""" IHyperStrategy interface, hyperoptable Parameter class. This module defines a base class for auto-hyperoptable strategies. """ import logging from abc import ABC, abstractmethod from contextlib import suppress from pathlib import Path from typing import Any, Dict, Iterator, List, Optional, Sequence, Tuple, Union from freqtrade.misc import deep_merge_dicts, json_load from freqtrade.optimize.hyperopt_tools import HyperoptTools with suppress(ImportError): from skopt.space import Integer, Real, Categorical from freqtrade.optimize.space import SKDecimal from freqtrade.enums import RunMode from freqtrade.exceptions import OperationalException logger = logging.getLogger(__name__) class BaseParameter(ABC): """ Defines a parameter that can be optimized by hyperopt. """ category: Optional[str] default: Any value: Any in_space: bool = False name: str def __init__(self, *, default: Any, space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs): """ Initialize hyperopt-optimizable parameter. :param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if parameter field name is prefixed with 'buy_' or 'sell_'. :param optimize: Include parameter in hyperopt optimizations. :param load: Load parameter value from {space}_params. :param kwargs: Extra parameters to skopt.space.(Integer|Real|Categorical). """ if 'name' in kwargs: raise OperationalException( 'Name is determined by parameter field name and can not be specified manually.') self.category = space self._space_params = kwargs self.value = default self.optimize = optimize self.load = load def __repr__(self): return f'{self.__class__.__name__}({self.value})' @abstractmethod def get_space(self, name: str) -> Union['Integer', 'Real', 'SKDecimal', 'Categorical']: """ Get-space - will be used by Hyperopt to get the hyperopt Space """ class NumericParameter(BaseParameter): """ Internal parameter used for Numeric purposes """ float_or_int = Union[int, float] default: float_or_int value: float_or_int def __init__(self, low: Union[float_or_int, Sequence[float_or_int]], high: Optional[float_or_int] = None, *, default: float_or_int, space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs): """ Initialize hyperopt-optimizable numeric parameter. Cannot be instantiated, but provides the validation for other numeric parameters :param low: Lower end (inclusive) of optimization space or [low, high]. :param high: Upper end (inclusive) of optimization space. Must be none of entire range is passed first parameter. :param default: A default value. :param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if parameter fieldname is prefixed with 'buy_' or 'sell_'. :param optimize: Include parameter in hyperopt optimizations. :param load: Load parameter value from {space}_params. :param kwargs: Extra parameters to skopt.space.*. """ if high is not None and isinstance(low, Sequence): raise OperationalException(f'{self.__class__.__name__} space invalid.') if high is None or isinstance(low, Sequence): if not isinstance(low, Sequence) or len(low) != 2: raise OperationalException(f'{self.__class__.__name__} space must be [low, high]') self.low, self.high = low else: self.low = low self.high = high super().__init__(default=default, space=space, optimize=optimize, load=load, **kwargs) class IntParameter(NumericParameter): default: int value: int def __init__(self, low: Union[int, Sequence[int]], high: Optional[int] = None, *, default: int, space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs): """ Initialize hyperopt-optimizable integer parameter. :param low: Lower end (inclusive) of optimization space or [low, high]. :param high: Upper end (inclusive) of optimization space. Must be none of entire range is passed first parameter. :param default: A default value. :param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if parameter fieldname is prefixed with 'buy_' or 'sell_'. :param optimize: Include parameter in hyperopt optimizations. :param load: Load parameter value from {space}_params. :param kwargs: Extra parameters to skopt.space.Integer. """ super().__init__(low=low, high=high, default=default, space=space, optimize=optimize, load=load, **kwargs) def get_space(self, name: str) -> 'Integer': """ Create skopt optimization space. :param name: A name of parameter field. """ return Integer(low=self.low, high=self.high, name=name, **self._space_params) @property def range(self): """ Get each value in this space as list. Returns a List from low to high (inclusive) in Hyperopt mode. Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid calculating 100ds of indicators. """ if self.in_space and self.optimize: # Scikit-optimize ranges are "inclusive", while python's "range" is exclusive return range(self.low, self.high + 1) else: return range(self.value, self.value + 1) class RealParameter(NumericParameter): default: float value: float def __init__(self, low: Union[float, Sequence[float]], high: Optional[float] = None, *, default: float, space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs): """ Initialize hyperopt-optimizable floating point parameter with unlimited precision. :param low: Lower end (inclusive) of optimization space or [low, high]. :param high: Upper end (inclusive) of optimization space. Must be none if entire range is passed first parameter. :param default: A default value. :param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if parameter fieldname is prefixed with 'buy_' or 'sell_'. :param optimize: Include parameter in hyperopt optimizations. :param load: Load parameter value from {space}_params. :param kwargs: Extra parameters to skopt.space.Real. """ super().