Compare commits
130 Commits
feat/freqa
...
2022.8
Author | SHA1 | Date | |
---|---|---|---|
|
958a4565db | ||
|
2403a03fcb | ||
|
a01402fa46 | ||
|
8b0cfe1236 | ||
|
39a739eadb | ||
|
a44a235b56 | ||
|
6634229cc1 | ||
|
fcb5d1cb5a | ||
|
dd628eb525 | ||
|
1e41c773a0 | ||
|
22b42e91f3 | ||
|
b9f35cadb3 | ||
|
59a723aec8 | ||
|
71f7d68783 | ||
|
6686489c06 | ||
|
c3e74e6e8d | ||
|
2b70c3d0c0 | ||
|
9204f01312 | ||
|
86c5ac44e4 | ||
|
2ef4534fee | ||
|
efe4fd3e24 | ||
|
01126c43f7 | ||
|
753d1b2aad | ||
|
b2d664c63c | ||
|
53d46a0385 | ||
|
1fd223c815 | ||
|
f2a356a80c | ||
|
6636f17e0f | ||
|
9e48e6a40b | ||
|
205ab26e92 | ||
|
70df037690 | ||
|
32faad9333 | ||
|
a6d78a8615 | ||
|
fe7108ae75 | ||
|
78b161e14c | ||
|
6036018f35 | ||
|
1b0f37a93c | ||
|
5f38a574ce | ||
|
5ce1c69803 | ||
|
60ba921f56 | ||
|
96d8882f1e | ||
|
f55d5ffd8c | ||
|
914b6247e4 | ||
|
da87e9cbb3 | ||
|
484b147a89 | ||
|
015be770c3 | ||
|
93d2f7fc85 | ||
|
7844157a90 | ||
|
6e046884af | ||
|
a784f63e9a | ||
|
ff9ed1abad | ||
|
354d3c0cda | ||
|
eeb177110e | ||
|
70848a258d | ||
|
3958e53aaa | ||
|
dfa7d1fc27 | ||
|
2dc34779d5 | ||
|
f6d832c6d9 | ||
|
87a3115073 | ||
|
085f81ec9e | ||
|
0ec38e0cfd | ||
|
cdd4745693 | ||
|
1fb2e9558f | ||
|
5b3f031590 | ||
|
4511634f3a | ||
|
738e95b875 | ||
|
b6e8b9df35 | ||
|
52ec0d1046 | ||
|
7563050f17 | ||
|
0da0600836 | ||
|
54ddc1a4c2 | ||
|
aa3da092a0 | ||
|
63efb3ff3e | ||
|
665cf4431d | ||
|
01d45ed12e | ||
|
7b8b73e651 | ||
|
692c6bf1fd | ||
|
88d6a7fbff | ||
|
9c6b745f06 | ||
|
b9d48c3278 | ||
|
1389c8f5b6 | ||
|
733f716819 | ||
|
bc359675a2 | ||
|
09f8904545 | ||
|
08ef5ad2d8 | ||
|
1c6f966579 | ||
|
b7553d20d4 | ||
|
521381ebf0 | ||
|
790534e0f8 | ||
|
cfa5b3f12c | ||
|
277245c69d | ||
|
1fada53ddd | ||
|
f70b0bab80 | ||
|
9c38c27eed | ||
|
72c34291e3 | ||
|
987bbb8e12 | ||
|
c3d06257be | ||
|
8bf056ca39 | ||
|
046ae18411 | ||
|
28b4773083 | ||
|
d4e8ab1cac | ||
|
2db5cc177d | ||
|
c1d4078518 | ||
|
d25ec6d0b8 | ||
|
c57db0a330 | ||
|
f5087a82dc | ||
|
eed0d67005 | ||
|
a1d54f5ae0 | ||
|
a4a7c6536d | ||
|
340a97d1df | ||
|
fab197edf2 | ||
|
851c5dad30 | ||
|
5b76ae452f | ||
|
2c750fdb09 | ||
|
e7f5252074 | ||
|
dfbd1c34c4 | ||
|
7615c4e904 | ||
|
e9b78bf3ae | ||
|
2e397a88e1 | ||
|
fe6c62e144 | ||
|
f0db721f05 | ||
|
4d8d30ea39 | ||
|
e90e3cead0 | ||
|
a568548192 | ||
|
f9d10a7fad | ||
|
cbc2b00ee6 | ||
|
8f7b857ae9 | ||
|
e88b022cd4 | ||
|
bfb738f69f | ||
|
00dd8e76ee |
@@ -15,7 +15,7 @@ repos:
|
||||
additional_dependencies:
|
||||
- types-cachetools==5.2.1
|
||||
- types-filelock==3.2.7
|
||||
- types-requests==2.28.8
|
||||
- types-requests==2.28.9
|
||||
- types-tabulate==0.8.11
|
||||
- types-python-dateutil==2.8.19
|
||||
# stages: [push]
|
||||
|
@@ -11,7 +11,7 @@ ENV FT_APP_ENV="docker"
|
||||
# Prepare environment
|
||||
RUN mkdir /freqtrade \
|
||||
&& apt-get update \
|
||||
&& apt-get -y install sudo libatlas3-base curl sqlite3 libhdf5-serial-dev \
|
||||
&& apt-get -y install sudo libatlas3-base curl sqlite3 libhdf5-serial-dev libgomp1 \
|
||||
&& apt-get clean \
|
||||
&& useradd -u 1000 -G sudo -U -m -s /bin/bash ftuser \
|
||||
&& chown ftuser:ftuser /freqtrade \
|
||||
|
@@ -130,7 +130,7 @@ Telegram is not mandatory. However, this is a great way to control your bot. Mor
|
||||
|
||||
- `/start`: Starts the trader.
|
||||
- `/stop`: Stops the trader.
|
||||
- `/stopbuy`: Stop entering new trades.
|
||||
- `/stopentry`: Stop entering new trades.
|
||||
- `/status <trade_id>|[table]`: Lists all or specific open trades.
|
||||
- `/profit [<n>]`: Lists cumulative profit from all finished trades, over the last n days.
|
||||
- `/forceexit <trade_id>|all`: Instantly exits the given trade (Ignoring `minimum_roi`).
|
||||
|
BIN
docs/assets/freqai_DI.jpg
Normal file
After Width: | Height: | Size: 307 KiB |
BIN
docs/assets/freqai_algo.jpg
Normal file
After Width: | Height: | Size: 345 KiB |
Before Width: | Height: | Size: 995 KiB |
BIN
docs/assets/freqai_dbscan.jpg
Normal file
After Width: | Height: | Size: 66 KiB |
BIN
docs/assets/freqai_moving-window.jpg
Normal file
After Width: | Height: | Size: 270 KiB |
BIN
docs/assets/freqai_weight-factor.jpg
Normal file
After Width: | Height: | Size: 191 KiB |
Before Width: | Height: | Size: 126 KiB |
@@ -561,6 +561,14 @@ BTC trades at 22.000\$ today (0.001 BTC is related to this) - but the backtestin
|
||||
Today's minimum would be `0.001 * 22_000` - or 22\$.
|
||||
However the limit could also be 50$ - based on `0.001 * 50_000` in some historic setting.
|
||||
|
||||
#### Trading precision limits
|
||||
|
||||
Most exchanges pose precision limits on both price and amounts, so you cannot buy 1.0020401 of a pair, or at a price of 1.24567123123.
|
||||
Instead, these prices and amounts will be rounded or truncated (based on the exchange definition) to the defined trading precision.
|
||||
The above values may for example be rounded to an amount of 1.002, and a price of 1.24567.
|
||||
|
||||
These precision values are based on current exchange limits (as described in the [above section](#trading-limits-in-backtesting)), as historic precision limits are not available.
|
||||
|
||||
## Improved backtest accuracy
|
||||
|
||||
One big limitation of backtesting is it's inability to know how prices moved intra-candle (was high before close, or viceversa?).
|
||||
|
@@ -70,7 +70,7 @@ This loop will be repeated again and again until the bot is stopped.
|
||||
* Determine stake size by calling the `custom_stake_amount()` callback.
|
||||
* Check position adjustments for open trades if enabled and call `adjust_trade_position()` to determine if an additional order is requested.
|
||||
* Call `custom_stoploss()` and `custom_exit()` to find custom exit points.
|
||||
* For exits based on exit-signal and custom-exit: Call `custom_exit_price()` to determine exit price (Prices are moved to be within the closing candle).
|
||||
* For exits based on exit-signal, custom-exit and partial exits: Call `custom_exit_price()` to determine exit price (Prices are moved to be within the closing candle).
|
||||
* Generate backtest report output
|
||||
|
||||
!!! Note
|
||||
|
@@ -63,7 +63,7 @@ optional arguments:
|
||||
`jsongz`).
|
||||
--trading-mode {spot,margin,futures}
|
||||
Select Trading mode
|
||||
--prepend Allow data prepending.
|
||||
--prepend Allow data prepending. (Data-appending is disabled)
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
@@ -186,7 +186,7 @@ Freqtrade currently supports 3 data-formats for both OHLCV and trades data:
|
||||
By default, OHLCV data is stored as `json` data, while trades data is stored as `jsongz` data.
|
||||
|
||||
This can be changed via the `--data-format-ohlcv` and `--data-format-trades` command line arguments respectively.
|
||||
To persist this change, you can should also add the following snippet to your configuration, so you don't have to insert the above arguments each time:
|
||||
To persist this change, you should also add the following snippet to your configuration, so you don't have to insert the above arguments each time:
|
||||
|
||||
``` jsonc
|
||||
// ...
|
||||
@@ -374,6 +374,7 @@ usage: freqtrade list-data [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--data-format-ohlcv {json,jsongz,hdf5}]
|
||||
[-p PAIRS [PAIRS ...]]
|
||||
[--trading-mode {spot,margin,futures}]
|
||||
[--show-timerange]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
@@ -387,6 +388,8 @@ optional arguments:
|
||||
separated.
|
||||
--trading-mode {spot,margin,futures}
|
||||
Select Trading mode
|
||||
--show-timerange Show timerange available for available data. (May take
|
||||
a while to calculate).
