import logging
from typing import Any

from pandas import DataFrame

from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel


logger = logging.getLogger(__name__)


class BaseTensorFlowModel(IFreqaiModel):
    """
    Base class for TensorFlow type models.
    User *must* inherit from this class and set fit() and predict().
    """

    def train(
        self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
    ) -> Any:
        """
        Filter the training data and train a model to it. Train makes heavy use of the datakitchen
        for storing, saving, loading, and analyzing the data.
        :param unfiltered_df: Full dataframe for the current training period
        :param metadata: pair metadata from strategy.
        :return:
        :model: Trained model which can be used to inference (self.predict)
        """

        logger.info("-------------------- Starting training " f"{pair} --------------------")

        # filter the features requested by user in the configuration file and elegantly handle NaNs
        features_filtered, labels_filtered = dk.filter_features(
            unfiltered_df,
            dk.training_features_list,
            dk.label_list,
            training_filter=True,
        )

        start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
        end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
        logger.info(f"-------------------- Training on data from {start_date} to "
                    f"{end_date}--------------------")
        # split data into train/test data.
        data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
        if not self.freqai_info.get('fit_live_predictions', 0) or not self.live:
            dk.fit_labels()
        # normalize all data based on train_dataset only
        data_dictionary = dk.normalize_data(data_dictionary)

        # optional additional data cleaning/analysis
        self.data_cleaning_train(dk)

        logger.info(
            f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
        )
        logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')

        model = self.fit(data_dictionary, dk)

        logger.info(f"--------------------done training {pair}--------------------")

        return model