import logging import re import arrow from pandas import DataFrame from freqtrade.persistence import Trade from freqtrade.misc import State, get_state from freqtrade import exchange from . import telegram logger = logging.getLogger(__name__) REGISTERED_MODULES = [] def init(config: dict) -> None: """ Initializes all enabled rpc modules :param config: config to use :return: None """ if config['telegram'].get('enabled', False): logger.info('Enabling rpc.telegram ...') REGISTERED_MODULES.append('telegram') telegram.init(config) def cleanup() -> None: """ Stops all enabled rpc modules :return: None """ if 'telegram' in REGISTERED_MODULES: logger.debug('Cleaning up rpc.telegram ...') telegram.cleanup() def send_msg(msg: str) -> None: """ Send given markdown message to all registered rpc modules :param msg: message :return: None """ logger.info(msg) if 'telegram' in REGISTERED_MODULES: telegram.send_msg(msg) def shorten_date(_date): """ Trim the date so it fits on small screens """ new_date = re.sub('seconds?', 'sec', _date) new_date = re.sub('minutes?', 'min', new_date) new_date = re.sub('hours?', 'h', new_date) new_date = re.sub('days?', 'd', new_date) new_date = re.sub('^an?', '1', new_date) return new_date # # Below follows the RPC backend # it is prefixed with rpc_ # to raise awareness that it is # a remotely exposed function def rpc_status_table(): trades = Trade.query.filter(Trade.is_open.is_(True)).all() if get_state() != State.RUNNING: return (True, '*Status:* `trader is not running`') elif not trades: return (True, '*Status:* `no active order`') else: trades_list = [] for trade in trades: # calculate profit and send message to user current_rate = exchange.get_ticker(trade.pair, False)['bid'] trades_list.append([ trade.id, trade.pair, shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)), '{:.2f}%'.format(100 * trade.calc_profit_percent(current_rate)) ]) columns = ['ID', 'Pair', 'Since', 'Profit'] df_statuses = DataFrame.from_records(trades_list, columns=columns) df_statuses = df_statuses.set_index(columns[0]) # The style used throughout is to return a tuple # consisting of (error_occured?, result) # Another approach would be to just return the # result, or raise error return (False, df_statuses)