import collections import json import logging import re import shutil import threading from pathlib import Path from typing import Any, Dict, Tuple, TypedDict import numpy as np import pandas as pd import rapidjson from joblib import dump, load from joblib.externals import cloudpickle from numpy.typing import NDArray from pandas import DataFrame from freqtrade.configuration import TimeRange from freqtrade.data.history import load_pair_history from freqtrade.exceptions import OperationalException from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.strategy.interface import IStrategy logger = logging.getLogger(__name__) class pair_info(TypedDict): model_filename: str first: bool trained_timestamp: int priority: int data_path: str extras: dict class FreqaiDataDrawer: """ Class aimed at holding all pair models/info in memory for better inferencing/retrainig/saving /loading to/from disk. This object remains persistent throughout live/dry. Record of contribution: FreqAI was developed by a group of individuals who all contributed specific skillsets to the project. Conception and software development: Robert Caulk @robcaulk Theoretical brainstorming: Elin Törnquist @th0rntwig Code review, software architecture brainstorming: @xmatthias Beta testing and bug reporting: @bloodhunter4rc, Salah Lamkadem @ikonx, @ken11o2, @longyu, @paranoidandy, @smidelis, @smarm Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert """ def __init__(self, full_path: Path, config: dict, follow_mode: bool = False): self.config = config self.freqai_info = config.get("freqai", {}) # dictionary holding all pair metadata necessary to load in from disk self.pair_dict: Dict[str, pair_info] = {} # dictionary holding all actively inferenced models in memory given a model filename self.model_dictionary: Dict[str, Any] = {} self.model_return_values: Dict[str, DataFrame] = {} self.historic_data: Dict[str, Dict[str, DataFrame]] = {} self.historic_predictions: Dict[str, DataFrame] = {} self.follower_dict: Dict[str, pair_info] = {} self.full_path = full_path self.follower_name: str = self.config.get("bot_name", "follower1") self.follower_dict_path = Path( self.full_path / f"follower_dictionary-{self.follower_name}.json" ) self.historic_predictions_path = Path(self.full_path / "historic_predictions.pkl") self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json") self.follow_mode = follow_mode if follow_mode: self.create_follower_dict() self.load_drawer_from_disk() self.load_historic_predictions_from_disk() self.training_queue: Dict[str, int] = {} self.history_lock = threading.Lock() self.save_lock = threading.Lock() self.pair_dict_lock = threading.Lock() self.old_DBSCAN_eps: Dict[str, float] = {} self.empty_pair_dict: pair_info = { "model_filename": "", "trained_timestamp": 0, "priority": 1, "first": True, "data_path": "", "extras": {}} def load_drawer_from_disk(self): """ Locate and load a previously saved data drawer full of all pair model metadata in present model folder. :return: bool - whether or not the drawer was located """ exists = self.pair_dictionary_path.is_file() if exists: with open(self.pair_dictionary_path, "r") as fp: self.pair_dict = json.load(fp) elif not self.follow_mode: logger.info("Could not find existing datadrawer, starting from scratch") else: logger.warning( f"Follower could not find pair_dictionary at {self.full_path} " "sending null values back to strategy" ) return exists def load_historic_predictions_from_disk(self): """ Locate and load a previously saved historic predictions. :return: bool - whether or not the drawer was located """ exists = self.historic_predictions_path.is_file() if exists: with open(self.historic_predictions_path, "rb") as fp: self.historic_predictions = cloudpickle.load(fp) logger.info( f"Found existing historic predictions at {self.full_path}, but beware " "that statistics may be inaccurate if the bot has been offline for " "an extended period of time." ) elif not self.follow_mode: logger.info("Could not find existing historic_predictions, starting from scratch") else: logger.warning( f"Follower could not find historic predictions at {self.full_path} " "sending null values back to strategy" ) return exists def save_historic_predictions_to_disk(self): """ Save data drawer full of all pair model metadata in present model folder. """ with open(self.historic_predictions_path, "wb") as fp: cloudpickle.dump(self.historic_predictions, fp, protocol=cloudpickle.DEFAULT_PROTOCOL) def save_drawer_to_disk(self): """ Save data drawer full of all pair model metadata in present model folder. """ with self.save_lock: with open(self.pair_dictionary_path, 'w') as fp: rapidjson.dump(self.pair_dict, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE) def save_follower_dict_to_disk(self): """ Save follower dictionary to disk (used by strategy for persistent prediction targets) """ with open(self.follower_dict_path, "w") as fp: rapidjson.dump(self.follower_dict, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE) def create_follower_dict(self): """ Create or dictionary for each follower to maintain unique persistent prediction targets """ whitelist_pairs = self.config.get("exchange", {}).get("pair_whitelist") exists = self.follower_dict_path.is_file() if exists: logger.info("Found an existing follower dictionary") for pair in whitelist_pairs: self.follower_dict[pair] = {} self.save_follower_dict_to_disk() def np_encoder(self, object): if isinstance(object, np.generic): return object.item() def get_pair_dict_info(self, pair: str) -> Tuple[str, int, bool]: """ Locate and load existing model metadata from persistent storage. If not located, create a new one and append the current pair to it and prepare it for its first training :param pair: str: pair to lookup :return: model_filename: str = unique filename used for loading persistent objects from disk trained_timestamp: int = the last time the coin was trained return_null_array: bool = Follower could not find pair metadata """ pair_dict = self.pair_dict.get(pair) data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "") return_null_array = False if pair_dict: model_filename = pair_dict["model_filename"] trained_timestamp = pair_dict["trained_timestamp"] elif not self.follow_mode: self.pair_dict[pair] = self.empty_pair_dict.copy() model_filename = "" trained_timestamp = 0 self.pair_dict[pair]["priority"] = len(self.pair_dict) if not data_path_set and self.follow_mode: logger.warning( f"Follower could not find current pair {pair} in " f"pair_dictionary at path {self.full_path}, sending null values " "back to strategy." ) trained_timestamp = 0 model_filename = '' return_null_array = True return model_filename, trained_timestamp, return_null_array def set_pair_dict_info(self, metadata: dict) -> None: pair_in_dict = self.pair_dict.get(metadata["pair"]) if pair_in_dict: return else: self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy() self.pair_dict[metadata["pair"]]["priority"] = len(self.pair_dict) return def pair_to_end_of_training_queue(self, pair: str) -> None: # march all pairs up in the queue with self.pair_dict_lock: for p in self.pair_dict: self.pair_dict[p]["priority"] -= 1 # send pair to end of queue self.pair_dict[pair]["priority"] = len(self.pair_dict) def set_initial_return_values(self, pair: str, pred_df: DataFrame) -> None: """ Set the initial return values to the historical predictions dataframe. This avoids needing to repredict on historical candles, and also stores historical predictions despite retrainings (so stored predictions are true predictions, not just inferencing on trained data) """ hist_df = self.historic_predictions len_diff = len(hist_df[pair].index) - len(pred_df.index) if len_diff < 0: df_concat = pd.concat([pred_df.iloc[:abs(len_diff)], hist_df[pair]], ignore_index=True, keys=hist_df[pair].keys()) else: df_concat = hist_df[pair].tail(len(pred_df.index)).reset_index(drop=True) df_concat = df_concat.fillna(0) self.model_return_values[pair] = df_concat def append_model_predictions(self, pair: str, predictions: DataFrame, do_preds: NDArray[np.int_], dk: FreqaiDataKitchen, len_df: int) -> None: """ Append model predictions to historic predictions dataframe, then set the strategy return dataframe to the tail of the historic predictions. The length of the tail is equivalent to the length of the dataframe that entered FreqAI from the strategy originally. Doing this allows FreqUI to always display the correct historic predictions. """ index = self.historic_predictions[pair].index[-1:] columns = self.historic_predictions[pair].columns nan_df = pd.DataFrame(np.nan, index=index, columns=columns) self.historic_predictions[pair] = pd.concat( [self.historic_predictions[pair], nan_df], ignore_index=True, axis=0) df = self.historic_predictions[pair] # model outputs and associated statistics for label in predictions.columns: df[label].iloc[-1] = predictions[label].iloc[-1] if df[label].dtype == object: continue df[f"{label}_mean"].iloc[-1] = dk.data["labels_mean"][label] df[f"{label}_std"].iloc[-1] = dk.data["labels_std"][label] # outlier indicators df["do_predict"].iloc[-1] = do_preds[-1] if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0: df["DI_values"].iloc[-1] = dk.DI_values[-1] # extra values the user added within custom prediction model if dk.data['extra_returns_per_train']: rets = dk.data['extra_returns_per_train'] for return_str in rets: df[return_str].iloc[-1] = rets[return_str] self.model_return_values[pair] = df.tail(len_df).reset_index(drop=True) def attach_return_values_to_return_dataframe( self, pair: str, dataframe: DataFrame) -> DataFrame: """ Attach the return values to the strat dataframe :param dataframe: DataFrame = strategy dataframe :return: DataFrame = strat dataframe with return values attached """ df = self.model_return_values[pair] to_keep = [col for col