import shutil from datetime import datetime, timedelta, timezone from pathlib import Path import pytest from freqtrade.exceptions import OperationalException from tests.conftest import log_has_re from tests.freqai.conftest import (get_patched_data_kitchen, make_data_dictionary, make_unfiltered_dataframe) @pytest.mark.parametrize( "timerange, train_period_days, expected_result", [ ("20220101-20220201", 30, "20211202-20220201"), ("20220301-20220401", 15, "20220214-20220401"), ], ) def test_create_fulltimerange( timerange, train_period_days, expected_result, freqai_conf, mocker, caplog ): dk = get_patched_data_kitchen(mocker, freqai_conf) assert dk.create_fulltimerange(timerange, train_period_days) == expected_result shutil.rmtree(Path(dk.full_path)) def test_create_fulltimerange_incorrect_backtest_period(mocker, freqai_conf): dk = get_patched_data_kitchen(mocker, freqai_conf) with pytest.raises(OperationalException, match=r"backtest_period_days must be an integer"): dk.create_fulltimerange("20220101-20220201", 0.5) with pytest.raises(OperationalException, match=r"backtest_period_days must be positive"): dk.create_fulltimerange("20220101-20220201", -1) shutil.rmtree(Path(dk.full_path)) @pytest.mark.parametrize( "timerange, train_period_days, backtest_period_days, expected_result", [ ("20220101-20220201", 30, 7, 9), ("20220101-20220201", 30, 0.5, 120), ("20220101-20220201", 10, 1, 80), ], ) def test_split_timerange( mocker, freqai_conf, timerange, train_period_days, backtest_period_days, expected_result ): freqai_conf.update({"timerange": "20220101-20220401"}) dk = get_patched_data_kitchen(mocker, freqai_conf) tr_list, bt_list = dk.split_timerange(timerange, train_period_days, backtest_period_days) assert len(tr_list) == len(bt_list) == expected_result with pytest.raises( OperationalException, match=r"train_period_days must be an integer greater than 0." ): dk.split_timerange("20220101-20220201", -1, 0.5) shutil.rmtree(Path(dk.full_path)) def test_check_if_model_expired(mocker, freqai_conf): dk = get_patched_data_kitchen(mocker, freqai_conf) now = datetime.now(tz=timezone.utc).timestamp() assert dk.check_if_model_expired(now) is False now = (datetime.now(tz=timezone.utc) - timedelta(hours=2)).timestamp() assert dk.check_if_model_expired(now) is True shutil.rmtree(Path(dk.full_path)) def test_use_DBSCAN_to_remove_outliers(mocker, freqai_conf, caplog): freqai = make_data_dictionary(mocker, freqai_conf) # freqai_conf['freqai']['feature_parameters'].update({"outlier_protection_percentage": 1}) freqai.dk.use_DBSCAN_to_remove_outliers(predict=False) assert log_has_re(r"DBSCAN found eps of 1\.7\d\.", caplog) def test_compute_distances(mocker, freqai_conf): freqai = make_data_dictionary(mocker, freqai_conf) freqai_conf['freqai']['feature_parameters'].update({"DI_threshold": 1}) avg_mean_dist = freqai.dk.compute_distances() assert round(avg_mean_dist, 2) == 1.99 def test_use_SVM_to_remove_outliers_and_outlier_protection(mocker, freqai_conf, caplog): freqai = make_data_dictionary(mocker, freqai_conf) freqai_conf['freqai']['feature_parameters'].update({"outlier_protection_percentage": 0.1}) freqai.dk.use_SVM_to_remove_outliers(predict=False) assert log_has_re( "SVM detected 7.36%", caplog, ) def test_compute_inlier_metric(mocker, freqai_conf, caplog): freqai = make_data_dictionary(mocker, freqai_conf) freqai_conf['freqai']['feature_parameters'].update({"inlier_metric_window": 10}) freqai.dk.compute_inlier_metric(set_='train') assert log_has_re( "Inlier metric computed and added to features.", caplog, ) def test_add_noise_to_training_features(mocker, freqai_conf): freqai = make_data_dictionary(mocker, freqai_conf) freqai_conf['freqai']['feature_parameters'].update({"noise_standard_deviation": 0.1}) freqai.dk.add_noise_to_training_features() def test_remove_beginning_points_from_data_dict(mocker, freqai_conf): freqai = make_data_dictionary(mocker, freqai_conf) freqai.dk.remove_beginning_points_from_data_dict(set_='train') def test_principal_component_analysis(mocker, freqai_conf, caplog): freqai = make_data_dictionary(mocker, freqai_conf) freqai.dk.principal_component_analysis() assert log_has_re( "reduced feature dimension by", caplog, ) def test_normalize_data(mocker, freqai_conf): freqai = make_data_dictionary(mocker, freqai_conf) data_dict = freqai.dk.data_dictionary freqai.dk.normalize_data(data_dict) assert len(freqai.dk.data) == 32 def test_filter_features(mocker, freqai_conf): freqai, unfiltered_dataframe = make_unfiltered_dataframe(mocker, freqai_conf) freqai.dk.find_features(unfiltered_dataframe) filtered_df, labels = freqai.dk.filter_features( unfiltered_dataframe, freqai.dk.training_features_list, freqai.dk.label_list, training_filter=True, ) assert len(filtered_df.columns) == 14 def test_make_train_test_datasets(mocker, freqai_conf): freqai, unfiltered_dataframe = make_unfiltered_dataframe(mocker, freqai_conf) freqai.dk.find_features(unfiltered_dataframe) features_filtered, labels_filtered = freqai.dk.filter_features( unfiltered_dataframe, freqai.dk.training_features_list, freqai.dk.label_list, training_filter=True, ) data_dictionary = freqai.dk.make_train_test_datasets(features_filtered, labels_filtered) assert data_dictionary assert len(data_dictionary) == 7 assert len(data_dictionary['train_features'].index) == 1916 @pytest.mark.parametrize('indicator', [ '%-ADArsi-period_10_5m', 'doesnt_exist', ]) def test_spice_extractor(mocker, freqai_conf, indicator, caplog): freqai, unfiltered_dataframe = make_unfiltered_dataframe(mocker, freqai_conf) freqai.dk.find_features(unfiltered_dataframe) features_filtered, labels_filtered = freqai.dk.filter_features( unfiltered_dataframe, freqai.dk.training_features_list, freqai.dk.label_list, training_filter=True, ) vec = freqai.dk.spice_extractor(indicator, features_filtered) if 'doesnt_exist' in indicator: assert log_has_re( "User asked spice_rack for", caplog, ) else: assert len(vec) == 2860