# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument import math import random from pathlib import Path from unittest.mock import MagicMock import numpy as np import pandas as pd import pytest from arrow import Arrow from freqtrade import DependencyException, OperationalException, constants from freqtrade.configuration import TimeRange from freqtrade.data import history from freqtrade.data.btanalysis import evaluate_result_multi from freqtrade.data.converter import parse_ticker_dataframe from freqtrade.data.dataprovider import DataProvider from freqtrade.data.history import get_timeframe from freqtrade.optimize import setup_configuration, start_backtesting from freqtrade.optimize.backtesting import Backtesting from freqtrade.state import RunMode from freqtrade.strategy.default_strategy import DefaultStrategy from freqtrade.strategy.interface import SellType from tests.conftest import (get_args, log_has, log_has_re, patch_exchange, patched_configuration_load_config_file) ORDER_TYPES = [ { 'buy': 'limit', 'sell': 'limit', 'stoploss': 'limit', 'stoploss_on_exchange': False }, { 'buy': 'limit', 'sell': 'limit', 'stoploss': 'limit', 'stoploss_on_exchange': True }] def trim_dictlist(dict_list, num): new = {} for pair, pair_data in dict_list.items(): new[pair] = pair_data[num:].reset_index() return new def load_data_test(what, testdatadir): timerange = TimeRange.parse_timerange('1510694220-1510700340') pair = history.load_tickerdata_file(testdatadir, timeframe='1m', pair='UNITTEST/BTC', timerange=timerange) datalen = len(pair) base = 0.001 if what == 'raise': data = [ [ pair[x][0], # Keep old dates x * base, # But replace O,H,L,C x * base + 0.0001, x * base - 0.0001, x * base, pair[x][5], # Keep old volume ] for x in range(0, datalen) ] if what == 'lower': data = [ [ pair[x][0], # Keep old dates 1 - x * base, # But replace O,H,L,C 1 - x * base + 0.0001, 1 - x * base - 0.0001, 1 - x * base, pair[x][5] # Keep old volume ] for x in range(0, datalen) ] if what == 'sine': hz = 0.1 # frequency data = [ [ pair[x][0], # Keep old dates math.sin(x * hz) / 1000 + base, # But replace O,H,L,C math.sin(x * hz) / 1000 + base + 0.0001, math.sin(x * hz) / 1000 + base - 0.0001, math.sin(x * hz) / 1000 + base, pair[x][5] # Keep old volume ] for x in range(0, datalen) ] return {'UNITTEST/BTC': parse_ticker_dataframe(data, '1m', pair="UNITTEST/BTC", fill_missing=True)} def simple_backtest(config, contour, num_results, mocker, testdatadir) -> None: patch_exchange(mocker) config['ticker_interval'] = '1m' backtesting = Backtesting(config) data = load_data_test(contour, testdatadir) processed = backtesting.strategy.tickerdata_to_dataframe(data) min_date, max_date = get_timeframe(processed) assert isinstance(processed, dict) results = backtesting.backtest( { 'stake_amount': config['stake_amount'], 'processed': processed, 'max_open_trades': 1, 'position_stacking': False, 'start_date': min_date, 'end_date': max_date, } ) # results :: assert len(results) == num_results def mocked_load_data(datadir, pairs=[], timeframe='0m', timerange=None, *args, **kwargs): tickerdata = history.load_tickerdata_file(datadir, 'UNITTEST/BTC', '1m', timerange=timerange) pairdata = {'UNITTEST/BTC': parse_ticker_dataframe(tickerdata, '1m', pair="UNITTEST/BTC", fill_missing=True)} return pairdata # use for mock ccxt.fetch_ohlvc' def _load_pair_as_ticks(pair, tickfreq): ticks = history.load_tickerdata_file(None, timeframe=tickfreq, pair=pair) ticks = ticks[-201:] return ticks # FIX: fixturize this? def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC', record=None): data = history.load_data(datadir=datadir, timeframe='1m', pairs=[pair]) data = trim_dictlist(data, -201) patch_exchange(mocker) backtesting = Backtesting(conf) processed = backtesting.strategy.tickerdata_to_dataframe(data) min_date, max_date = get_timeframe(processed) return { 'stake_amount': conf['stake_amount'], 'processed': processed, 'max_open_trades': 10, 'position_stacking': False, 'record': record, 'start_date': min_date, 'end_date': max_date, } def _trend(signals, buy_value, sell_value): n = len(signals['low']) buy = np.zeros(n) sell = np.zeros(n) for i in range(0, len(signals['buy'])): if random.random() > 0.5: # Both buy and sell signals at same timeframe buy[i] = buy_value sell[i] = sell_value signals['buy'] = buy signals['sell'] = sell return signals def _trend_alternate(dataframe=None, metadata=None): signals = dataframe low = signals['low'] n = len(low) buy = np.zeros(n) sell = np.zeros(n) for i in range(0, len(buy)): if i % 2 == 0: buy[i] = 1 else: sell[i] = 1 signals['buy'] = buy signals['sell'] = sell return dataframe # Unit tests def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None: patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', ] config = setup_configuration(get_args(args), RunMode.BACKTEST) assert 'max_open_trades' in config assert 'stake_currency' in config assert 'stake_amount' in config assert 'exchange' in config assert 'pair_whitelist' in config['exchange'] assert 'datadir' in config assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog) assert 'ticker_interval' in config assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog) assert 'position_stacking' not in config assert not log_has('Parameter --enable-position-stacking detected ...', caplog) assert 'timerange' not in config assert 'export' not in config assert 'runmode' in config assert config['runmode'] == RunMode.BACKTEST def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None: patched_configuration_load_config_file(mocker, default_conf) mocker.patch( 'freqtrade.configuration.configuration.create_datadir', lambda c, x: x ) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', '--datadir', '/foo/bar', '--ticker-interval', '1m', '--enable-position-stacking', '--disable-max-market-positions', '--timerange', ':100', '--export', '/bar/foo', '--export-filename', 'foo_bar.json', '--fee', '0', ] config = setup_configuration(get_args(args), RunMode.BACKTEST) assert 'max_open_trades' in config assert 'stake_currency' in config assert 'stake_amount' in config assert 'exchange' in config assert 'pair_whitelist' in config['exchange'] assert 'datadir' in config assert config['runmode'] == RunMode.BACKTEST assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog) assert 'ticker_interval' in config assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...', caplog) assert 'position_stacking' in config assert log_has('Parameter --enable-position-stacking detected ...', caplog) assert 'use_max_market_positions' in config assert log_has('Parameter --disable-max-market-positions detected ...', caplog) assert log_has('max_open_trades set to unlimited ...', caplog) assert 'timerange' in config assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog) assert 'export' in config assert log_has('Parameter --export detected: {} ...'.format(config['export']), caplog) assert 'exportfilename' in config assert log_has('Storing backtest results to {} ...'.format(config['exportfilename']), caplog) assert 'fee' in config assert log_has('Parameter --fee detected, setting fee to: {} ...'.format(config['fee']), caplog) def test_setup_configuration_unlimited_stake_amount(mocker, default_conf, caplog) -> None: default_conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', ] with pytest.raises(DependencyException, match=r'.*stake amount.*'): setup_configuration(get_args(args), RunMode.BACKTEST) def test_start(mocker, fee, default_conf, caplog) -> None: start_mock = MagicMock() mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock) patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', ] args = get_args(args) start_backtesting(args) assert log_has('Starting freqtrade in Backtesting mode', caplog) assert start_mock.call_count == 1 @pytest.mark.parametrize("order_types", ORDER_TYPES) def test_backtesting_init(mocker, default_conf, order_types) -> None: """ Check that stoploss_on_exchange is set to False while backtesting since backtesting assumes a perfect stoploss anyway. """ default_conf["order_types"] = order_types