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
|
@@ -77,9 +77,9 @@ Freqtrade will not provide incomplete candles to strategies. Using incomplete ca
|
||||
|
||||
You can use "current" market data by using the [dataprovider](strategy-customization.md#orderbookpair-maximum)'s orderbook or ticker methods - which however cannot be used during backtesting.
|
||||
|
||||
### Is there a setting to only SELL the coins being held and not perform anymore BUYS?
|
||||
### Is there a setting to only Exit the trades being held and not perform any new Entries?
|
||||
|
||||
You can use the `/stopbuy` command in Telegram to prevent future buys, followed by `/forceexit all` (sell all open trades).
|
||||
You can use the `/stopentry` command in Telegram to prevent future trade entry, followed by `/forceexit all` (sell all open trades).
|
||||
|
||||
### I want to run multiple bots on the same machine
|
||||
|
||||
|
896
docs/freqai.md
@@ -40,7 +40,8 @@ pip install -r requirements-hyperopt.txt
|
||||
```
|
||||
usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--userdir PATH] [-s NAME] [--strategy-path PATH]
|
||||
[--recursive-strategy-search] [-i TIMEFRAME]
|
||||
[--recursive-strategy-search] [--freqaimodel NAME]
|
||||
[--freqaimodel-path PATH] [-i TIMEFRAME]
|
||||
[--timerange TIMERANGE]
|
||||
[--data-format-ohlcv {json,jsongz,hdf5}]
|
||||
[--max-open-trades INT]
|
||||
@@ -53,7 +54,7 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--print-all] [--no-color] [--print-json] [-j JOBS]
|
||||
[--random-state INT] [--min-trades INT]
|
||||
[--hyperopt-loss NAME] [--disable-param-export]
|
||||
[--ignore-missing-spaces]
|
||||
[--ignore-missing-spaces] [--analyze-per-epoch]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
@@ -129,6 +130,7 @@ optional arguments:
|
||||
--ignore-missing-spaces, --ignore-unparameterized-spaces
|
||||
Suppress errors for any requested Hyperopt spaces that
|
||||
do not contain any parameters.
|
||||
--analyze-per-epoch Run populate_indicators once per epoch.
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
@@ -154,6 +156,10 @@ Strategy arguments:
|
||||
--recursive-strategy-search
|
||||
Recursively search for a strategy in the strategies
|
||||
folder.
|
||||
--freqaimodel NAME Specify a custom freqaimodels.
|
||||
--freqaimodel-path PATH
|
||||
Specify additional lookup path for freqaimodels.
|
||||
|
||||
```
|
||||
|
||||
### Hyperopt checklist
|
||||
@@ -185,7 +191,7 @@ Rarely you may also need to create a [nested class](advanced-hyperopt.md#overrid
|
||||
|
||||
### Hyperopt execution logic
|
||||
|
||||
Hyperopt will first load your data into memory and will then run `populate_indicators()` once per Pair to generate all indicators.
|
||||
Hyperopt will first load your data into memory and will then run `populate_indicators()` once per Pair to generate all indicators, unless `--analyze-per-epoch` is specified.
|
||||
|
||||
Hyperopt will then spawn into different processes (number of processors, or `-j <n>`), and run backtesting over and over again, changing the parameters that are part of the `--spaces` defined.
|
||||
|
||||
@@ -426,9 +432,10 @@ While this strategy is most likely too simple to provide consistent profit, it s
|
||||
`range` property may also be used with `DecimalParameter` and `CategoricalParameter`. `RealParameter` does not provide this property due to infinite search space.
|
||||
|
||||
??? Hint "Performance tip"
|
||||
By doing the calculation of all possible indicators in `populate_indicators()`, the calculation of the indicator happens only once for every parameter.
|
||||
While this may slow down the hyperopt startup speed, the overall performance will increase as the Hyperopt execution itself may pick the same value for multiple epochs (changing other values).
|
||||
You should however try to use space ranges as small as possible. Every new column will require more memory, and every possibility hyperopt can try will increase the search space.
|
||||
During normal hyperopting, indicators are calculated once and supplied to each epoch, linearly increasing RAM usage as a factor of increasing cores. As this also has performance implications, hyperopt provides `--analyze-per-epoch` which will move the execution of `populate_indicators()` to the epoch process, calculating a single value per parameter per epoch instead of using the `.range` functionality. In this case, `.range` functionality will only return the actually used value. This will reduce RAM usage, but increase CPU usage. However, your hyperopting run will be less likely to fail due to Out Of Memory (OOM) issues.
|
||||
|
||||
In either case, you should try to use space ranges as small as possible this will improve CPU/RAM usage in both scenarios.
|
||||
|
||||
|
||||
## Optimizing protections
|
||||
|
||||
@@ -879,6 +886,7 @@ To combat these, you have multiple options:
|
||||
* Avoid using `--timeframe-detail` (this loads a lot of additional data into memory).
|
||||
* Reduce the number of parallel processes (`-j <n>`).
|
||||
* Increase the memory of your machine.
|
||||
* Use `--analyze-per-epoch` if you're using a lot of parameters with `.range` functionality.
|
||||
|
||||
|
||||
## The objective has been evaluated at this point before.
|
||||
|
@@ -1,6 +1,6 @@
|
||||
markdown==3.3.7
|
||||
mkdocs==1.3.1
|
||||
mkdocs-material==8.4.0
|
||||
mkdocs-material==8.4.1
|
||||
mdx_truly_sane_lists==1.3
|
||||
pymdown-extensions==9.5
|
||||
jinja2==3.1.2
|
||||
|
@@ -163,6 +163,8 @@ python3 scripts/rest_client.py --config rest_config.json <command> [optional par
|
||||
| `strategy <strategy>` | Get specific Strategy content. **Alpha**
|
||||
| `available_pairs` | List available backtest data. **Alpha**
|
||||
| `version` | Show version.
|
||||
| `sysinfo` | Show informations about the system load.
|
||||
| `health` | Show bot health (last bot loop).
|
||||
|
||||
!!! Warning "Alpha status"
|
||||
Endpoints labeled with *Alpha status* above may change at any time without notice.
|
||||
@@ -227,6 +229,11 @@ forceexit
|
||||
Force-exit a trade.
|
||||
|
||||
:param tradeid: Id of the trade (can be received via status command)
|
||||
:param ordertype: Order type to use (must be market or limit)
|
||||
:param amount: Amount to sell. Full sell if not given
|
||||
|
||||
health
|
||||
Provides a quick health check of the running bot.
|
||||
|
||||
locks
|
||||
Return current locks
|
||||
@@ -312,12 +319,13 @@ version
|
||||
|
||||
whitelist
|
||||
Show the current whitelist.
|
||||
|
||||
```
|
||||
|
||||
### OpenAPI interface
|
||||
|
||||
To enable the builtin openAPI interface (Swagger UI), specify `"enable_openapi": true` in the api_server configuration.
|
||||
This will enable the Swagger UI at the `/docs` endpoint. By default, that's running at http://localhost:8080/docs/ - but it'll depend on your settings.
|
||||
This will enable the Swagger UI at the `/docs` endpoint. By default, that's running at http://localhost:8080/docs - but it'll depend on your settings.
|
||||
|
||||
### Advanced API usage using JWT tokens
|
||||
|
||||
|
@@ -75,7 +75,7 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
```
|
||||
|
||||
### Stake size management
|
||||
## Stake size management
|
||||
|
||||
Called before entering a trade, makes it possible to manage your position size when placing a new trade.
|
||||
|
||||
@@ -423,7 +423,7 @@ class AwesomeStrategy(IStrategy):
|
||||
!!! Warning "Backtesting"
|
||||
Custom prices are supported in backtesting (starting with 2021.12), and orders will fill if the price falls within the candle's low/high range.
|
||||
Orders that don't fill immediately are subject to regular timeout handling, which happens once per (detail) candle.
|
||||
`custom_exit_price()` is only called for sells of type exit_signal and Custom exit. All other exit-types will use regular backtesting prices.
|
||||
`custom_exit_price()` is only called for sells of type exit_signal, Custom exit and partial exits. All other exit-types will use regular backtesting prices.
|
||||
|
||||
## Custom order timeout rules
|
||||
|
||||
@@ -654,7 +654,7 @@ Position adjustments will always be applied in the direction of the trade, so a
|
||||
Stoploss is still calculated from the initial opening price, not averaged price.
|
||||
Regular stoploss rules still apply (cannot move down).
|
||||
|
||||
While `/stopbuy` command stops the bot from entering new trades, the position adjustment feature will continue buying new orders on existing trades.
|
||||
While `/stopentry` command stops the bot from entering new trades, the position adjustment feature will continue buying new orders on existing trades.
|
||||
|
||||
!!! Warning "Backtesting"
|
||||
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so run-time performance will be affected.
|
||||
|
@@ -149,7 +149,7 @@ You can create your own keyboard in `config.json`:
|
||||
!!! Note "Supported Commands"
|
||||
Only the following commands are allowed. Command arguments are not supported!
|
||||
|
||||
`/start`, `/stop`, `/status`, `/status table`, `/trades`, `/profit`, `/performance`, `/daily`, `/stats`, `/count`, `/locks`, `/balance`, `/stopbuy`, `/reload_config`, `/show_config`, `/logs`, `/whitelist`, `/blacklist`, `/edge`, `/help`, `/version`
|
||||
`/start`, `/stop`, `/status`, `/status table`, `/trades`, `/profit`, `/performance`, `/daily`, `/stats`, `/count`, `/locks`, `/balance`, `/stopentry`, `/reload_config`, `/show_config`, `/logs`, `/whitelist`, `/blacklist`, `/edge`, `/help`, `/version`
|
||||
|
||||
## Telegram commands
|
||||
|
||||
@@ -161,7 +161,7 @@ official commands. You can ask at any moment for help with `/help`.
|
||||
|----------|-------------|
|
||||
| `/start` | Starts the trader
|
||||
| `/stop` | Stops the trader
|
||||
| `/stopbuy` | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
|
||||
| `/stopbuy | /stopentry` | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
|
||||
| `/reload_config` | Reloads the configuration file
|
||||
| `/show_config` | Shows part of the current configuration with relevant settings to operation
|
||||
| `/logs [limit]` | Show last log messages.