__init__(low=low, high=high, default=default, space=space, optimize=optimize, load=load, **kwargs) def get_space(self, name: str) -> 'Real': """ Create skopt optimization space. :param name: A name of parameter field. """ return Real(low=self.low, high=self.high, name=name, **self._space_params) class DecimalParameter(NumericParameter): default: float value: float def __init__(self, low: Union[float, Sequence[float]], high: Optional[float] = None, *, default: float, decimals: int = 3, space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs): """ Initialize hyperopt-optimizable decimal parameter with a limited precision. :param low: Lower end (inclusive) of optimization space or [low, high]. :param high: Upper end (inclusive) of optimization space. Must be none if entire range is passed first parameter. :param default: A default value. :param decimals: A number of decimals after floating point to be included in testing. :param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if parameter fieldname is prefixed with 'buy_' or 'sell_'. :param optimize: Include parameter in hyperopt optimizations. :param load: Load parameter value from {space}_params. :param kwargs: Extra parameters to skopt.space.Integer. """ self._decimals = decimals default = round(default, self._decimals) super().__init__(low=low, high=high, default=default, space=space, optimize=optimize, load=load, **kwargs) def get_space(self, name: str) -> 'SKDecimal': """ Create skopt optimization space. :param name: A name of parameter field. """ return SKDecimal(low=self.low, high=self.high, decimals=self._decimals, name=name, **self._space_params) class CategoricalParameter(BaseParameter): default: Any value: Any opt_range: Sequence[Any] def __init__(self, categories: Sequence[Any], *, default: Optional[Any] = None, space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs): """ Initialize hyperopt-optimizable parameter. :param categories: Optimization space, [a, b, ...]. :param default: A default value. If not specified, first item from specified space will be used. :param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if parameter field name is prefixed with 'buy_' or 'sell_'. :param optimize: Include parameter in hyperopt optimizations. :param load: Load parameter value from {space}_params. :param kwargs: Extra parameters to skopt.space.Categorical. """ if len(categories) < 2: raise OperationalException( 'CategoricalParameter space must be [a, b, ...] (at least two parameters)') self.opt_range = categories super().__init__(default=default, space=space, optimize=optimize, load=load, **kwargs) def get_space(self, name: str) -> 'Categorical': """ Create skopt optimization space. :param name: A name of parameter field. """ return Categorical(self.opt_range, name=name, **self._space_params) class HyperStrategyMixin(object): """ A helper base class which allows HyperOptAuto class to reuse implementations of buy/sell strategy logic. """ def __init__(self, config: Dict[str, Any], *args, **kwargs): """ Initialize hyperoptable strategy mixin. """ self.config = config self.ft_buy_params: List[BaseParameter] = [] self.ft_sell_params: List[BaseParameter] = [] self._load_hyper_params(config.get('runmode') == RunMode.HYPEROPT) def enumerate_parameters(self, category: str = None) -> Iterator[Tuple[str, BaseParameter]]: """ Find all optimizable parameters and return (name, attr) iterator. :param category: :return: """ if category not in ('buy', 'sell', None): raise OperationalException('Category must be one of: "buy", "sell", None.') if category is None: params = self.ft_buy_params + self.ft_sell_params else: params = getattr(self, f"ft_{category}_params") for par in params: yield par.name, par @classmethod def detect_parameters(cls, category: str) -> Iterator[Tuple[str, BaseParameter]]: """ Detect all parameters for 'category' """ for attr_name in dir(cls): if not attr_name.startswith('__'): # Ignore internals, not strictly necessary. attr = getattr(cls, attr_name) if issubclass(attr.__class__, BaseParameter): if (attr_name.startswith(category + '_') and attr.category is not None and attr.category != category): raise OperationalException( f'Inconclusive parameter name {attr_name}, category: {attr.category}.') if (category == attr.category or (attr_name.startswith(category + '_') and attr.category is None)): yield attr_name, attr @classmethod def detect_all_parameters(cls) -> Dict: """ Detect all parameters and return them as a list""" params: Dict = { 'buy': list(cls.detect_parameters('buy')), 'sell': list(cls.detect_parameters('sell')), } params.update({ 'count': len(params['buy'] + params['sell']) }) return params def _load_hyper_params(self, hyperopt: bool = False) -> None: """ Load Hyperoptable parameters """ params = self.load_params_from_file() params = params.get('params', {}) self._ft_params_from_file = params buy_params = deep_merge_dicts(params.get('buy', {}), getattr(self, 'buy_params', None)) sell_params = deep_merge_dicts(params.get('sell', {}), getattr(self, 'sell_params', None)) self._load_params(buy_params, 'buy', hyperopt) self._load_params(sell_params, 'sell', hyperopt) def load_params_from_file(self) -> Dict: filename_str = getattr(self, '__file__', '') if not filename_str: return {} filename = Path(filename_str).with_suffix('.json') if filename.is_file(): logger.info(f"Loading parameters from file {filename}") try: params = json_load(filename.open('r')) if params.get('strategy_name') != self.__class__.__name__: raise OperationalException('Invalid parameter file provided.') return params except ValueError: logger.warning("Invalid parameter file format.") return {} logger.info("Found no parameter file.") return {} def _load_params(self, params: Dict, space: str, hyperopt: bool = False) -> None: """ Set optimizable parameter values. :param params: Dictionary with new parameter values. """ if not params: logger.info(f"No params for {space} found, using default values.") param_container: List[BaseParameter] = getattr(self, f"ft_{space}_params") for attr_name, attr in self.detect_parameters(space): attr.name = attr_name attr.in_space = hyperopt and HyperoptTools.has_space(self.config, space) if not attr.category: attr.category = space param_container.append(attr) if params and attr_name in params: if attr.load: attr.value = params[attr_name] logger.info(f'Strategy Parameter: {attr_name} = {attr.value}') else: logger.warning(f'Parameter "{attr_name}" exists, but is disabled. ' f'Default value "{attr.value}" used.') else: logger.info(f'Strategy Parameter(default): {attr_name} = {attr.value}') def get_no_optimize_params(self): """ Returns list of Parameters that are not part of the current optimize job """ params = { 'buy': {}, 'sell': {} } for name, p in self.enumerate_parameters(): if not p.optimize or not p.in_space: params[p.category][name] = p.value return params