patch_exchange(mocker) get_fee = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5)) backtesting = Backtesting(default_conf) assert backtesting.config == default_conf assert backtesting.timeframe == '5m' assert callable(backtesting.strategy.tickerdata_to_dataframe) assert callable(backtesting.strategy.advise_buy) assert callable(backtesting.strategy.advise_sell) assert isinstance(backtesting.strategy.dp, DataProvider) get_fee.assert_called() assert backtesting.fee == 0.5 assert not backtesting.strategy.order_types["stoploss_on_exchange"] def test_backtesting_init_no_ticker_interval(mocker, default_conf, caplog) -> None: patch_exchange(mocker) del default_conf['ticker_interval'] default_conf['strategy_list'] = ['DefaultStrategy', 'SampleStrategy'] mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5)) with pytest.raises(OperationalException): Backtesting(default_conf) log_has("Ticker-interval needs to be set in either configuration " "or as cli argument `--ticker-interval 5m`", caplog) def test_tickerdata_with_fee(default_conf, mocker, testdatadir) -> None: patch_exchange(mocker) default_conf['fee'] = 0.1234 fee_mock = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5)) backtesting = Backtesting(default_conf) assert backtesting.fee == 0.1234 assert fee_mock.call_count == 0 def test_tickerdata_to_dataframe_bt(default_conf, mocker, testdatadir) -> None: patch_exchange(mocker) # timerange = TimeRange(None, 'line', 0, -100) timerange = TimeRange.parse_timerange('1510694220-1510700340') tick = history.load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '1m', timerange=timerange) tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC", fill_missing=True)} backtesting = Backtesting(default_conf) data = backtesting.strategy.tickerdata_to_dataframe(tickerlist) assert len(data['UNITTEST/BTC']) == 102 # Load strategy to compare the result between Backtesting function and strategy are the same strategy = DefaultStrategy(default_conf) data2 = strategy.tickerdata_to_dataframe(tickerlist) assert data['UNITTEST/BTC'].equals(data2['UNITTEST/BTC']) def test_generate_text_table(default_conf, mocker): patch_exchange(mocker) default_conf['max_open_trades'] = 2 backtesting = Backtesting(default_conf) results = pd.DataFrame( { 'pair': ['ETH/BTC', 'ETH/BTC'], 'profit_percent': [0.1, 0.2], 'profit_abs': [0.2, 0.4], 'trade_duration': [10, 30], 'profit': [2, 0], 'loss': [0, 0] } ) result_str = ( '| pair | buy count | avg profit % | cum profit % | ' 'tot profit BTC | tot profit % | avg duration | profit | loss |\n' '|:--------|------------:|---------------:|---------------:|' '-----------------:|---------------:|:---------------|---------:|-------:|\n' '| ETH/BTC | 2 | 15.00 | 30.00 | ' '0.60000000 | 15.00 | 0:20:00 | 2 | 0 |\n' '| TOTAL | 2 | 15.00 | 30.00 | ' '0.60000000 | 15.00 | 0:20:00 | 2 | 0 |' ) assert backtesting._generate_text_table(data={'ETH/BTC': {}}, results=results) == result_str def test_generate_text_table_sell_reason(default_conf, mocker): patch_exchange(mocker) backtesting = Backtesting(default_conf) results = pd.DataFrame( { 'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'], 'profit_percent': [0.1, 0.2, 0.3], 'profit_abs': [0.2, 0.4, 0.5], 'trade_duration': [10, 30, 10], 'profit': [2, 0, 0], 'loss': [0, 0, 1], 'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS] } ) result_str = ( '| Sell Reason | Count |\n' '|:--------------|--------:|\n' '| roi | 2 |\n' '| stop_loss | 1 |' ) assert backtesting._generate_text_table_sell_reason( data={'ETH/BTC': {}}, results=results) == result_str def test_generate_text_table_strategyn(default_conf, mocker): """ Test Backtesting.generate_text_table_sell_reason() method """ patch_exchange(mocker) default_conf['max_open_trades'] = 2 backtesting = Backtesting(default_conf) results = {} results['ETH/BTC'] = pd.DataFrame( { 'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'], 'profit_percent': [0.1, 0.2, 0.3], 'profit_abs': [0.2, 0.4, 0.5], 'trade_duration': [10, 30, 10], 'profit': [2, 0, 0], 