|
||||
|
@@ -1,5 +1,5 @@
|
||||
""" Freqtrade bot """
|
||||
__version__ = '2022.8.dev'
|
||||
__version__ = '2022.8'
|
||||
|
||||
if 'dev' in __version__:
|
||||
try:
|
||||
|
@@ -34,7 +34,7 @@ ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
|
||||
"print_colorized", "print_json", "hyperopt_jobs",
|
||||
"hyperopt_random_state", "hyperopt_min_trades",
|
||||
"hyperopt_loss", "disableparamexport",
|
||||
"hyperopt_ignore_missing_space"]
|
||||
"hyperopt_ignore_missing_space", "analyze_per_epoch"]
|
||||
|
||||
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
|
||||
|
||||
@@ -69,7 +69,7 @@ ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes", "exchange", "tradin
|
||||
|
||||
ARGS_CONVERT_TRADES = ["pairs", "timeframes", "exchange", "dataformat_ohlcv", "dataformat_trades"]
|
||||
|
||||
ARGS_LIST_DATA = ["exchange", "dataformat_ohlcv", "pairs", "trading_mode"]
|
||||
ARGS_LIST_DATA = ["exchange", "dataformat_ohlcv", "pairs", "trading_mode", "show_timerange"]
|
||||
|
||||
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "new_pairs_days", "include_inactive",
|
||||
"timerange", "download_trades", "exchange", "timeframes",
|
||||
|
@@ -255,6 +255,13 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
nargs='+',
|
||||
default='default',
|
||||
),
|
||||
"analyze_per_epoch": Arg(
|
||||
'--analyze-per-epoch',
|
||||
help='Run populate_indicators once per epoch.',
|
||||
action='store_true',
|
||||
default=False,
|
||||
),
|
||||
|
||||
"print_all": Arg(
|
||||
'--print-all',
|
||||
help='Print all results, not only the best ones.',
|
||||
@@ -367,7 +374,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
metavar='BASE_CURRENCY',
|
||||
),
|
||||
"trading_mode": Arg(
|
||||
'--trading-mode',
|
||||
'--trading-mode', '--tradingmode',
|
||||
help='Select Trading mode',
|
||||
choices=constants.TRADING_MODES,
|
||||
),
|
||||
@@ -434,6 +441,11 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
help='Storage format for downloaded trades data. (default: `jsongz`).',
|
||||
choices=constants.AVAILABLE_DATAHANDLERS,
|
||||
),
|
||||
"show_timerange": Arg(
|
||||
'--show-timerange',
|
||||
help='Show timerange available for available data. (May take a while to calculate).',
|
||||
action='store_true',
|
||||
),
|
||||
"exchange": Arg(
|
||||
'--exchange',
|
||||
help=f'Exchange name (default: `{constants.DEFAULT_EXCHANGE}`). '
|
||||
@@ -450,7 +462,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
),
|
||||
"prepend_data": Arg(
|
||||
'--prepend',
|
||||
help='Allow data prepending.',
|
||||
help='Allow data prepending. (Data-appending is disabled)',
|
||||
action='store_true',
|
||||
),
|
||||
"erase": Arg(
|
||||
|
@@ -5,13 +5,13 @@ from datetime import datetime, timedelta
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.configuration import TimeRange, setup_utils_configuration
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.data.converter import convert_ohlcv_format, convert_trades_format
|
||||
from freqtrade.data.history import (convert_trades_to_ohlcv, refresh_backtest_ohlcv_data,
|
||||
refresh_backtest_trades_data)
|
||||
from freqtrade.enums import CandleType, RunMode, TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.exchange.exchange import market_is_active
|
||||
from freqtrade.exchange import market_is_active, timeframe_to_minutes
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist, expand_pairlist
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
|
||||
@@ -80,7 +80,7 @@ def start_download_data(args: Dict[str, Any]) -> None:
|
||||
data_format_trades=config['dataformat_trades'],
|
||||
)
|
||||
else:
|
||||
if not exchange._ft_has.get('ohlcv_has_history', True):
|
||||
if not exchange.get_option('ohlcv_has_history', True):
|
||||
raise OperationalException(
|
||||
f"Historic klines not available for {exchange.name}. "
|
||||
"Please use `--dl-trades` instead for this exchange "
|
||||
@@ -177,17 +177,31 @@ def start_list_data(args: Dict[str, Any]) -> None:
|
||||
paircombs = [comb for comb in paircombs if comb[0] in args['pairs']]
|
||||
|
||||
print(f"Found {len(paircombs)} pair / timeframe combinations.")
|
||||
groupedpair = defaultdict(list)
|
||||
for pair, timeframe, candle_type in sorted(
|
||||
paircombs,
|
||||
key=lambda x: (x[0], timeframe_to_minutes(x[1]), x[2])
|
||||
):
|
||||
groupedpair[(pair, candle_type)].append(timeframe)
|
||||
if not config.get('show_timerange'):
|
||||
groupedpair = defaultdict(list)
|
||||
for pair, timeframe, candle_type in sorted(
|
||||
paircombs,
|
||||
key=lambda x: (x[0], timeframe_to_minutes(x[1]), x[2])
|
||||
):
|
||||
groupedpair[(pair, candle_type)].append(timeframe)
|
||||
|
||||
if groupedpair:
|
||||
if groupedpair:
|
||||
print(tabulate([
|
||||
(pair, ', '.join(timeframes), candle_type)
|
||||
for (pair, candle_type), timeframes in groupedpair.items()
|
||||
],
|
||||
headers=("Pair", "Timeframe", "Type"),
|
||||
tablefmt='psql', stralign='right'))
|
||||
else:
|
||||
paircombs1 = [(
|
||||
pair, timeframe, candle_type,
|
||||
*dhc.ohlcv_data_min_max(pair, timeframe, candle_type)
|
||||
) for pair, timeframe, candle_type in paircombs]
|
||||
print(tabulate([
|
||||
(pair, ', '.join(timeframes), candle_type)
|
||||
for (pair, candle_type), timeframes in groupedpair.items()
|
||||
],
|
||||
headers=("Pair", "Timeframe", "Type"),
|
||||
(pair, timeframe, candle_type,
|
||||
start.strftime(DATETIME_PRINT_FORMAT),
|
||||
end.strftime(DATETIME_PRINT_FORMAT))
|
||||
for pair, timeframe, candle_type, start, end in paircombs1
|
||||
],
|
||||
headers=("Pair", "Timeframe", "Type", 'From', 'To'),
|
||||
tablefmt='psql', stralign='right'))
|
||||
|
@@ -302,6 +302,9 @@ class Configuration:
|
||||
self._args_to_config(config, argname='spaces',
|
||||
logstring='Parameter -s/--spaces detected: {}')
|
||||
|
||||
self._args_to_config(config, argname='analyze_per_epoch',
|
||||
logstring='Parameter --analyze-per-epoch detected.')
|
||||
|
||||
self._args_to_config(config, argname='print_all',
|
||||
logstring='Parameter --print-all detected ...')
|
||||
|
||||
@@ -426,6 +429,9 @@ class Configuration:
|
||||
self._args_to_config(config, argname='dataformat_trades',
|
||||
logstring='Using "{}" to store trades data.')
|
||||
|
||||
self._args_to_config(config, argname='show_timerange',
|
||||
logstring='Detected --show-timerange')
|
||||
|
||||
def _process_data_options(self, config: Dict[str, Any]) -> None:
|
||||
self._args_to_config(config, argname='new_pairs_days',
|
||||
logstring='Detected --new-pairs-days: {}')
|
||||
|
@@ -302,8 +302,8 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
|
||||
if trading_mode == 'futures':
|
||||
# Predefined candletype (and timeframe) depending on exchange
|
||||
# Downloads what is necessary to backtest based on futures data.
|
||||
tf_mark = exchange._ft_has['mark_ohlcv_timeframe']
|
||||
fr_candle_type = CandleType.from_string(exchange._ft_has['mark_ohlcv_price'])
|
||||
tf_mark = exchange.get_option('mark_ohlcv_timeframe')
|
||||
fr_candle_type = CandleType.from_string(exchange.get_option('mark_ohlcv_price'))
|
||||
# All exchanges need FundingRate for futures trading.
|
||||
# The timeframe is aligned to the mark-price timeframe.
|
||||
for funding_candle_type in (CandleType.FUNDING_RATE, fr_candle_type):
|
||||
@@ -330,13 +330,12 @@ def _download_trades_history(exchange: Exchange,
|
||||
try:
|
||||
|
||||
until = None
|
||||
since = 0
|
||||
if timerange:
|
||||
if timerange.starttype == 'date':
|
||||
since = timerange.startts * 1000
|
||||
if timerange.stoptype == 'date':
|
||||
until = timerange.stopts * 1000
|
||||
else:
|
||||
since = arrow.utcnow().shift(days=-new_pairs_days).int_timestamp * 1000
|
||||
|
||||
trades = data_handler.trades_load(pair)
|
||||
|
||||
@@ -349,6 +348,9 @@ def _download_trades_history(exchange: Exchange,
|
||||
logger.info(f"Start earlier than available data. Redownloading trades for {pair}...")
|
||||
trades = []
|
||||
|
||||
if not since:
|
||||
since = arrow.utcnow().shift(days=-new_pairs_days).int_timestamp * 1000
|
||||
|
||||
from_id = trades[-1][1] if trades else None
|
||||
if trades and since < trades[-1][0]:
|
||||
# Reset since to the last available point
|
||||
|
@@ -9,7 +9,7 @@ from abc import ABC, abstractmethod
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Type
|
||||
from typing import List, Optional, Tuple, Type
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
@@ -84,6 +84,18 @@ class IDataHandler(ABC):
|
||||
:return: None
|
||||
"""
|
||||
|
||||
def ohlcv_data_min_max(self, pair: str, timeframe: str,
|
||||
candle_type: CandleType) -> Tuple[datetime, datetime]:
|
||||
"""
|
||||
Returns the min and max timestamp for the given pair and timeframe.
|
||||
:param pair: Pair to get min/max for
|
||||
:param timeframe: Timeframe to get min/max for
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:return: (min, max)
|
||||
"""
|
||||
data = self._ohlcv_load(pair, timeframe, None, candle_type)
|
||||
return data.iloc[0]['date'].to_pydatetime(), data.iloc[-1]['date'].to_pydatetime()
|
||||
|
||||
@abstractmethod
|
||||
def _ohlcv_load(self, pair: str, timeframe: str, timerange: Optional[TimeRange],
|
||||
candle_type: CandleType
|
||||
|
@@ -15,7 +15,7 @@ from freqtrade.constants import DATETIME_PRINT_FORMAT, UNLIMITED_STAKE_AMOUNT
|
||||
from freqtrade.data.history import get_timerange, load_data, refresh_data
|
||||
from freqtrade.enums import CandleType, ExitType, RunMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange.exchange import timeframe_to_seconds
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
|
@@ -3,6 +3,7 @@ from freqtrade.enums.backteststate import BacktestState
|
||||
from freqtrade.enums.candletype import CandleType
|
||||
from freqtrade.enums.exitchecktuple import ExitCheckTuple
|
||||
from freqtrade.enums.exittype import ExitType
|
||||
from freqtrade.enums.hyperoptstate import HyperoptState
|
||||
from freqtrade.enums.marginmode import MarginMode
|
||||
from freqtrade.enums.ordertypevalue import OrderTypeValues
|
||||
from freqtrade.enums.rpcmessagetype import RPCMessageType
|
||||
|
12
freqtrade/enums/hyperoptstate.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class HyperoptState(Enum):
|
||||
""" Hyperopt states """
|
||||
STARTUP = 1
|
||||
DATALOAD = 2
|
||||
INDICATORS = 3
|
||||
OPTIMIZE = 4
|
||||
|
||||
def __str__(self):
|
||||
return f"{self.name.lower()}"
|
@@ -9,10 +9,11 @@ from freqtrade.exchange.bitpanda import Bitpanda
|
||||
from freqtrade.exchange.bittrex import Bittrex
|
||||
from freqtrade.exchange.bybit import Bybit
|
||||
from freqtrade.exchange.coinbasepro import Coinbasepro
|
||||
from freqtrade.exchange.exchange import (amount_to_precision, available_exchanges, ccxt_exchanges,
|
||||
date_minus_candles, is_exchange_known_ccxt,
|
||||
is_exchange_officially_supported, market_is_active,
|
||||
price_to_precision, timeframe_to_minutes,
|
||||
from freqtrade.exchange.exchange import (amount_to_contract_precision, amount_to_contracts,
|
||||
amount_to_precision, available_exchanges, ccxt_exchanges,
|
||||
contracts_to_amount, date_minus_candles,
|
||||
is_exchange_known_ccxt, is_exchange_officially_supported,
|
||||
market_is_active, price_to_precision, timeframe_to_minutes,
|
||||
timeframe_to_msecs, timeframe_to_next_date,
|
||||
timeframe_to_prev_date, timeframe_to_seconds,
|
||||
validate_exchange, validate_exchanges)
|
||||
|
@@ -137,23 +137,27 @@ class Binance(Exchange):
|
||||
pair: str,
|
||||
open_rate: float, # Entry price of position
|
||||
is_short: bool,
|
||||
position: float, # Absolute value of position size
|
||||
amount: float,
|
||||
stake_amount: float,
|
||||
wallet_balance: float, # Or margin balance
|
||||
mm_ex_1: float = 0.0, # (Binance) Cross only
|
||||
upnl_ex_1: float = 0.0, # (Binance) Cross only
|
||||
) -> Optional[float]:
|
||||
"""
|
||||
Important: Must be fetching data from cached values as this is used by backtesting!
