import logging import re import arrow from datetime import datetime, timedelta from pandas import DataFrame from freqtrade.persistence import Trade from freqtrade.misc import State, get_state from freqtrade import exchange from freqtrade.fiat_convert import CryptoToFiatConverter from . import telegram logger = logging.getLogger(__name__) REGISTERED_MODULES = [] def init(config: dict) -> None: """ Initializes all enabled rpc modules :param config: config to use :return: None """ if config['telegram'].get('enabled', False): logger.info('Enabling rpc.telegram ...') REGISTERED_MODULES.append('telegram') telegram.init(config) def cleanup() -> None: """ Stops all enabled rpc modules :return: None """ if 'telegram' in REGISTERED_MODULES: logger.debug('Cleaning up rpc.telegram ...') telegram.cleanup() def send_msg(msg: str) -> None: """ Send given markdown message to all registered rpc modules :param msg: message :return: None """ logger.info(msg) if 'telegram' in REGISTERED_MODULES: telegram.send_msg(msg) def shorten_date(_date): """ Trim the date so it fits on small screens """ new_date = re.sub('seconds?', 'sec', _date) new_date = re.sub('minutes?', 'min', new_date) new_date = re.sub('hours?', 'h', new_date) new_date = re.sub('days?', 'd', new_date) new_date = re.sub('^an?', '1', new_date) return new_date # # Below follows the RPC backend # it is prefixed with rpc_ # to raise awareness that it is # a remotely exposed function def rpc_trade_status(): # Fetch open trade trades = Trade.query.filter(Trade.is_open.is_(True)).all() if get_state() != State.RUNNING: return (True, '*Status:* `trader is not running`') elif not trades: return (True, '*Status:* `no active trade`') else: result = [] for trade in trades: order = None if trade.open_order_id: order = exchange.get_order(trade.open_order_id) # calculate profit and send message to user current_rate = exchange.get_ticker(trade.pair, False)['bid'] current_profit = trade.calc_profit_percent(current_rate) fmt_close_profit = '{:.2f}%'.format( round(trade.close_profit * 100, 2) ) if trade.close_profit else None message = """ *Trade ID:* `{trade_id}` *Current Pair:* [{pair}]({market_url}) *Open Since:* `{date}` *Amount:* `{amount}` *Open Rate:* `{open_rate:.8f}` *Close Rate:* `{close_rate}` *Current Rate:* `{current_rate:.8f}` *Close Profit:* `{close_profit}` *Current Profit:* `{current_profit:.2f}%` *Open Order:* `{open_order}` """.format( trade_id=trade.id, pair=trade.pair, market_url=exchange.get_pair_detail_url(trade.pair), date=arrow.get(trade.open_date).humanize(), open_rate=trade.open_rate, close_rate=trade.close_rate, current_rate=current_rate, amount=round(trade.amount, 8), close_profit=fmt_close_profit, current_profit=round(current_profit * 100, 2), open_order='({} rem={:.8f})'.format( order['type'], order['remaining'] ) if order else None, ) result.append(message) return (False, result) def rpc_status_table(): trades = Trade.query.filter(Trade.is_open.is_(True)).all() if get_state() != State.RUNNING: return (True, '*Status:* `trader is not running`') elif not trades: return (True, '*Status:* `no active order`') else: trades_list = [] for trade in trades: # calculate profit and send message to user current_rate = exchange.get_ticker(trade.pair, False)['bid'] trades_list.append([ trade.id, trade.pair, shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)), '{:.2f}%'.format(100 * trade.calc_profit_percent(current_rate)) ]) columns = ['ID', 'Pair', 'Since', 'Profit'] df_statuses = DataFrame.from_records(trades_list, columns=columns) df_statuses = df_statuses.set_index(columns[0]) # The style used throughout is to return a tuple # consisting of (error_occured?, result) # Another approach would be to just return the # result, or raise error return (False, df_statuses) def rpc_daily_profit(timescale, stake_currency, fiat_display_currency): today = datetime.utcnow().date() profit_days = {} if not (isinstance(timescale, int) and timescale > 0): return (True, '*Daily [n]:* `must be an integer greater than 0`') # FIX: we might not want to call CryptoToFiatConverter, for every call fiat = CryptoToFiatConverter() for day in range(0, timescale): profitday = today - timedelta(days=day) trades = Trade.query \ .filter(Trade.is_open.is_(False)) \ .filter(Trade.close_date >= profitday)\ .filter(Trade.close_date < (profitday + timedelta(days=1)))\ .order_by(Trade.close_date)\ .all() curdayprofit = sum(trade.calc_profit() for trade in trades) profit_days[profitday] = format(curdayprofit, '.8f') stats = [ [ key, '{value:.8f} {symbol}'.format(value=float(value), symbol=stake_currency), '{value:.3f} {symbol}'.format( value=fiat.convert_amount( value, stake_currency, fiat_display_currency ), symbol=fiat_display_currency ) ] for key, value in profit_days.items() ] return (False, stats)