'loss': [0, 0, 1], 'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS] } ) results['LTC/BTC'] = pd.DataFrame( { 'pair': ['LTC/BTC', 'LTC/BTC', 'LTC/BTC'], 'profit_percent': [0.4, 0.2, 0.3], 'profit_abs': [0.4, 0.4, 0.5], 'trade_duration': [15, 30, 15], 'profit': [4, 1, 0], 'loss': [0, 0, 1], 'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS] } ) result_str = ( '| Strategy | buy count | avg profit % | cum profit % ' '| tot profit BTC | tot profit % | avg duration | profit | loss |\n' '|:-----------|------------:|---------------:|---------------:' '|-----------------:|---------------:|:---------------|---------:|-------:|\n' '| ETH/BTC | 3 | 20.00 | 60.00 ' '| 1.10000000 | 30.00 | 0:17:00 | 3 | 0 |\n' '| LTC/BTC | 3 | 30.00 | 90.00 ' '| 1.30000000 | 45.00 | 0:20:00 | 3 | 0 |' ) assert backtesting._generate_text_table_strategy(all_results=results) == result_str def test_backtesting_start(default_conf, mocker, testdatadir, caplog) -> None: def get_timeframe(input1): return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59) mocker.patch('freqtrade.data.history.load_data', mocked_load_data) mocker.patch('freqtrade.data.history.get_timeframe', get_timeframe) mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock()) patch_exchange(mocker) mocker.patch.multiple( 'freqtrade.optimize.backtesting.Backtesting', backtest=MagicMock(), _generate_text_table=MagicMock(return_value='1'), ) default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC'] default_conf['ticker_interval'] = '1m' default_conf['datadir'] = testdatadir default_conf['export'] = None default_conf['timerange'] = '-1510694220' backtesting = Backtesting(default_conf) backtesting.start() # check the logs, that will contain the backtest result exists = [ 'Using stake_currency: BTC ...', 'Using stake_amount: 0.001 ...', 'Backtesting with data from 2017-11-14T21:17:00+00:00 ' 'up to 2017-11-14T22:59:00+00:00 (0 days)..' ] for line in exists: assert log_has(line, caplog) def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) -> None: def get_timeframe(input1): return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59) mocker.patch('freqtrade.data.history.load_pair_history', MagicMock(return_value=pd.DataFrame())) mocker.patch('freqtrade.data.history.get_timeframe', get_timeframe) mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock()) patch_exchange(mocker) mocker.patch.multiple( 'freqtrade.optimize.backtesting.Backtesting', backtest=MagicMock(), _generate_text_table=MagicMock(return_value='1'), ) default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC'] default_conf['ticker_interval'] = "1m" default_conf['datadir'] = testdatadir default_conf['export'] = None default_conf['timerange'] = '20180101-20180102' backtesting = Backtesting(default_conf) with pytest.raises(OperationalException, match='No data found. Terminating.'): backtesting.start() def test_backtest(default_conf, fee, mocker, testdatadir) -> None: default_conf['ask_strategy']['use_sell_signal'] = False mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) backtesting = Backtesting(default_conf) pair = 'UNITTEST/BTC' timerange = TimeRange('date', None, 1517227800, 0) data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['UNITTEST/BTC'], timerange=timerange) data_processed = backtesting.strategy.tickerdata_to_dataframe(data) min_date, max_date = get_timeframe(data_processed) results = backtesting.backtest( { 'stake_amount': default_conf['stake_amount'], 'processed': data_processed, 'max_open_trades': 10, 'position_stacking': False, 'start_date': min_date, 'end_date': max_date, } ) assert not results.empty assert len(results) == 2 expected = pd.DataFrame( {'pair': [pair, pair], 'profit_percent': [0.0, 0.0], 'profit_abs': [0.0, 0.0], 'open_time': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime, Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True ), 'close_time': pd.to_datetime([Arrow(2018, 1, 29, 22, 35, 0).datetime, Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True), 'open_index': [78, 184], 