|
||||
MARGIN: https://www.binance.com/en/support/faq/f6b010588e55413aa58b7d63ee0125ed
|
||||
PERPETUAL: https://www.binance.com/en/support/faq/b3c689c1f50a44cabb3a84e663b81d93
|
||||
|
||||
:param exchange_name:
|
||||
:param open_rate: (EP1) Entry price of position
|
||||
:param open_rate: Entry price of position
|
||||
:param is_short: True if the trade is a short, false otherwise
|
||||
:param position: Absolute value of position size (in base currency)
|
||||
:param wallet_balance: (WB)
|
||||
:param amount: Absolute value of position size incl. leverage (in base currency)
|
||||
:param stake_amount: Stake amount - Collateral in settle currency.
|
||||
:param trading_mode: SPOT, MARGIN, FUTURES, etc.
|
||||
:param margin_mode: Either ISOLATED or CROSS
|
||||
:param wallet_balance: Amount of margin_mode in the wallet being used to trade
|
||||
Cross-Margin Mode: crossWalletBalance
|
||||
Isolated-Margin Mode: isolatedWalletBalance
|
||||
:param maintenance_amt:
|
||||
|
||||
# * Only required for Cross
|
||||
:param mm_ex_1: (TMM)
|
||||
@@ -165,12 +169,11 @@ class Binance(Exchange):
|
||||
"""
|
||||
|
||||
side_1 = -1 if is_short else 1
|
||||
position = abs(position)
|
||||
cross_vars = upnl_ex_1 - mm_ex_1 if self.margin_mode == MarginMode.CROSS else 0.0
|
||||
|
||||
# mm_ratio: Binance's formula specifies maintenance margin rate which is mm_ratio * 100%
|
||||
# maintenance_amt: (CUM) Maintenance Amount of position
|
||||
mm_ratio, maintenance_amt = self.get_maintenance_ratio_and_amt(pair, position)
|
||||
mm_ratio, maintenance_amt = self.get_maintenance_ratio_and_amt(pair, stake_amount)
|
||||
|
||||
if (maintenance_amt is None):
|
||||
raise OperationalException(
|
||||
@@ -182,9 +185,9 @@ class Binance(Exchange):
|
||||
return (
|
||||
(
|
||||
(wallet_balance + cross_vars + maintenance_amt) -
|
||||
(side_1 * position * open_rate)
|
||||
(side_1 * amount * open_rate)
|
||||
) / (
|
||||
(position * mm_ratio) - (side_1 * position)
|
||||
(amount * mm_ratio) - (side_1 * amount)
|
||||
)
|
||||
)
|
||||
else:
|
||||
|
@@ -17,6 +17,7 @@ import ccxt
|
||||
import ccxt.async_support as ccxt_async
|
||||
from cachetools import TTLCache
|
||||
from ccxt import ROUND_DOWN, ROUND_UP, TICK_SIZE, TRUNCATE, decimal_to_precision
|
||||
from dateutil import parser
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BuySell,
|
||||
@@ -30,7 +31,8 @@ from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, BAD_EXCHANGE
|
||||
EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED,
|
||||
SUPPORTED_EXCHANGES, remove_credentials, retrier,
|
||||
retrier_async)
|
||||
from freqtrade.misc import chunks, deep_merge_dicts, safe_value_fallback2
|
||||
from freqtrade.misc import (chunks, deep_merge_dicts, file_dump_json, file_load_json,
|
||||
safe_value_fallback2)
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
|
||||
from freqtrade.util import FtPrecise
|
||||
|
||||
@@ -52,8 +54,8 @@ class Exchange:
|
||||
# Parameters to add directly to buy/sell calls (like agreeing to trading agreement)
|
||||
_params: Dict = {}
|
||||
|
||||
# Additional headers - added to the ccxt object
|
||||
_headers: Dict = {}
|
||||
# Additional parameters - added to the ccxt object
|
||||
_ccxt_params: Dict = {}
|
||||
|
||||
# Dict to specify which options each exchange implements
|
||||
# This defines defaults, which can be selectively overridden by subclasses using _ft_has
|
||||
@@ -240,9 +242,9 @@ class Exchange:
|
||||
}
|
||||
if ccxt_kwargs:
|
||||
logger.info('Applying additional ccxt config: %s', ccxt_kwargs)
|
||||
if self._headers:
|
||||
# Inject static headers after the above output to not confuse users.
|
||||
ccxt_kwargs = deep_merge_dicts({'headers': self._headers}, ccxt_kwargs)
|
||||
if self._ccxt_params:
|
||||
# Inject static options after the above output to not confuse users.
|
||||
ccxt_kwargs = deep_merge_dicts(self._ccxt_params, ccxt_kwargs)
|
||||
if ccxt_kwargs:
|
||||
ex_config.update(ccxt_kwargs)
|
||||
try:
|
||||
@@ -406,7 +408,7 @@ class Exchange:
|
||||
else:
|
||||
return DataFrame()
|
||||
|
||||
def _get_contract_size(self, pair: str) -> float:
|
||||
def get_contract_size(self, pair: str) -> float:
|
||||
if self.trading_mode == TradingMode.FUTURES:
|
||||
market = self.markets[pair]
|
||||
contract_size: float = 1.0
|
||||
@@ -419,7 +421,7 @@ class Exchange:
|
||||
|
||||
def _trades_contracts_to_amount(self, trades: List) -> List:
|
||||
if len(trades) > 0 and 'symbol' in trades[0]:
|
||||
contract_size = self._get_contract_size(trades[0]['symbol'])
|
||||
contract_size = self.get_contract_size(trades[0]['symbol'])
|
||||
if contract_size != 1:
|
||||
for trade in trades:
|
||||
trade['amount'] = trade['amount'] * contract_size
|
||||
@@ -427,7 +429,7 @@ class Exchange:
|
||||
|
||||
def _order_contracts_to_amount(self, order: Dict) -> Dict:
|
||||
if 'symbol' in order and order['symbol'] is not None:
|
||||
contract_size = self._get_contract_size(order['symbol'])
|
||||
contract_size = self.get_contract_size(order['symbol'])
|
||||
if contract_size != 1:
|
||||
for prop in self._ft_has.get('order_props_in_contracts', []):
|
||||
if prop in order and order[prop] is not None:
|
||||
@@ -436,19 +438,13 @@ class Exchange:
|
||||
|
||||
def _amount_to_contracts(self, pair: str, amount: float) -> float:
|
||||
|
||||
contract_size = self._get_contract_size(pair)
|
||||
if contract_size and contract_size != 1:
|
||||
return amount / contract_size
|
||||
else:
|
||||
return amount
|
||||
contract_size = self.get_contract_size(pair)
|
||||
return amount_to_contracts(amount, contract_size)
|
||||
|
||||
def _contracts_to_amount(self, pair: str, num_contracts: float) -> float:
|
||||
|
||||
contract_size = self._get_contract_size(pair)
|
||||
if contract_size and contract_size != 1:
|
||||
return num_contracts * contract_size
|
||||
else:
|
||||
return num_contracts
|
||||
contract_size = self.get_contract_size(pair)
|
||||
return contracts_to_amount(num_contracts, contract_size)
|
||||
|
||||
def set_sandbox(self, api: ccxt.Exchange, exchange_config: dict, name: str) -> None:
|
||||
if exchange_config.get('sandbox'):
|
||||
@@ -672,6 +668,12 @@ class Exchange:
|
||||
f"Freqtrade does not support {mm_value} {trading_mode.value} on {self.name}"
|
||||
)
|
||||
|
||||
def get_option(self, param: str, default: Any = None) -> Any:
|
||||
"""
|
||||
Get parameter value from _ft_has
|
||||
"""
|
||||
return self._ft_has.get(param, default)
|
||||
|
||||
def exchange_has(self, endpoint: str) -> bool:
|
||||
"""
|
||||
Checks if exchange implements a specific API endpoint.
|
||||
@@ -2207,6 +2209,7 @@ class Exchange:
|
||||
|
||||
@retrier_async
|
||||
async def get_market_leverage_tiers(self, symbol: str) -> Tuple[str, List[Dict]]:
|
||||
""" Leverage tiers per symbol """
|
||||
try:
|
||||
tier = await self._api_async.fetch_market_leverage_tiers(symbol)
|
||||
return symbol, tier
|
||||
@@ -2238,12 +2241,21 @@ class Exchange:
|
||||
|
||||
tiers: Dict[str, List[Dict]] = {}
|
||||
|
||||
# Be verbose here, as this delays startup by ~1 minute.
|
||||
logger.info(
|
||||
f"Initializing leverage_tiers for {len(symbols)} markets. "
|
||||
"This will take about a minute.")
|
||||
tiers_cached = self.load_cached_leverage_tiers(self._config['stake_currency'])
|
||||
if tiers_cached:
|
||||
tiers = tiers_cached
|
||||
|
||||
coros = [self.get_market_leverage_tiers(symbol) for symbol in sorted(symbols)]
|
||||
coros = [
|
||||
self.get_market_leverage_tiers(symbol)
|
||||
for symbol in sorted(symbols) if symbol not in tiers]
|
||||
|
||||
# Be verbose here, as this delays startup by ~1 minute.
|
||||
if coros:
|
||||
logger.info(
|
||||
f"Initializing leverage_tiers for {len(symbols)} markets. "
|
||||
"This will take about a minute.")
|
||||
else:
|
||||
logger.info("Using cached leverage_tiers.")
|
||||
|
||||
async def gather_results():
|
||||
return await asyncio.gather(*input_coro, return_exceptions=True)
|
||||
@@ -2255,7 +2267,8 @@ class Exchange:
|
||||
|
||||
for symbol, res in results:
|
||||
tiers[symbol] = res
|
||||
|
||||
if len(coros) > 0:
|
||||
self.cache_leverage_tiers(tiers, self._config['stake_currency'])
|
||||
logger.info(f"Done initializing {len(symbols)} markets.")
