""" Handle historic data (ohlcv). Includes: * load data for a pair (or a list of pairs) from disk * download data from exchange and store to disk """ import logging import operator from datetime import datetime from pathlib import Path from typing import Any, Dict, List, Optional, Tuple import arrow from pandas import DataFrame from freqtrade import OperationalException, misc from freqtrade.arguments import TimeRange from freqtrade.data.converter import parse_ticker_dataframe from freqtrade.exchange import Exchange, timeframe_to_minutes logger = logging.getLogger(__name__) def trim_tickerlist(tickerlist: List[Dict], timerange: TimeRange) -> List[Dict]: """ Trim tickerlist based on given timerange """ if not tickerlist: return tickerlist start_index = 0 stop_index = len(tickerlist) if timerange.starttype == 'line': stop_index = timerange.startts if timerange.starttype == 'index': start_index = timerange.startts elif timerange.starttype == 'date': while (start_index < len(tickerlist) and tickerlist[start_index][0] < timerange.startts * 1000): start_index += 1 if timerange.stoptype == 'line': start_index = len(tickerlist) + timerange.stopts if timerange.stoptype == 'index': stop_index = timerange.stopts elif timerange.stoptype == 'date': while (stop_index > 0 and tickerlist[stop_index-1][0] > timerange.stopts * 1000): stop_index -= 1 if start_index > stop_index: raise ValueError(f'The timerange [{timerange.startts},{timerange.stopts}] is incorrect') return tickerlist[start_index:stop_index] def load_tickerdata_file( datadir: Optional[Path], pair: str, ticker_interval: str, timerange: Optional[TimeRange] = None) -> Optional[list]: """ Load a pair from file, either .json.gz or .json :return: tickerlist or None if unsuccesful """ filename = pair_data_filename(datadir, pair, ticker_interval) pairdata = misc.file_load_json(filename) if not pairdata: return None if timerange: pairdata = trim_tickerlist(pairdata, timerange) return pairdata def load_pair_history(pair: str, ticker_interval: str, datadir: Optional[Path], timerange: TimeRange = TimeRange(None, None, 0, 0), refresh_pairs: bool = False, exchange: Optional[Exchange] = None, fill_up_missing: bool = True, drop_incomplete: bool = True ) -> DataFrame: """ Loads cached ticker history for the given pair. :param pair: Pair to load data for :param ticker_interval: Ticker-interval (e.g. "5m") :param datadir: Path to the data storage location. :param timerange: Limit data to be loaded to this timerange :param refresh_pairs: Refresh pairs from exchange. (Note: Requires exchange to be passed as well.) :param exchange: Exchange object (needed when using "refresh_pairs") :param fill_up_missing: Fill missing values with "No action"-candles :param drop_incomplete: Drop last candle assuming it may be incomplete. :return: DataFrame with ohlcv data """ # The user forced the refresh of pairs if refresh_pairs: download_pair_history(datadir=datadir, exchange=exchange, pair=pair, ticker_interval=ticker_interval, timerange=timerange) pairdata = load_tickerdata_file(datadir, pair, ticker_interval, timerange=timerange) if pairdata: if timerange.starttype == 'date' and pairdata[0][0] > timerange.startts * 1000: logger.warning('Missing data at start for pair %s, data starts at %s', pair, arrow.get(pairdata[0][0] // 1000).strftime('%Y-%m-%d %H:%M:%S')) if timerange.stoptype == 'date' and pairdata[-1][0] < timerange.stopts * 1000: logger.warning('Missing data at end for pair %s, data ends at %s', pair, arrow.get(pairdata[-1][0] // 1000).strftime('%Y-%m-%d %H:%M:%S')) return parse_ticker_dataframe(pairdata, ticker_interval, fill_missing=fill_up_missing, drop_incomplete=drop_incomplete) else: logger.warning( f'No history data for pair: "{pair}", interval: {ticker_interval}. ' 'Use --refresh-pairs-cached option or download_backtest_data.py ' 'script to download the data' ) return None def load_data(datadir: Optional[Path], ticker_interval: str, pairs: List[str], refresh_pairs: bool = False, exchange: Optional[Exchange] = None, timerange: TimeRange = TimeRange(None, None, 0, 0), fill_up_missing: bool = True, live: bool = False ) -> Dict[str, DataFrame]: """ Loads ticker history data for a list of pairs the given parameters :return: dict(:) """ result: Dict[str, DataFrame] = {} if live: if exchange: logger.info('Live: Downloading data for all defined pairs ...') exchange.refresh_latest_ohlcv([(pair, ticker_interval) for pair in pairs]) result = {key[0]: value for key, value in exchange._klines.items() if value is not None} else: raise OperationalException( "Exchange needs to be initialized when using live data." ) else: logger.info('Using local backtesting data ...') for pair in pairs: hist = load_pair_history(pair=pair, ticker_interval=ticker_interval, datadir=datadir, timerange=timerange, refresh_pairs=refresh_pairs, exchange=exchange, fill_up_missing=fill_up_missing) if hist is not None: result[pair] = hist return result def make_testdata_path(datadir: Optional[Path]) -> Path: """Return the path where testdata files are stored""" return datadir or (Path(__file__).parent.parent / "tests" / "testdata").resolve() def pair_data_filename(datadir: Optional[Path], pair: str, ticker_interval: str) -> Path: path = make_testdata_path(datadir) pair_s = pair.replace("/", "_") filename = path.joinpath(f'{pair_s}-{ticker_interval}.json') return filename def load_cached_data_for_updating(filename: Path, ticker_interval: str, timerange: Optional[TimeRange]) -> Tuple[List[Any], Optional[int]]: """ Load cached data and choose what part of the data should be updated """ since_ms = None # user sets timerange, so find the start time if timerange: if timerange.starttype == 'date': since_ms = timerange.startts * 1000 elif timerange.stoptype == 'line': num_minutes = timerange.stopts * timeframe_to_minutes(ticker_interval) since_ms = arrow.utcnow().shift(minutes=num_minutes).timestamp * 1000 # read the cached file if filename.is_file(): with open(filename, "rt") as file: data = misc.json_load(file) # remove the last item, could be incomplete candle if data: data.pop() else: data = [] if data: if since_ms and since_ms < data[0][0]: # Earlier data than existing data requested, redownload all data = [] else: # a part of the data was already downloaded, so download unexist data only since_ms = data[-1][0] + 1 return (data, since_ms) def download_pair_history(datadir: Optional[Path], exchange: Optional[Exchange], pair: str, ticker_interval: str = '5m', timerange: Optional[TimeRange] = None) -> bool: """ Download the latest ticker intervals from the exchange for the pair passed in parameters The data is downloaded starting from the last correct ticker interval data that exists in a cache. If timerange starts earlier than the data in the cache, the full data will be redownloaded Based on @Rybolov work: https://github.com/rybolov/freqtrade-data :param pair: pair to download :param ticker_interval: ticker interval :param timerange: range of time to download :return: bool with success state """ if not exchange: raise OperationalException( "Exchange needs to be initialized when downloading pair history data" ) try: filename = pair_data_filename(datadir, pair, ticker_interval) logger.info( f'Download history data for pair: "{pair}", interval: {ticker_interval} ' f'and store in {datadir}.' ) data, since_ms = load_cached_data_for_updating(filename, ticker_interval, timerange) logger.debug("Current Start: %s", misc.format_ms_time(data[1][0]) if data else 'None') logger.debug("Current End: %s", misc.format_ms_time(data[-1][0]) if data else 'None') # Default since_ms to 30 days if nothing is given new_data = exchange.get_history(pair=pair, ticker_interval=ticker_interval, since_ms=since_ms if since_ms else int(arrow.utcnow().shift(days=-30).float_timestamp) * 1000) data.extend(new_data) logger.debug("New Start: %s", misc.format_ms_time(data[0][0])) logger.debug("New End: %s", misc.format_ms_time(data[-1][0])) misc.file_dump_json(filename, data) return True except Exception as e: logger.error( f'Failed to download history data for pair: "{pair}", interval: {ticker_interval}. ' f'Error: {e}' ) return False def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]: """ Get the maximum timeframe for the given backtest data :param data: dictionary with preprocessed backtesting data :return: tuple containing min_date, max_date """ timeframe = [ (arrow.get(frame['date'].min()), arrow.get(frame['date'].max())) for frame in data.values() ] return min(timeframe, key=operator.itemgetter(0))[0], \ max(timeframe, key=operator.itemgetter(1))[1] def validate_backtest_data(data: Dict[str, DataFrame], min_date: datetime, max_date: datetime, ticker_interval_mins: int) -> bool: """ Validates preprocessed backtesting data for missing values and shows warnings about it that. :param data: dictionary with preprocessed backtesting data :param min_date: start-date of the data :param max_date: end-date of the data :param ticker_interval_mins: ticker interval in minutes """ # total difference in minutes / interval-minutes expected_frames = int((max_date - min_date).total_seconds() // 60 // ticker_interval_mins) found_missing = False for pair, df in data.items(): dflen = len(df) if dflen < expected_frames: found_missing = True logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values", pair, expected_frames, dflen, expected_frames - dflen) return found_missing