'close_index': [125, 192], 'trade_duration': [235, 40], 'open_at_end': [False, False], 'open_rate': [0.104445, 0.10302485], 'close_rate': [0.104969, 0.103541], 'sell_reason': [SellType.ROI, SellType.ROI] }) pd.testing.assert_frame_equal(results, expected) data_pair = data_processed[pair] for _, t in results.iterrows(): ln = data_pair.loc[data_pair["date"] == t["open_time"]] # Check open trade rate alignes to open rate assert ln is not None assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6) # check close trade rate alignes to close rate or is between high and low ln = data_pair.loc[data_pair["date"] == t["close_time"]] assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or round(ln.iloc[0]["low"], 6) < round( t["close_rate"], 6) < round(ln.iloc[0]["high"], 6)) def test_backtest_1min_ticker_interval(default_conf, fee, mocker, testdatadir) -> None: default_conf['ask_strategy']['use_sell_signal'] = False mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) backtesting = Backtesting(default_conf) # Run a backtesting for an exiting 1min timeframe timerange = TimeRange.parse_timerange('1510688220-1510700340') data = history.load_data(datadir=testdatadir, timeframe='1m', pairs=['UNITTEST/BTC'], timerange=timerange) processed = backtesting.strategy.tickerdata_to_dataframe(data) min_date, max_date = get_timeframe(processed) results = backtesting.backtest( { 'stake_amount': default_conf['stake_amount'], 'processed': processed, 'max_open_trades': 1, 'position_stacking': False, 'start_date': min_date, 'end_date': max_date, } ) assert not results.empty assert len(results) == 1 def test_processed(default_conf, mocker, testdatadir) -> None: patch_exchange(mocker) backtesting = Backtesting(default_conf) dict_of_tickerrows = load_data_test('raise', testdatadir) dataframes = backtesting.strategy.tickerdata_to_dataframe(dict_of_tickerrows) dataframe = dataframes['UNITTEST/BTC'] cols = dataframe.columns # assert the dataframe got some of the indicator columns for col in ['close', 'high', 'low', 'open', 'date', 'ema10', 'rsi', 'fastd', 'plus_di']: assert col in cols def test_backtest_pricecontours(default_conf, fee, mocker, testdatadir) -> None: # TODO: Evaluate usefullness of this, the patterns and buy-signls are unrealistic mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) tests = [['raise', 19], ['lower', 0], ['sine', 35]] for [contour, numres] in tests: simple_backtest(default_conf, contour, numres, mocker, testdatadir) def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir): # Override the default buy trend function in our default_strategy def fun(dataframe=None, pair=None): buy_value = 1 sell_value = 1 return _trend(dataframe, buy_value, sell_value) backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir) backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = fun # Override backtesting.strategy.advise_sell = fun # Override results = backtesting.backtest(backtest_conf) assert results.empty def test_backtest_only_sell(mocker, default_conf, testdatadir): # Override the default buy trend function in our default_strategy def fun(dataframe=None, pair=None): buy_value = 0 sell_value = 1 return _trend(dataframe, buy_value, sell_value) backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir) backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = fun # Override backtesting.strategy.advise_sell = fun # Override results = backtesting.backtest(backtest_conf) assert results.empty def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir): mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) mocker.patch('freqtrade.optimize.backtesting.file_dump_json', MagicMock()) backtest_conf = _make_backtest_conf(mocker, conf=default_conf, pair='UNITTEST/BTC', datadir=testdatadir) default_conf['ticker_interval'] = '1m' backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = _trend_alternate # Override backtesting.strategy.advise_sell = _trend_alternate # Override results = backtesting.backtest(backtest_conf) backtesting._store_backtest_result("test_.json", results) # 