|
||||
|
||||
return tiers
|
||||
@@ -2264,6 +2277,30 @@ class Exchange:
|
||||
else:
|
||||
return {}
|
||||
|
||||
def cache_leverage_tiers(self, tiers: Dict[str, List[Dict]], stake_currency: str) -> None:
|
||||
|
||||
filename = self._config['datadir'] / "futures" / f"leverage_tiers_{stake_currency}.json"
|
||||
if not filename.parent.is_dir():
|
||||
filename.parent.mkdir(parents=True)
|
||||
data = {
|
||||
"updated": datetime.now(timezone.utc),
|
||||
"data": tiers,
|
||||
}
|
||||
file_dump_json(filename, data)
|
||||
|
||||
def load_cached_leverage_tiers(self, stake_currency: str) -> Optional[Dict[str, List[Dict]]]:
|
||||
filename = self._config['datadir'] / "futures" / f"leverage_tiers_{stake_currency}.json"
|
||||
if filename.is_file():
|
||||
tiers = file_load_json(filename)
|
||||
updated = tiers.get('updated')
|
||||
if updated:
|
||||
updated_dt = parser.parse(updated)
|
||||
if updated_dt < datetime.now(timezone.utc) - timedelta(days=1):
|
||||
logger.info("Cached leverage tiers are outdated. Will update.")
|
||||
return None
|
||||
return tiers['data']
|
||||
return None
|
||||
|
||||
def fill_leverage_tiers(self) -> None:
|
||||
"""
|
||||
Assigns property _leverage_tiers to a dictionary of information about the leverage
|
||||
@@ -2279,10 +2316,10 @@ class Exchange:
|
||||
def parse_leverage_tier(self, tier) -> Dict:
|
||||
info = tier.get('info', {})
|
||||
return {
|
||||
'min': tier['minNotional'],
|
||||
'max': tier['maxNotional'],
|
||||
'mmr': tier['maintenanceMarginRate'],
|
||||
'lev': tier['maxLeverage'],
|
||||
'minNotional': tier['minNotional'],
|
||||
'maxNotional': tier['maxNotional'],
|
||||
'maintenanceMarginRate': tier['maintenanceMarginRate'],
|
||||
'maxLeverage': tier['maxLeverage'],
|
||||
'maintAmt': float(info['cum']) if 'cum' in info else None,
|
||||
}
|
||||
|
||||
@@ -2311,18 +2348,18 @@ class Exchange:
|
||||
pair_tiers = self._leverage_tiers[pair]
|
||||
|
||||
if stake_amount == 0:
|
||||
return self._leverage_tiers[pair][0]['lev'] # Max lev for lowest amount
|
||||
return self._leverage_tiers[pair][0]['maxLeverage'] # Max lev for lowest amount
|
||||
|
||||
for tier_index in range(len(pair_tiers)):
|
||||
|
||||
tier = pair_tiers[tier_index]
|
||||
lev = tier['lev']
|
||||
lev = tier['maxLeverage']
|
||||
|
||||
if tier_index < len(pair_tiers) - 1:
|
||||
next_tier = pair_tiers[tier_index + 1]
|
||||
next_floor = next_tier['min'] / next_tier['lev']
|
||||
next_floor = next_tier['minNotional'] / next_tier['maxLeverage']
|
||||
if next_floor > stake_amount: # Next tier min too high for stake amount
|
||||
return min((tier['max'] / stake_amount), lev)
|
||||
return min((tier['maxNotional'] / stake_amount), lev)
|
||||
#
|
||||
# With the two leverage tiers below,
|
||||
# - a stake amount of 150 would mean a max leverage of (10000 / 150) = 66.66
|
||||
@@ -2343,10 +2380,11 @@ class Exchange:
|
||||
#
|
||||
|
||||
else: # if on the last tier
|
||||
if stake_amount > tier['max']: # If stake is > than max tradeable amount
|
||||
if stake_amount > tier['maxNotional']:
|
||||
# If stake is > than max tradeable amount
|
||||
raise InvalidOrderException(f'Amount {stake_amount} too high for {pair}')
|
||||
else:
|
||||
return tier['lev']
|
||||
return tier['maxLeverage']
|
||||
|
||||
raise OperationalException(
|
||||
'Looped through all tiers without finding a max leverage. Should never be reached'
|
||||
@@ -2399,6 +2437,7 @@ class Exchange:
|
||||
pair: str,
|
||||
open_rate: float,
|
||||
amount: float, # quote currency, includes leverage
|
||||
stake_amount: float,
|
||||
leverage: float,
|
||||
is_short: bool
|
||||
) -> Optional[float]:
|
||||
@@ -2408,13 +2447,13 @@ class Exchange:
|
||||
elif (
|
||||
self.trading_mode == TradingMode.FUTURES
|
||||
):
|
||||
wallet_balance = (amount * open_rate) / leverage
|
||||
isolated_liq = self.get_or_calculate_liquidation_price(
|
||||
pair=pair,
|
||||
open_rate=open_rate,
|
||||
is_short=is_short,
|
||||
position=amount,
|
||||
wallet_balance=wallet_balance,
|
||||
amount=amount,
|
||||
stake_amount=stake_amount,
|
||||
wallet_balance=stake_amount, # In isolated mode, stake-amount = wallet size
|
||||
mm_ex_1=0.0,
|
||||
upnl_ex_1=0.0,
|
||||
)
|
||||
@@ -2589,14 +2628,14 @@ class Exchange:
|
||||
# Dry-run
|
||||
open_rate: float, # Entry price of position
|
||||
is_short: bool,
|
||||
position: float, # Absolute value of position size
|
||||
amount: float, # Absolute value of position size
|
||||
stake_amount: float,
|
||||
wallet_balance: float, # Or margin balance
|
||||
mm_ex_1: float = 0.0, # (Binance) Cross only
|
||||
upnl_ex_1: float = 0.0, # (Binance) Cross only
|
||||
) -> Optional[float]:
|
||||
"""
|
||||
Set's the margin mode on the exchange to cross or isolated for a specific pair
|
||||
:param pair: base/quote currency pair (e.g. "ADA/USDT")
|
||||
"""
|
||||
if self.trading_mode == TradingMode.SPOT:
|
||||
return None
|
||||
@@ -2610,7 +2649,8 @@ class Exchange:
|
||||
pair=pair,
|
||||
open_rate=open_rate,
|
||||
is_short=is_short,
|
||||
position=position,
|
||||
amount=amount,
|
||||
stake_amount=stake_amount,
|
||||
wallet_balance=wallet_balance,
|
||||
mm_ex_1=mm_ex_1,
|
||||
upnl_ex_1=upnl_ex_1
|
||||
@@ -2639,22 +2679,24 @@ class Exchange:
|
||||
pair: str,
|
||||
open_rate: float, # Entry price of position
|
||||
is_short: bool,
|
||||
position: float, # Absolute value of position size
|
||||
amount: float,
|
||||
stake_amount: float,
|
||||
wallet_balance: float, # Or margin balance
|
||||
mm_ex_1: float = 0.0, # (Binance) Cross only
|
||||
upnl_ex_1: float = 0.0, # (Binance) Cross only
|
||||
) -> Optional[float]:
|
||||
"""
|
||||
Important: Must be fetching data from cached values as this is used by backtesting!
|
||||
PERPETUAL:
|
||||
gateio: https://www.gate.io/help/futures/perpetual/22160/calculation-of-liquidation-price
|
||||
okex: https://www.okex.com/support/hc/en-us/articles/
|
||||
360053909592-VI-Introduction-to-the-isolated-mode-of-Single-Multi-currency-Portfolio-margin
|
||||
Important: Must be fetching data from cached values as this is used by backtesting!
|
||||
|
||||
:param exchange_name:
|
||||
:param open_rate: Entry price of position
|
||||
:param is_short: True if the trade is a short, false otherwise
|
||||
:param position: Absolute value of position size incl. leverage (in base currency)
|
||||
:param amount: Absolute value of position size incl. leverage (in base currency)
|
||||
:param stake_amount: Stake amount - Collateral in settle currency.
|
||||
:param trading_mode: SPOT, MARGIN, FUTURES, etc.
|
||||
:param margin_mode: Either ISOLATED or CROSS
|
||||
:param wallet_balance: Amount of margin_mode in the wallet being used to trade
|
||||
@@ -2668,7 +2710,7 @@ class Exchange:
|
||||
|
||||
market = self.markets[pair]
|
||||
taker_fee_rate = market['taker']
|
||||
mm_ratio, _ = self.get_maintenance_ratio_and_amt(pair, position)
|
||||
mm_ratio, _ = self.get_maintenance_ratio_and_amt(pair, stake_amount)
|
||||
|
||||
if self.trading_mode == TradingMode.FUTURES and self.margin_mode == MarginMode.ISOLATED:
|
||||
|
||||
@@ -2676,7 +2718,7 @@ class Exchange:
|
||||
raise OperationalException(
|
||||
"Freqtrade does not yet support inverse contracts")
|
||||
|
||||
value = wallet_balance / position
|
||||
value = wallet_balance / amount
|
||||
|
||||
mm_ratio_taker = (mm_ratio + taker_fee_rate)
|
||||
if is_short:
|
||||
@@ -2712,8 +2754,8 @@ class Exchange:
|
||||
pair_tiers = self._leverage_tiers[pair]
|
||||
|
||||
for tier in reversed(pair_tiers):
|
||||
if nominal_value >= tier['min']:
|
||||
return (tier['mmr'], tier['maintAmt'])
|
||||
if nominal_value >= tier['minNotional']:
|
||||
return (tier['maintenanceMarginRate'], tier['maintAmt'])
|
||||
|
||||
raise OperationalException("nominal value can not be lower than 0")
|
||||
# The lowest notional_floor for any pair in fetch_leverage_tiers is always 0 because it
|
||||
@@ -2855,6 +2897,33 @@ def market_is_active(market: Dict) -> bool:
|
||||
return market.get('active', True) is not False
|
||||
|
||||
|
||||
def amount_to_contracts(amount: float, contract_size: Optional[float]) -> float:
|
||||
"""
|
||||
Convert amount to contracts.
|
||||
:param amount: amount to convert
|
||||
:param contract_size: contract size - taken from exchange.get_contract_size(pair)
|
||||
:return: num-contracts
|
||||
"""
|
||||
if contract_size and contract_size != 1:
|
||||
return amount / contract_size
|
||||
else:
|
||||
return amount
|
||||
|
||||
|
||||
def contracts_to_amount(num_contracts: float, contract_size: Optional[float]) -> float:
|
||||
"""
|
||||
Takes num-contracts and converts it to contract size
|
||||
:param num_contracts: number of contracts
|
||||
:param contract_size: contract size - taken from exchange.get_contract_size(pair)
|
||||
:return: Amount
|
||||
"""
|
||||
|
||||
if contract_size and contract_size != 1:
|
||||
return num_contracts * contract_size
|
||||
else:
|
||||
return num_contracts
|
||||
|
||||
|
||||
def amount_to_precision(amount: float, amount_precision: Optional[float],
|
||||
precisionMode: Optional[int]) -> float:
|
||||
"""
|
||||
@@ -2879,6 +2948,29 @@ def amount_to_precision(amount: float, amount_precision: Optional[float],
|
||||
return amount
|
||||
|
||||
|
||||
def amount_to_contract_precision(
|
||||
amount, amount_precision: Optional[float], precisionMode: Optional[int],
|
||||
contract_size: Optional[float]) -> float:
|
||||
"""
|
||||
Returns the amount to buy or sell to a precision the Exchange accepts
|
||||
including calculation to and from contracts.