in dataframe.columns if not col.startswith("&")] dataframe = pd.concat([dataframe[to_keep], df], axis=1) return dataframe def return_null_values_to_strategy(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> None: """ Build 0 filled dataframe to return to strategy """ dk.find_features(dataframe) full_labels = dk.label_list + dk.unique_class_list for label in full_labels: dataframe[label] = 0 dataframe[f"{label}_mean"] = 0 dataframe[f"{label}_std"] = 0 dataframe["do_predict"] = 0 if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0: dataframe["DI_values"] = 0 if dk.data['extra_returns_per_train']: rets = dk.data['extra_returns_per_train'] for return_str in rets: dataframe[return_str] = 0 dk.return_dataframe = dataframe def purge_old_models(self) -> None: model_folders = [x for x in self.full_path.iterdir() if x.is_dir()] pattern = re.compile(r"sub-train-(\w+)_(\d{10})") delete_dict: Dict[str, Any] = {} for dir in model_folders: result = pattern.match(str(dir.name)) if result is None: break coin = result.group(1) timestamp = result.group(2) if coin not in delete_dict: delete_dict[coin] = {} delete_dict[coin]["num_folders"] = 1 delete_dict[coin]["timestamps"] = {int(timestamp): dir} else: delete_dict[coin]["num_folders"] += 1 delete_dict[coin]["timestamps"][int(timestamp)] = dir for coin in delete_dict: if delete_dict[coin]["num_folders"] > 2: sorted_dict = collections.OrderedDict( sorted(delete_dict[coin]["timestamps"].items()) ) num_delete = len(sorted_dict) - 2 deleted = 0 for k, v in sorted_dict.items(): if deleted >= num_delete: break logger.info(f"Freqai purging old model file {v}") shutil.rmtree(v) deleted += 1 def update_follower_metadata(self): # follower needs to load from disk to get any changes made by leader to pair_dict self.load_drawer_from_disk() if self.config.get("freqai", {}).get("purge_old_models", False): self.purge_old_models() # Functions pulled back from FreqaiDataKitchen because they relied on DataDrawer def save_data(self, model: Any, coin: str, dk: FreqaiDataKitchen) -> None: """ Saves all data associated with a model for a single sub-train time range :params: :model: User trained model which can be reused for inferencing to generate predictions """ if not dk.data_path.is_dir(): dk.data_path.mkdir(parents=True, exist_ok=True) save_path = Path(dk.data_path) # Save the trained model model_type = self.freqai_info.get('model_save_type', 'joblib') if model_type == 'joblib': dump(model, save_path / f"{dk.model_filename}_model.joblib") elif model_type == 'keras': model.save(save_path / f"{dk.model_filename}_model.h5") elif 'stable_baselines' in model_type: model.save(save_path / f"{dk.model_filename}_model.zip") if dk.svm_model is not None: dump(dk.svm_model, save_path / f"{dk.model_filename}_svm_model.joblib") dk.data["data_path"] = str(dk.data_path) dk.data["model_filename"] = str(dk.model_filename) dk.data["training_features_list"] = list(dk.data_dictionary["train_features"].columns) dk.data["label_list"] = dk.label_list # store the metadata with open(save_path / f"{dk.model_filename}_metadata.json", "w") as fp: rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE) # save the train data to file so we can check preds for area of applicability later dk.data_dictionary["train_features"].to_pickle( save_path / f"{dk.model_filename}_trained_df.pkl" ) dk.data_dictionary["train_dates"].to_pickle( save_path / f"{dk.model_filename}_trained_dates_df.pkl" ) if self.freqai_info["feature_parameters"].get("principal_component_analysis"): cloudpickle.dump( dk.pca, open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "wb") ) # if self.live: self.model_dictionary[coin] = model self.pair_dict[coin]["model_filename"] = dk.model_filename self.pair_dict[coin]["data_path"] = str(dk.data_path) self.save_drawer_to_disk() return def load_data(self, coin: str, dk: FreqaiDataKitchen) -> Any: """ loads all data required to make a prediction on a sub-train time range :returns: :model: User trained model which can be inferenced for new predictions """ if not self.pair_dict[coin]["model_filename"]: return None if dk.live: dk.model_filename = self.pair_dict[coin]["model_filename"] dk.data_path = Path(self.pair_dict[coin]["data_path"]) if self.freqai_info.get("follow_mode", False): # follower can be on a different system which is rsynced from the leader: dk.data_path = Path( self.config["user_data_dir"] / "models" / dk.data_path.parts[-2] / dk.data_path.parts[-1] ) with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp: dk.data = json.load(fp) dk.training_features_list = dk.data["training_features_list"] dk.label_list = dk.data["label_list"] dk.data_dictionary["train_features"] = pd.read_pickle( dk.data_path / f"{dk.model_filename}_trained_df.pkl" ) model_type = self.freqai_info.get('model_save_type', 'joblib') # try to access model in memory instead of loading object from disk to save time if dk.live and coin in self.model_dictionary: model = self.model_dictionary[coin] elif model_type == 'joblib': model = load(dk.data_path / f"{dk.model_filename}_model.joblib") elif model_type == 'keras': from tensorflow import keras model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5") elif model_type == 'stable_baselines': mod = __import__('stable_baselines3', fromlist=[ self.freqai_info['rl_config']['model_type']]) MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type']) model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model") if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file(): dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib") if not model: raise OperationalException( f"Unable to load model, ensure model exists at " f"{dk.data_path} " ) # load it into ram if it was loaded from disk if coin not in self.model_dictionary: self.model_dictionary[coin] = model if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]: dk.pca = cloudpickle.load( open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "rb") ) return model def update_historic_data(self, strategy: IStrategy, dk: FreqaiDataKitchen) -> None: """ Append new candles to our stores historic data (in memory) so that we do not need to load candle history from disk and we dont need to pinging exchange multiple times for the same candle. :params: dataframe: DataFrame = strategy provided dataframe """ feat_params = self.freqai_info["feature_parameters"] with self.history_lock: history_data = self.historic_data for pair in dk.all_pairs: for tf in feat_params.get("include_timeframes"): # check if newest candle is already appended df_dp = strategy.dp.get_pair_dataframe(pair, tf) if len(df_dp.index) == 0: continue if str(history_data[pair][tf].iloc[-1]["date"]) == str( df_dp.iloc[-1:]["date"].iloc[-1] ): continue try: index = ( df_dp.loc[ df_dp["date"] == history_data[pair][tf].iloc[-1]["date"] ].index[0] + 1 ) except IndexError: logger.warning( f"Unable to update pair history for {pair}. " "If this does not resolve itself after 1 additional candle, " "please report the error to #freqai discord channel" ) return history_data[pair][tf] = pd.concat( [ history_data[pair][tf], df_dp.iloc[index:], ], ignore_index=True, axis=0, ) def load_all_pair_histories(self, timerange: TimeRange, dk: FreqaiDataKitchen) -> None: """ Load pair histories for all whitelist and corr_pairlist pairs. Only called once upon startup of bot. :params: timerange: TimeRange = full timerange required to populate all indicators for training according to user defined train_period_days """ history_data = self.historic_data for pair in dk.all_pairs: if pair not in history_data: history_data[pair] = {} for tf in self.freqai_info["feature_parameters"].get("include_timeframes"): history_data[pair][tf] = load_pair_history( datadir=self.config["datadir"], timeframe=tf, pair=pair, timerange=timerange, data_format=self.config.get("dataformat_ohlcv", "json"), candle_type=self.config.get("trading_mode", "spot"), ) def get_base_and_corr_dataframes( self, timerange: TimeRange, pair: str, dk: FreqaiDataKitchen ) -> Tuple[Dict[Any, Any], Dict[Any, Any]]: """ Searches through our historic_data in memory and returns the dataframes relevant to the present pair. :params: timerange: TimeRange = full timerange required to populate all indicators for training according to user defined train_period_days metadata: dict = strategy furnished pair metadata """ with self.history_lock: corr_dataframes: Dict[Any, Any] = {} base_dataframes: Dict[Any, Any] = {} historic_data = self.historic_data pairs = self.freqai_info["feature_parameters"].get( "include_corr_pairlist", [] ) for tf in self.freqai_info["feature_parameters"].get("include_timeframes"): base_dataframes[tf] = dk.slice_dataframe(timerange, historic_data[pair][tf]) if pairs: for p in pairs: if pair in p: continue # dont repeat anything from whitelist if p not in corr_dataframes: corr_dataframes[p] = {} corr_dataframes[p][tf] = dk.slice_dataframe( timerange, historic_data[p][tf] ) return corr_dataframes, base_dataframes # to be used if we want to send predictions directly to the follower instead of forcing # follower to load models and inference # def save_model_return_values_to_disk(self) -> None: # with open(self.full_path / str('model_return_values.json'), "w") as fp: # json.dump(self.model_return_values, fp, default=self.np_encoder) # def load_model_return_values_from_disk(self, dk: FreqaiDataKitchen) -> FreqaiDataKitchen: # exists = Path(self.full_path / str('model_return_values.json')).resolve().exists() # if exists: # with open(self.full_path / str('model_return_values.json'), "r") as fp: # self.model_return_values = json.load(fp) # elif not self.follow_mode: # logger.info("Could not find existing datadrawer, starting from scratch") # else: # logger.warning(f'Follower could not find pair_dictionary at {self.full_path} ' # 'sending null values back to strategy') # return exists, dk