200 candles in backtest data # won't buy on first (shifted by 1) # 100 buys signals assert len(results) == 100 # One trade was force-closed at the end assert len(results.loc[results.open_at_end]) == 0 @pytest.mark.parametrize("pair", ['ADA/BTC', 'LTC/BTC']) @pytest.mark.parametrize("tres", [0, 20, 30]) def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir): def _trend_alternate_hold(dataframe=None, metadata=None): """ Buy every xth candle - sell every other xth -2 (hold on to pairs a bit) """ if metadata['pair'] in('ETH/BTC', 'LTC/BTC'): multi = 20 else: multi = 18 dataframe['buy'] = np.where(dataframe.index % multi == 0, 1, 0) dataframe['sell'] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0) return dataframe mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) pairs = ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC', 'NXT/BTC'] data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=pairs) # Only use 500 lines to increase performance data = trim_dictlist(data, -500) # Remove data for one pair from the beginning of the data data[pair] = data[pair][tres:].reset_index() default_conf['ticker_interval'] = '5m' backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = _trend_alternate_hold # Override backtesting.strategy.advise_sell = _trend_alternate_hold # Override data_processed = backtesting.strategy.tickerdata_to_dataframe(data) min_date, max_date = get_timeframe(data_processed) backtest_conf = { 'stake_amount': default_conf['stake_amount'], 'processed': data_processed, 'max_open_trades': 3, 'position_stacking': False, 'start_date': min_date, 'end_date': max_date, } results = backtesting.backtest(backtest_conf) # Make sure we have parallel trades assert len(evaluate_result_multi(results, '5m', 2)) > 0 # make sure we don't have trades with more than configured max_open_trades assert len(evaluate_result_multi(results, '5m', 3)) == 0 backtest_conf = { 'stake_amount': default_conf['stake_amount'], 'processed': data_processed, 'max_open_trades': 1, 'position_stacking': False, 'start_date': min_date, 'end_date': max_date, } results = backtesting.backtest(backtest_conf) assert len(evaluate_result_multi(results, '5m', 1)) == 0 def test_backtest_record(default_conf, fee, mocker): names = [] records = [] patch_exchange(mocker) mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) mocker.patch( 'freqtrade.optimize.backtesting.file_dump_json', new=lambda n, r: (names.append(n), records.append(r)) ) backtesting = Backtesting(default_conf) results = pd.DataFrame({"pair": ["UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC", "UNITTEST/BTC"], "profit_percent": [0.003312, 0.010801, 0.013803, 0.002780], "profit_abs": [0.000003, 0.000011, 0.000014, 0.000003], "open_time": [Arrow(2017, 11, 14, 19, 32, 00).datetime, Arrow(2017, 11, 14, 21, 36, 00).datetime, Arrow(2017, 11, 14, 22, 12, 00).datetime, Arrow(2017, 11, 14, 22, 44, 00).datetime], "close_time": [Arrow(2017, 11, 14, 21, 35, 00).datetime, Arrow(2017, 11, 14, 22, 10, 00).datetime, Arrow(2017, 11, 14, 22, 43, 00).datetime, Arrow(2017, 11, 14, 22, 58, 00).datetime], "open_rate": [0.002543, 0.003003, 0.003089, 0.003214], "close_rate": [0.002546, 0.003014, 0.003103, 0.003217], "open_index": [1, 119, 153, 185], "close_index": [118, 151, 184, 199], "trade_duration": [123, 34, 31, 14], "open_at_end": [False, False, False, True], "sell_reason": [SellType.ROI, SellType.STOP_LOSS, SellType.ROI, SellType.FORCE_SELL] }) backtesting._store_backtest_result("backtest-result.json", results) assert len(results) == 4 # Assert file_dump_json was only called once assert names == ['backtest-result.json'] records = records[0] # Ensure records are of correct type assert len(records) == 4 # reset test to test with strategy name names = [] records = [] backtesting._store_backtest_result(Path("backtest-result.json"), results, "DefStrat") assert len(results) == 4 # Assert file_dump_json was only called once assert names == [Path('backtest-result-DefStrat.json')] records = records[0] # Ensure records