|
||||
Re-implementation of ccxt internal methods - ensuring we can test the result is correct
|
||||
based on our definitions.
|
||||
:param amount: amount to truncate
|
||||
:param amount_precision: amount precision to use.
|
||||
should be retrieved from markets[pair]['precision']['amount']
|
||||
:param precisionMode: precision mode to use. Should be used from precisionMode
|
||||
one of ccxt's DECIMAL_PLACES, SIGNIFICANT_DIGITS, or TICK_SIZE
|
||||
:param contract_size: contract size - taken from exchange.get_contract_size(pair)
|
||||
:return: truncated amount
|
||||
"""
|
||||
if amount_precision is not None and precisionMode is not None:
|
||||
contracts = amount_to_contracts(amount, contract_size)
|
||||
amount_p = amount_to_precision(contracts, amount_precision, precisionMode)
|
||||
return contracts_to_amount(amount_p, contract_size)
|
||||
return amount
|
||||
|
||||
|
||||
def price_to_precision(price: float, price_precision: Optional[float],
|
||||
precisionMode: Optional[int]) -> float:
|
||||
"""
|
||||
|
@@ -25,7 +25,6 @@ class Gateio(Exchange):
|
||||
|
||||
_ft_has: Dict = {
|
||||
"ohlcv_candle_limit": 1000,
|
||||
"ohlcv_volume_currency": "quote",
|
||||
"time_in_force_parameter": "timeInForce",
|
||||
"order_time_in_force": ['gtc', 'ioc'],
|
||||
"stoploss_order_types": {"limit": "limit"},
|
||||
@@ -34,7 +33,6 @@ class Gateio(Exchange):
|
||||
|
||||
_ft_has_futures: Dict = {
|
||||
"needs_trading_fees": True,
|
||||
"ohlcv_volume_currency": "base",
|
||||
"fee_cost_in_contracts": False, # Set explicitly to false for clarity
|
||||
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
|
||||
}
|
||||
|
@@ -39,6 +39,8 @@ class Okx(Exchange):
|
||||
|
||||
net_only = True
|
||||
|
||||
_ccxt_params: Dict = {'options': {'brokerId': 'ffb5405ad327SUDE'}}
|
||||
|
||||
def ohlcv_candle_limit(
|
||||
self, timeframe: str, candle_type: CandleType, since_ms: Optional[int] = None) -> int:
|
||||
"""
|
||||
@@ -144,4 +146,4 @@ class Okx(Exchange):
|
||||
return float('inf')
|
||||
|
||||
pair_tiers = self._leverage_tiers[pair]
|
||||
return pair_tiers[-1]['max'] / leverage
|
||||
return pair_tiers[-1]['maxNotional'] / leverage
|
||||
|
@@ -421,7 +421,7 @@ class FreqaiDataDrawer:
|
||||
)
|
||||
|
||||
# if self.live:
|
||||
self.model_dictionary[dk.model_filename] = model
|
||||
self.model_dictionary[coin] = model
|
||||
self.pair_dict[coin]["model_filename"] = dk.model_filename
|
||||
self.pair_dict[coin]["data_path"] = str(dk.data_path)
|
||||
self.save_drawer_to_disk()
|
||||
@@ -460,8 +460,8 @@ class FreqaiDataDrawer:
|
||||
)
|
||||
|
||||
# try to access model in memory instead of loading object from disk to save time
|
||||
if dk.live and dk.model_filename in self.model_dictionary:
|
||||
model = self.model_dictionary[dk.model_filename]
|
||||
if dk.live and coin in self.model_dictionary:
|
||||
model = self.model_dictionary[coin]
|
||||
elif not dk.keras:
|
||||
model = load(dk.data_path / f"{dk.model_filename}_model.joblib")
|
||||
else:
|
||||
@@ -566,7 +566,6 @@ class FreqaiDataDrawer:
|
||||
for training according to user defined train_period_days
|
||||
metadata: dict = strategy furnished pair metadata
|
||||
"""
|
||||
|
||||
with self.history_lock:
|
||||
corr_dataframes: Dict[Any, Any] = {}
|
||||
base_dataframes: Dict[Any, Any] = {}
|
||||
|
@@ -454,7 +454,6 @@ class FreqaiDataKitchen:
|
||||
logger.info("reduced feature dimension by %s", n_components - n_keep_components)
|
||||
logger.info("explained variance %f", np.sum(pca2.explained_variance_ratio_))
|
||||
train_components = pca2.transform(self.data_dictionary["train_features"])
|
||||
test_components = pca2.transform(self.data_dictionary["test_features"])
|
||||
|
||||
self.data_dictionary["train_features"] = pd.DataFrame(
|
||||
data=train_components,
|
||||
@@ -468,6 +467,7 @@ class FreqaiDataKitchen:
|
||||
self.training_features_list = self.data_dictionary["train_features"].columns
|
||||
|
||||
if self.freqai_config.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
test_components = pca2.transform(self.data_dictionary["test_features"])
|
||||
self.data_dictionary["test_features"] = pd.DataFrame(
|
||||
data=test_components,
|
||||
columns=["PC" + str(i) for i in range(0, n_keep_components)],
|
||||
@@ -506,10 +506,26 @@ class FreqaiDataKitchen:
|
||||
# logger.info("computing average mean distance for all training points")
|
||||
pairwise = pairwise_distances(
|
||||
self.data_dictionary["train_features"], n_jobs=self.thread_count)
|
||||
avg_mean_dist = pairwise.mean(axis=1).mean()
|
||||
# remove the diagonal distances which are itself distances ~0
|
||||
np.fill_diagonal(pairwise, np.NaN)
|
||||
pairwise = pairwise.reshape(-1, 1)
|
||||
avg_mean_dist = pairwise[~np.isnan(pairwise)].mean()
|
||||
|
||||
return avg_mean_dist
|
||||
|
||||
def get_outlier_percentage(self, dropped_pts: npt.NDArray) -> float:
|
||||
"""
|
||||
Check if more than X% of points werer dropped during outlier detection.
|
||||
"""
|
||||
outlier_protection_pct = self.freqai_config["feature_parameters"].get(
|
||||
"outlier_protection_percentage", 30)
|
||||
outlier_pct = (dropped_pts.sum() / len(dropped_pts)) * 100
|
||||
if outlier_pct >= outlier_protection_pct:
|
||||
self.svm_model = None
|
||||
return outlier_pct
|
||||
else:
|
||||
return 0.0
|
||||
|
||||
def use_SVM_to_remove_outliers(self, predict: bool) -> None:
|
||||
"""
|
||||
Build/inference a Support Vector Machine to detect outliers
|
||||
@@ -547,8 +563,16 @@ class FreqaiDataKitchen:
|
||||
self.data_dictionary["train_features"]
|
||||
)
|
||||
y_pred = self.svm_model.predict(self.data_dictionary["train_features"])
|
||||
dropped_points = np.where(y_pred == -1, 0, y_pred)
|
||||
kept_points = np.where(y_pred == -1, 0, y_pred)
|
||||
# keep_index = np.where(y_pred == 1)
|
||||
outlier_pct = self.get_outlier_percentage(1 - kept_points)
|
||||
if outlier_pct:
|
||||
logger.warning(
|
||||
f"SVM detected {outlier_pct:.2f}% of the points as outliers. "
|
||||
f"Keeping original dataset."
|
||||
)
|
||||
return
|
||||
|
||||
self.data_dictionary["train_features"] = self.data_dictionary["train_features"][
|
||||
(y_pred == 1)
|
||||
]
|
||||
@@ -560,7 +584,7 @@ class FreqaiDataKitchen:
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"SVM tossed {len(y_pred) - dropped_points.sum()}"
|
||||
f"SVM tossed {len(y_pred) - kept_points.sum()}"
|
||||
f" train points from {len(y_pred)} total points."
|
||||
)
|
||||
|
||||
@@ -569,7 +593,7 @@ class FreqaiDataKitchen:
|
||||
# to reduce code duplication
|
||||
if self.freqai_config['data_split_parameters'].get('test_size', 0.1) != 0:
|
||||
y_pred = self.svm_model.predict(self.data_dictionary["test_features"])
|
||||
dropped_points = np.where(y_pred == -1, 0, y_pred)
|
||||
kept_points = np.where(y_pred == -1, 0, y_pred)
|
||||
self.data_dictionary["test_features"] = self.data_dictionary["test_features"][
|
||||
(y_pred == 1)
|
||||
]
|
||||
@@ -580,7 +604,7 @@ class FreqaiDataKitchen:
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"SVM tossed {len(y_pred) - dropped_points.sum()}"
|
||||
f"SVM tossed {len(y_pred) - kept_points.sum()}"
|
||||
f" test points from {len(y_pred)} total points."
|
||||
)
|
||||
|
||||
@@ -598,6 +622,8 @@ class FreqaiDataKitchen:
|
||||
is an outlier.
|
||||
"""
|
||||
|
||||
from math import cos, sin
|
||||
|
||||
if predict:
|
||||
train_ft_df = self.data_dictionary['train_features']
|
||||
pred_ft_df = self.data_dictionary['prediction_features']
|
||||
@@ -616,28 +642,60 @@ class FreqaiDataKitchen:
|
||||
|
||||
else:
|
||||
|
||||
MinPts = len(self.data_dictionary['train_features'].columns) * 2
|
||||
# measure pairwise distances to train_features.shape[1]*2 nearest neighbours
|
||||
def normalise_distances(distances):
|
||||
normalised_distances = (distances - distances.min()) / \
|
||||
(distances.max() - distances.min())
|
||||
return normalised_distances
|
||||
|
||||
def rotate_point(origin, point, angle):
|
||||
# rotate a point counterclockwise by a given angle (in radians)
|
||||
# around a given origin
|
||||
x = origin[0] + cos(angle) * (point[0] - origin[0]) - \
|
||||
sin(angle) * (point[1] - origin[1])
|
||||
y = origin[1] + sin(angle) * (point[0] - origin[0]) + \
|
||||
cos(angle) * (point[1] - origin[1])
|
||||
return (x, y)
|
||||
|
||||
MinPts = int(len(self.data_dictionary['train_features'].index) * 0.25)
|
||||
# measure pairwise distances to nearest neighbours
|
||||
neighbors = NearestNeighbors(
|
||||
n_neighbors=MinPts, n_jobs=self.thread_count)
|
||||
neighbors_fit = neighbors.fit(self.data_dictionary['train_features'])
|
||||
distances, _ = neighbors_fit.kneighbors(self.data_dictionary['train_features'])
|
||||
distances = np.sort(distances, axis=0)
|
||||
index_ten_pct = int(len(distances[:, 1]) * 0.1)
|
||||
distances = distances[index_ten_pct:, 1]
|
||||
epsilon = distances[-1]
|
||||
distances = np.sort(distances, axis=0).mean(axis=1)
|
||||
|
||||
normalised_distances = normalise_distances(distances)
|
||||
x_range = np.linspace(0, 1, len(distances))
|
||||
line = np.linspace(normalised_distances[0],
|
||||
normalised_distances[-1], len(normalised_distances))
|
||||
deflection = np.abs(normalised_distances - line)
|
||||
max_deflection_loc = np.where(deflection == deflection.max())[0][0]
|
||||
origin = x_range[max_deflection_loc], line[max_deflection_loc]
|
||||
point = x_range[max_deflection_loc], normalised_distances[max_deflection_loc]
|
||||
rot_angle = np.pi / 4
|
||||
elbow_loc = rotate_point(origin, point, rot_angle)
|
||||
|
||||
epsilon = elbow_loc[1] * (distances[-1] - distances[0]) + distances[0]
|
||||
|
||||
clustering = DBSCAN(eps=epsilon, min_samples=MinPts,
|
||||
n_jobs=int(self.thread_count)).fit(
|
||||
self.data_dictionary['train_features']
|
||||
)
|
||||
|
||||
logger.info(f'DBSCAN found eps of {epsilon}.')
