal on last candle) stop_loss=-0.99, roi={"0": float('inf')}, profit_perc=0.00, trades=[] ) # Two complete trades within dataframe(with sell hit for all) tc1 = BTContainer(data=[ # D O H L C V B S [0, 5000, 5025, 4975, 4987, 6172, 1, 0], [1, 5000, 5025, 4975, 4987, 6172, 0, 1], # enter trade (signal on last candle) [2, 5000, 5025, 4975, 4987, 6172, 0, 0], # exit at open [3, 5000, 5025, 4975, 4987, 6172, 1, 0], # no action [4, 5000, 5025, 4975, 4987, 6172, 0, 0], # should enter the trade [5, 5000, 5025, 4975, 4987, 6172, 0, 1], # no action [6, 5000, 5025, 4975, 4987, 6172, 0, 0], # should sell ], stop_loss=-0.99, roi={"0": float('inf')}, profit_perc=0.00, trades=[BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=1, close_tick=2), BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=4, close_tick=6)] ) # 3) Entered, sl 1%, candle drops 8% => Trade closed, 1% loss tc2 = BTContainer(data=[ # D O H L C V B S [0, 5000, 5025, 4975, 4987, 6172, 1, 0], [1, 5000, 5025, 4600, 4987, 6172, 0, 0], # enter trade, stoploss hit [2, 5000, 5025, 4975, 4987, 6172, 0, 0], ], stop_loss=-0.01, roi={"0": float('inf')}, profit_perc=-0.01, trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)] ) # 4) Entered, sl 3 %, candle drops 4%, recovers to 1 % = > Trade closed, 3 % loss tc3 = BTContainer(data=[ # D O H L C V B S [0, 5000, 5025, 4975, 4987, 6172, 1, 0], [1, 5000, 5025, 4800, 4987, 6172, 0, 0], # enter trade, stoploss hit [2, 5000, 5025, 4975, 4987, 6172, 0, 0], ], stop_loss=-0.03, roi={"0": float('inf')}, profit_perc=-0.03, trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)] ) # 5) Stoploss and sell are hit. should sell on stoploss tc4 = BTContainer(data=[ # D O H L C V B S [0, 5000, 5025, 4975, 4987, 6172, 1, 0], [1, 5000, 5025, 4800, 4987, 6172, 0, 1], # enter trade, stoploss hit, sell signal [2, 5000, 5025, 4975, 4987, 6172, 0, 0], ], stop_loss=-0.03, roi={"0": float('inf')}, profit_perc=-0.03, trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)] ) TESTS = [ tc0, tc1, tc2, tc3, tc4 ] @pytest.mark.parametrize("data", TESTS) def test_edge_results(edge_conf, mocker, caplog, data) -> None: """ run functional tests """ freqtrade = get_patched_freqtradebot(mocker, edge_conf) edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy) frame = _build_backtest_dataframe(data.data) caplog.set_level(logging.DEBUG) edge.fee = 0 trades = edge._find_trades_for_stoploss_range(frame, 'TEST/BTC', [data.stop_loss]) results = edge._fill_calculable_fields(DataFrame(trades)) if trades else DataFrame() assert len(trades) == len(data.trades) if not results.empty: assert round(results["profit_ratio"].sum(), 3) == round(data.profit_perc, 3) for c, trade in enumerate(data.trades): res = results.iloc[c] assert res.exit_type == trade.sell_reason assert res.open_date == _get_frame_time_from_offset(trade.open_tick).replace(tzinfo=None) assert res.close_date == _get_frame_time_from_offset(trade.close_tick).replace(tzinfo=None) def test_adjust(mocker, edge_conf): freqtrade = get_patched_freqtradebot(mocker, edge_conf) edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy) mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock( return_value={ 'E/F': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60), 'C/D': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60), 'N/O': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60) } )) pairs = ['A/B', 'C/D', 'E/F', 'G/H'] assert(edge.adjust(pairs) == ['E/F', 'C/D']) def test_stoploss(mocker, edge_conf): freqtrade = get_patched_freqtradebot(mocker, edge_conf) edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy) mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock( return_value={ 'E/F': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60), 'C/D': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60), 'N/O': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60) } )) assert edge.stoploss('E/F') == -0.01 def test_nonexisting_stoploss(mocker, edge_conf): freqtrade = get_patched_freqtradebot(mocker, edge_conf) edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy) mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock( return_value={ 'E/F': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60), } )) assert edge.stoploss('N/O') == -0.1 def test_stake_amount(mocker, edge_conf): freqtrade = get_patched_freqtradebot(mocker, edge_conf) edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy) mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock( return_value={ 'E/F': PairInfo(-0.02, 0.66, 3.71, 0.50, 1.71, 10, 60), } )) free = 100 total = 100 in_trade = 25 assert edge.stake_amount('E/F', free, total, in_trade) == 31.25 free = 20 total = 100 in_trade = 25 assert edge.stake_amount('E/F', free, total, in_trade) == 20 free = 0 total = 100 in_trade = 25 assert edge.stake_amount('E/F', free, total, in_trade) == 0 def test_nonexisting_stake_amount(mocker, edge_conf): freqtrade = get_patched_freqtradebot(mocker, edge_conf) edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy) mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock( return_value={ 'E/F': PairInfo(-0.11, 0.66, 3.71, 0.50, 1.71, 10, 60), } )) # should use strategy stoploss assert edge.stake_amount('N/O', 1, 2, 1) == 0.15 def test_edge_heartbeat_calculate(mocker, edge_conf): freqtrade = get_patched_freqtradebot(mocker, edge_conf) edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy) heartbeat = edge_conf['edge']['process_throttle_secs'] # should not recalculate if heartbeat not reached edge._last_updated = arrow.utcnow().timestamp - heartbeat + 1 assert edge.calculate() is False def mocked_load_data(datadir, pairs=[], timeframe='0m', timerange=None, *args, **kwargs): hz = 0.1 base = 0.001 NEOBTC = [ [ tests_start_time.shift(minutes=(x * timeframe_in_minute)).timestamp * 1000, math.sin(x * hz) / 1000 + base, math.sin(x * hz) / 1000 + base + 0.0001, math.sin(x * hz) / 1000 + base - 0.0001, math.sin(x * hz) / 1000 + base, 123.45 ] for x in range(0, 500)] hz = 0.2 base = 0.002 LTCBTC = [ [ tests_start_time.shift(minutes=(x * timeframe_in_minute)).timestamp * 1000, math.sin(x * hz) / 1000 + base, math.sin(x * hz) / 1000 + base + 0.0001, math.sin(x * hz) / 1000 + base - 0.0001, math.sin(x * hz) / 1000 + base, 123.45 ] for x in range(0, 500)] pairdata = {'NEO/BTC': ohlcv_to_dataframe(NEOBTC, '1h', pair="NEO/BTC", fill_missing=True), 'LTC/BTC': ohlcv_to_dataframe(LTCBTC, '1h', pair="LTC/BTC", fill_missing=True)} return pairdata def test_edge_process_downloaded_data(mocker, edge_conf): freqtrade = get_patched_freqtradebot(mocker, edge_conf) mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.001)) mocker.patch('freqtrade.edge.edge_positioning.refresh_data', MagicMock()) mocker.patch('freqtrade.edge.edge_positioning.load_data', mocked_load_data) edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy) assert edge.calculate() assert len(edge._cached_pairs) == 2 assert edge._last_updated <= arrow.utcnow().timestamp + 2 def test_edge_process_no_data(mocker, edge_conf, caplog): freqtrade = get_patched_freqtradebot(mocker, edge_conf) mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.001)) mocker.patch('freqtrade.edge.edge_positioning.refresh_data', MagicMock()) mocker.patch('freqtrade.edge.edge_positioning.load_data', MagicMock(return_value={})) edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy) assert not edge.calculate() assert len(edge._cached_pairs) == 0 assert log_has("No data found. Edge is stopped ...", caplog) assert edge._last_updated == 0 def test_edge_process_no_trades(mocker, edge_conf, caplog): freqtrade = get_patched_freqtradebot(mocker, edge_conf) mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.001)) mocker.patch('freqtrade.edge.edge_positioning.refresh_data', MagicMock()) mocker.patch('freqtrade.edge.edge_positioning.load_data', mocked_load_data) # Return empty mocker.patch('freqtrade.edge.Edge._find_trades_for_stoploss_range', MagicMock(return_value=[])) edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy) assert not edge.calculate() assert len(edge._cached_pairs) == 0 assert log_has("No trades found.", caplog) def test_edge_init_error(mocker, edge_conf,): edge_conf['stake_amount'] = 0.5 mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.001)) with pytest.raises(OperationalException, match='Edge works only with unlimited stake amount'): get_patched_freqtradebot(mocker, edge_conf) @pytest.mark.parametrize("fee,risk_reward_ratio,expectancy", [ (0.0005, 306.5384615384, 101.5128205128), (0.001, 152.6923076923, 50.2307692308), ]) def test_process_expectancy(mocker, edge_conf, fee, risk_reward_ratio, expectancy): edge_conf['edge']['min_trade_number'] = 2 freqtrade = get_patched_freqtradebot(mocker, edge_conf) def get_fee(*args, **kwargs): return fee freqtrade.exchange.get_fee = get_fee edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy) trades = [ {'pair': 'TEST/BTC', 'stoploss': -0.9, 'profit_percent': '', 'profit_abs': '', 'open_date': np.datetime64('2018-10-03T00:05:00.000000000'), 'close_date': np.datetime64('2018-10-03T00:10:00.000000000'), 'open_index': 1, 'close_index': 1, 'trade_duration': '', 'open_rate': 17, 'close_rate': 17, 'exit_type': 'sell_signal'}, {'pair': 'TEST/BTC', 'stoploss': -0.9, 'profit_percent': '', 'profit_abs': '', 'open_date': np.datetime64('2018-10-03T00:20:00.000000000'), 'close_date': np.datetime64('2018-10-03T00:25:00.000000000'), 'open_index': 4, 'close_index': 4, 'trade_duration': '', 'open_rate': 20, 'close_rate': 20, 'exit_type': 'sell_signal'}, {'pair': 'TEST/BTC', 'stoploss': -0.9, 'profit_percent': '', 'profit_abs': '', 'open_date': np.datetime64('2018-10-03T00:30:00.000000000'), 'close_date': np.datetime64('2018-10-03T00:40:00.000000000'), 'open_index': 6, 'close_index': 7, 'trade_duration': '', 'open_rate': 26, 'close_rate': 34, 'exit_type': 'sell_signal'} ] trades_df = DataFrame(trades) trades_df = edge._fill_calculable_fields(trades_df) final = edge._process_expectancy(trades_df) assert len(final) == 1 assert 'TEST/BTC' in final assert final['TEST/BTC'].stoploss == -0.9 assert round(final['TEST/BTC'].winrate, 10) == 0.3333333333 assert round(final['TEST/BTC'].risk_reward_ratio, 10) == risk_reward_ratio assert round(final['TEST/BTC'].required_risk_reward, 10) == 2.0 assert round(final['TEST/BTC'].expectancy, 10) == expectancy # Pop last item so no trade is profitable trades.pop() trades_df = DataFrame(trades) trades_df = edge._fill_calculable_fields(trades_df) final = edge._process_expectancy(trades_df) assert len(final) == 0 assert isinstance(final, dict)