are of correct type assert len(records) == 4 # ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117) # Below follows just a typecheck of the schema/type of trade-records oix = None for (pair, profit, date_buy, date_sell, buy_index, dur, openr, closer, open_at_end, sell_reason) in records: assert pair == 'UNITTEST/BTC' assert isinstance(profit, float) # FIX: buy/sell should be converted to ints assert isinstance(date_buy, float) assert isinstance(date_sell, float) assert isinstance(openr, float) assert isinstance(closer, float) assert isinstance(open_at_end, bool) assert isinstance(sell_reason, str) isinstance(buy_index, pd._libs.tslib.Timestamp) if oix: assert buy_index > oix oix = buy_index assert dur > 0 def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir): default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC'] async def load_pairs(pair, timeframe, since): return _load_pair_as_ticks(pair, timeframe) api_mock = MagicMock() api_mock.fetch_ohlcv = load_pairs patch_exchange(mocker, api_mock) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', MagicMock()) mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', MagicMock()) patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', '--datadir', str(testdatadir), '--ticker-interval', '1m', '--timerange', '1510694220-1510700340', '--enable-position-stacking', '--disable-max-market-positions' ] args = get_args(args) start_backtesting(args) # check the logs, that will contain the backtest result exists = [ 'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...', 'Ignoring max_open_trades (--disable-max-market-positions was used) ...', 'Parameter --timerange detected: 1510694220-1510700340 ...', f'Using data directory: {testdatadir} ...', 'Using stake_currency: BTC ...', 'Using stake_amount: 0.001 ...', 'Loading data from 2017-11-14T20:57:00+00:00 ' 'up to 2017-11-14T22:58:00+00:00 (0 days)..', 'Backtesting with data from 2017-11-14T21:17:00+00:00 ' 'up to 2017-11-14T22:58:00+00:00 (0 days)..', 'Parameter --enable-position-stacking detected ...' ] for line in exists: assert log_has(line, caplog) def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir): default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC'] async def load_pairs(pair, timeframe, since): return _load_pair_as_ticks(pair, timeframe) api_mock = MagicMock() api_mock.fetch_ohlcv = load_pairs patch_exchange(mocker, api_mock) backtestmock = MagicMock() mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock) gen_table_mock = MagicMock() mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', gen_table_mock) gen_strattable_mock = MagicMock() mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table_strategy', gen_strattable_mock) patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--datadir', str(testdatadir), '--strategy-path', str(Path(__file__).parents[2] / 'freqtrade/templates'), '--ticker-interval', '1m', '--timerange', '1510694220-1510700340', '--enable-position-stacking', '--disable-max-market-positions', '--strategy-list', 'DefaultStrategy', 'SampleStrategy', ] args = get_args(args) start_backtesting(args) # 2 backtests, 4 tables assert backtestmock.call_count == 2 assert gen_table_mock.call_count == 4 assert gen_strattable_mock.call_count == 1 # check the logs, that will contain the backtest result exists = [ 'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...', 'Ignoring max_open_trades (--disable-max-market-positions was used) ...', 'Parameter --timerange detected: 1510694220-1510700340 ...', f'Using data directory: {testdatadir} ...', 'Using stake_currency: BTC ...', 'Using stake_amount: 0.001 ...', 'Loading data from 2017-11-14T20:57:00+00:00 ' 'up to 2017-11-14T22:58:00+00:00 (0 days)..', 'Backtesting with data from 2017-11-14T21:17:00+00:00 ' 'up to 2017-11-14T22:58:00+00:00 (0 days)..', 'Parameter --enable-position-stacking detected ...', 'Running backtesting for Strategy DefaultStrategy', 'Running backtesting for Strategy SampleStrategy', ] for line in exists: assert log_has(line, caplog)