|
||||
logger.info(f'DBSCAN found eps of {epsilon:.2f}.')
|
||||
|
||||
self.data['DBSCAN_eps'] = epsilon
|
||||
self.data['DBSCAN_min_samples'] = MinPts
|
||||
dropped_points = np.where(clustering.labels_ == -1, 1, 0)
|
||||
|
||||
outlier_pct = self.get_outlier_percentage(dropped_points)
|
||||
if outlier_pct:
|
||||
logger.warning(
|
||||
f"DBSCAN detected {outlier_pct:.2f}% of the points as outliers. "
|
||||
f"Keeping original dataset."
|
||||
)
|
||||
return
|
||||
|
||||
self.data_dictionary['train_features'] = self.data_dictionary['train_features'][
|
||||
(clustering.labels_ != -1)
|
||||
]
|
||||
@@ -655,114 +713,6 @@ class FreqaiDataKitchen:
|
||||
|
||||
return
|
||||
|
||||
def compute_inlier_metric(self, set_='train') -> None:
|
||||
"""
|
||||
|
||||
Compute inlier metric from backwards distance distributions.
|
||||
This metric defines how well features from a timepoint fit
|
||||
into previous timepoints.
|
||||
"""
|
||||
|
||||
import scipy.stats as ss
|
||||
|
||||
no_prev_pts = self.freqai_config["feature_parameters"]["inlier_metric_window"]
|
||||
weib_pct = self.freqai_config["feature_parameters"]["inlier_metric_weibull_cutoff"]
|
||||
|
||||
if set_ == 'train':
|
||||
compute_df = copy.deepcopy(self.data_dictionary['train_features'])
|
||||
elif set_ == 'test':
|
||||
compute_df = copy.deepcopy(self.data_dictionary['test_features'])
|
||||
else:
|
||||
compute_df = copy.deepcopy(self.data_dictionary['prediction_features'])
|
||||
|
||||
compute_df_reindexed = compute_df.reindex(
|
||||
index=np.flip(compute_df.index)
|
||||
)
|
||||
|
||||
pairwise = pd.DataFrame(
|
||||
np.triu(
|
||||
pairwise_distances(compute_df_reindexed, n_jobs=self.thread_count)
|
||||
),
|
||||
columns=compute_df_reindexed.index,
|
||||
index=compute_df_reindexed.index
|
||||
)
|
||||
pairwise = pairwise.round(5)
|
||||
|
||||
column_labels = [
|
||||
'{}{}'.format('d', i) for i in range(1, no_prev_pts + 1)
|
||||
]
|
||||
distances = pd.DataFrame(
|
||||
columns=column_labels, index=compute_df.index
|
||||
)
|
||||
|
||||
for index in compute_df.index[no_prev_pts:]:
|
||||
current_row = pairwise.loc[[index]]
|
||||
current_row_no_zeros = current_row.loc[
|
||||
:, (current_row != 0).any(axis=0)
|
||||
]
|
||||
distances.loc[[index]] = current_row_no_zeros.iloc[
|
||||
:, :no_prev_pts
|
||||
]
|
||||
distances = distances.replace([np.inf, -np.inf], np.nan)
|
||||
drop_index = pd.isnull(distances).any(1)
|
||||
distances = distances[drop_index == 0]
|
||||
|
||||
inliers = pd.DataFrame(index=distances.index)
|
||||
for key in distances.keys():
|
||||
current_distances = distances[key].dropna()
|
||||
fit_params = ss.weibull_min.fit(current_distances)
|
||||
cutoff = ss.weibull_min.ppf(weib_pct, *fit_params)
|
||||
is_inlier = np.where(
|
||||
current_distances <= cutoff, 1, 0
|
||||
)
|
||||
df_inlier = pd.DataFrame(
|
||||
{key + '_IsInlier': is_inlier}, index=distances.index
|
||||
)
|
||||
inliers = pd.concat(
|
||||
[inliers, df_inlier], axis=1
|
||||
)
|
||||
|
||||
inlier_metric = pd.DataFrame(
|
||||
data=inliers.sum(axis=1) / no_prev_pts,
|
||||
columns=['inlier_metric'],
|
||||
index=compute_df.index
|
||||
)
|
||||
|
||||
inlier_metric = 2 * (inlier_metric - inlier_metric.min()) / \
|
||||
(inlier_metric.max() - inlier_metric.min()) - 1
|
||||
|
||||
if set_ in ('train', 'test'):
|
||||
inlier_metric = inlier_metric.iloc[no_prev_pts:]
|
||||
compute_df = compute_df.iloc[no_prev_pts:]
|
||||
self.remove_beginning_points_from_data_dict(set_, no_prev_pts)
|
||||
self.data_dictionary[f'{set_}_features'] = pd.concat(
|
||||
[compute_df, inlier_metric], axis=1)
|
||||
else:
|
||||
self.data_dictionary['prediction_features'] = pd.concat(
|
||||
[compute_df, inlier_metric], axis=1)
|
||||
self.data_dictionary['prediction_features'].fillna(0, inplace=True)
|
||||
|
||||
return None
|
||||
|
||||
def remove_beginning_points_from_data_dict(self, set_='train', no_prev_pts: int = 10):
|
||||
features = self.data_dictionary[f'{set_}_features']
|
||||
weights = self.data_dictionary[f'{set_}_weights']
|
||||
labels = self.data_dictionary[f'{set_}_labels']
|
||||
self.data_dictionary[f'{set_}_weights'] = weights[no_prev_pts:]
|
||||
self.data_dictionary[f'{set_}_features'] = features.iloc[no_prev_pts:]
|
||||
self.data_dictionary[f'{set_}_labels'] = labels.iloc[no_prev_pts:]
|
||||
|
||||
def add_noise_to_training_features(self) -> None:
|
||||
"""
|
||||
Add noise to train features to reduce the risk of overfitting.
|
||||
"""
|
||||
mu = 0 # no shift
|
||||
sigma = self.freqai_config["feature_parameters"]["noise_standard_deviation"]
|
||||
compute_df = self.data_dictionary['train_features']
|
||||
noise = np.random.normal(mu, sigma, [compute_df.shape[0], compute_df.shape[1]])
|
||||
self.data_dictionary['train_features'] += noise
|
||||
return
|
||||
|
||||
def find_features(self, dataframe: DataFrame) -> None:
|
||||
"""
|
||||
Find features in the strategy provided dataframe
|
||||
@@ -801,9 +751,17 @@ class FreqaiDataKitchen:
|
||||
0,
|
||||
)
|
||||
|
||||
outlier_pct = self.get_outlier_percentage(1 - do_predict)
|
||||
if outlier_pct:
|
||||
logger.warning(
|
||||
f"DI detected {outlier_pct:.2f}% of the points as outliers. "
|
||||
f"Keeping original dataset."
|
||||
)
|
||||
return
|
||||
|
||||
if (len(do_predict) - do_predict.sum()) > 0:
|
||||
logger.info(
|
||||
f"DI tossed {len(do_predict) - do_predict.sum():.2f} predictions for "
|
||||
f"DI tossed {len(do_predict) - do_predict.sum()} predictions for "
|
||||
"being too far from training data"
|
||||
)
|
||||
|
||||
@@ -978,13 +936,6 @@ class FreqaiDataKitchen:
|
||||
data_load_timerange.stopts = int(time)
|
||||
retrain = True
|
||||
|
||||
# logger.info(
|
||||
# f"downloading data for "
|
||||
# f"{(data_load_timerange.stopts-data_load_timerange.startts)/SECONDS_IN_DAY:.2f} "
|
||||
# " days. "
|
||||
# f"Extension of {additional_seconds/SECONDS_IN_DAY:.2f} days"
|
||||
# )
|
||||
|
||||
return retrain, trained_timerange, data_load_timerange
|
||||
|
||||
def set_new_model_names(self, pair: str, trained_timerange: TimeRange):
|
||||
|
@@ -66,6 +66,7 @@ class IFreqaiModel(ABC):
|
||||
"data_split_parameters", {})
|
||||
self.model_training_parameters: Dict[str, Any] = config.get("freqai", {}).get(
|
||||
"model_training_parameters", {})
|
||||
self.feature_parameters = config.get("freqai", {}).get("feature_parameters")
|
||||
self.retrain = False
|
||||
self.first = True
|
||||
self.set_full_path()
|
||||
@@ -73,21 +74,21 @@ class IFreqaiModel(ABC):
|
||||
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
|
||||
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
|
||||
self.scanning = False
|
||||
self.ft_params = self.freqai_info["feature_parameters"]
|
||||
self.keras: bool = self.freqai_info.get("keras", False)
|
||||
if self.keras and self.ft_params.get("DI_threshold", 0):
|
||||
self.ft_params["DI_threshold"] = 0
|
||||
if self.keras and self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0):
|
||||
self.freqai_info["feature_parameters"]["DI_threshold"] = 0
|
||||
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
|
||||
self.CONV_WIDTH = self.freqai_info.get("conv_width", 2)
|
||||
if self.ft_params.get("inlier_metric_window", 0):
|
||||
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
|
||||
self.pair_it = 0
|
||||
self.pair_it_train = 0
|
||||
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
|
||||
self.last_trade_database_summary: DataFrame = {}
|
||||
self.current_trade_database_summary: DataFrame = {}
|
||||
self.analysis_lock = Lock()
|
||||
self.inference_time: float = 0
|
||||
self.train_time: float = 0
|
||||
self.begin_time: float = 0
|
||||
self.begin_time_train: float = 0
|
||||
self.base_tf_seconds = timeframe_to_seconds(self.config['timeframe'])
|
||||
|
||||
def assert_config(self, config: Dict[str, Any]) -> None:
|
||||
@@ -130,11 +131,20 @@ class IFreqaiModel(ABC):
|
||||
dk = self.start_backtesting(dataframe, metadata, self.dk)
|
||||
|
||||
dataframe = dk.remove_features_from_df(dk.return_dataframe)
|
||||
del dk
|
||||
self.clean_up()
|
||||
if self.live:
|
||||
self.inference_timer('stop')
|
||||
return dataframe
|
||||
|
||||
def clean_up(self):
|
||||
"""
|
||||
Objects that should be handled by GC already between coins, but
|
||||
are explicitly shown here to help demonstrate the non-persistence of these
|
||||
objects.
|
||||
"""
|
||||
self.model = None
|
||||
self.dk = None
|
||||
|
||||
@threaded
|
||||
def start_scanning(self, strategy: IStrategy) -> None:
|
||||
"""
|
||||
@@ -161,9 +171,11 @@ class IFreqaiModel(ABC):
|
||||
dk.set_paths(pair, new_trained_timerange.stopts)
|
||||
|
||||
if retrain:
|
||||
self.train_timer('start')
|
||||
self.train_model_in_series(
|
||||
new_trained_timerange, pair, strategy, dk, data_load_timerange
|
||||
)
|
||||
self.train_timer('stop')
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
|
||||
@@ -385,25 +397,24 @@ class IFreqaiModel(ABC):
|
||||
|
||||
def data_cleaning_train(self, dk: FreqaiDataKitchen) -> None:
|
||||
"""
|
||||
Base data cleaning method for train.
|
||||
Functions here improve/modify the input data by identifying outliers,
|
||||
computing additional metrics, adding noise, reducing dimensionality etc.
|
||||
Base data cleaning method for train
|
||||
Any function inside this method should drop training data points from the filtered_dataframe
|
||||
based on user decided logic. See FreqaiDataKitchen::use_SVM_to_remove_outliers() for an
|
||||
example of how outlier data points are dropped from the dataframe used for training.
|
||||
"""
|
||||
|
||||
ft_params = self.freqai_info["feature_parameters"]
|
||||
|
||||
if ft_params.get(
|
||||
if self.freqai_info["feature_parameters"].get(
|
||||
"principal_component_analysis", False
|
||||
):
|
||||
dk.principal_component_analysis()
|
||||
|
||||
if ft_params.get("use_SVM_to_remove_outliers", False):
|
||||
if self.freqai_info["feature_parameters"].get("use_SVM_to_remove_outliers", False):
|
||||
dk.use_SVM_to_remove_outliers(predict=False)
|
||||
|
||||
if ft_params.get("DI_threshold", 0):
|
||||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0):
|
||||
dk.data["avg_mean_dist"] = dk.compute_distances()
|
||||
|
||||
if ft_params.get("use_DBSCAN_to_remove_outliers", False):
|
||||
if self.freqai_info["feature_parameters"].get("use_DBSCAN_to_remove_outliers", False):
|
||||
if dk.pair in self.dd.old_DBSCAN_eps:
|
||||
eps = self.dd.old_DBSCAN_eps[dk.pair]
|
||||
else:
|
||||
@@ -411,36 +422,29 @@ class IFreqaiModel(ABC):
|
||||
dk.use_DBSCAN_to_remove_outliers(predict=False, eps=eps)
|
||||
self.dd.old_DBSCAN_eps[dk.pair] = dk.data['DBSCAN_eps']
|
||||
|
||||
if ft_params.get('inlier_metric_window', 0):
|
||||
dk.compute_inlier_metric(set_='train')
|
||||
if self.freqai_info["data_split_parameters"]["test_size"] > 0:
|
||||
dk.compute_inlier_metric(set_='test')
|
||||
|
||||
if self.freqai_info["feature_parameters"].get('noise_standard_deviation', 0):
|
||||
dk.add_noise_to_training_features()
|
||||
|
||||
def data_cleaning_predict(self, dk: FreqaiDataKitchen, dataframe: DataFrame) -> None:
|
||||
"""
|
||||
Base data cleaning method for predict.
|
||||
Functions here are complementary to the functions of data_cleaning_train.
|
||||
These functions each modify dk.do_predict, which is a dataframe with equal length
|
||||
to the number of candles coming from and returning to the strategy. Inside do_predict,
|
||||
1 allows prediction and < 0 signals to the strategy that the model is not confident in
|
||||
the prediction.
|
||||
See FreqaiDataKitchen::remove_outliers() for an example
|
||||
of how the do_predict vector is modified. do_predict is ultimately passed back to strategy
|
||||
for buy signals.
|
||||
"""
|
||||
ft_params = self.freqai_info["feature_parameters"]
|
||||
|
||||
if ft_params.get('inlier_metric_window', 0):
|
||||
dk.compute_inlier_metric(set_='predict')
|
||||
|
||||
if ft_params.get(
|
||||
if self.freqai_info["feature_parameters"].get(
|
||||
"principal_component_analysis", False
|
||||
):
|
||||
dk.pca_transform(dataframe)
|
||||
|
||||
if ft_params.get("use_SVM_to_remove_outliers", False):
|
||||
if self.freqai_info["feature_parameters"].get("use_SVM_to_remove_outliers", False):
|
||||
dk.use_SVM_to_remove_outliers(predict=True)
|
||||
|
||||
if ft_params.get("DI_threshold", 0):
|
||||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0):
|
||||
dk.check_if_pred_in_training_spaces()
|
||||
|
||||
if ft_params.get("use_DBSCAN_to_remove_outliers", False):
|
||||
if self.freqai_info["feature_parameters"].get("use_DBSCAN_to_remove_outliers", False):
|
||||
dk.use_DBSCAN_to_remove_outliers(predict=True)
|
||||
|
||||
def model_exists(
|
||||
@@ -490,8 +494,7 @@ class IFreqaiModel(ABC):
|
||||
data_load_timerange: TimeRange,
|
||||
):
|
||||
"""
|
||||
Retrieve data and train model in single threaded mode (only used if model directory is empty
|
||||
upon startup for dry/live )
|
||||
Retrieve data and train model.
|
||||
:param new_trained_timerange: TimeRange = the timerange to train the model on
|
||||
:param metadata: dict = strategy provided metadata
|
||||
:param strategy: IStrategy = user defined strategy object
|
||||
@@ -622,6 +625,24 @@ class IFreqaiModel(ABC):
|
||||
self.inference_time = 0
|
||||
return
|
||||
|
||||
def train_timer(self, do='start'):
|
||||
"""
|
||||
Timer designed to track the cumulative time spent training the full pairlist in
|
||||
FreqAI.
|
||||
"""
|
||||
if do == 'start':
|
||||
self.pair_it_train += 1
|
||||
self.begin_time_train = time.time()
|
||||
elif do == 'stop':
|
||||
end = time.time()
|
||||
self.train_time += (end - self.begin_time_train)
|
||||
if self.pair_it_train == self.total_pairs:
|
||||
logger.info(
|
||||
f'Total time spent training pairlist {self.train_time:.2f} seconds')
|
||||
self.pair_it_train = 0
|
||||
self.train_time = 0
|
||||
return
|
||||
|
||||
# Following methods which are overridden by user made prediction models.
|
||||
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
||||
|
||||
|
@@ -21,8 +21,7 @@ from freqtrade.enums import (ExitCheckTuple, ExitType, RPCMessageType, RunMode,
|
||||
State, TradingMode)
|
||||
from freqtrade.exceptions import (DependencyException, ExchangeError, InsufficientFundsError,
|
||||
InvalidOrderException, PricingError)
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.exchange.exchange import timeframe_to_next_date
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date, timeframe_to_seconds
|
||||
from freqtrade.misc import safe_value_fallback, safe_value_fallback2
|
||||
from freqtrade.mixins import LoggingMixin
|
||||
from freqtrade.persistence import Order, PairLocks, Trade, init_db
|
||||
@@ -240,7 +239,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
'status':
|
||||
f"{len(open_trades)} open trades active.\n\n"
|
||||
f"Handle these trades manually on {self.exchange.name}, "
|
||||
f"or '/start' the bot again and use '/stopbuy' "
|
||||
f"or '/start' the bot again and use '/stopentry' "
|
||||
f"to handle open trades gracefully. \n"
|
||||
f"{'Note: Trades are simulated (dry run).' if self.config['dry_run'] else ''}",
|
||||
}
|
||||
@@ -271,7 +270,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
Return the number of free open trades slots or 0 if
|
||||
max number of open trades reached
|
||||
"""
|
||||
open_trades = len(Trade.get_open_trades())
|
||||
open_trades = Trade.get_open_trade_count()
|
||||
return max(0, self.config['max_open_trades'] - open_trades)
|
||||
|
||||
def update_funding_fees(self):
|
||||
@@ -290,13 +289,14 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
def startup_backpopulate_precision(self):
|
||||
|
||||
trades = Trade.get_trades([Trade.precision_mode.is_(None)])
|
||||
trades = Trade.get_trades([Trade.contract_size.is_(None)])
|
||||
for trade in trades:
|
||||
if trade.exchange != self.exchange.id:
|
||||
continue
|
||||
trade.precision_mode = self.exchange.precisionMode
|
||||
trade.amount_precision = self.exchange.get_precision_amount(trade.pair)
|
||||
trade.price_precision = self.exchange.get_precision_price(trade.pair)
|
||||
trade.contract_size = self.exchange.get_contract_size(trade.pair)
|
||||
Trade.commit()
|
||||
|
||||
def startup_update_open_orders(self):
|
||||
@@ -755,6 +755,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
amount_precision=self.exchange.get_precision_amount(pair),
|
||||
price_precision=self.exchange.get_precision_price(pair),
|
||||
precision_mode=self.exchange.precisionMode,
|
||||
contract_size=self.exchange.get_contract_size(pair),
|
||||
)
|
||||
else:
|
||||
# This is additional buy, we reset fee_open_currency so timeout checking can work
|
||||
@@ -1551,9 +1552,10 @@ class FreqtradeBot(LoggingMixin):
|
||||
trade.close_rate_requested = limit
|
||||
trade.exit_reason = exit_reason
|
||||
|
||||
# Lock pair for one candle to prevent immediate re-trading
|
||||
self.strategy.lock_pair(trade.pair, datetime.now(timezone.utc),
|
||||
reason='Auto lock')
|
||||
if not sub_trade_amt:
|
||||
# Lock pair for one candle to prevent immediate re-trading
|
||||
self.strategy.lock_pair(trade.pair, datetime.now(timezone.utc),
|
||||
reason='Auto lock')
|
||||
|
||||
self._notify_exit(trade, order_type, sub_trade=bool(sub_trade_amt), order=order_obj)
|
||||
# In case of market sell orders the order can be closed immediately
|
||||
@@ -1733,6 +1735,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
leverage=trade.leverage,
|
||||
pair=trade.pair,
|
||||
amount=trade.amount,
|
||||
stake_amount=trade.stake_amount,
|
||||
open_rate=trade.open_rate,
|
||||
is_short=trade.is_short
|
||||
))
|
||||
|
@@ -23,7 +23,8 @@ from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import (BacktestState, CandleType, ExitCheckTuple, ExitType, RunMode,
|
||||
TradingMode)
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.exchange import (amount_to_contract_precision, price_to_precision,
|
||||
timeframe_to_minutes, timeframe_to_seconds)
|
||||
from freqtrade.mixins import LoggingMixin
|
||||
from freqtrade.optimize.backtest_caching import get_strategy_run_id
|
||||
from freqtrade.optimize.bt_progress import BTProgress
|
||||
@@ -266,7 +267,7 @@ class Backtesting:
|
||||
funding_rates_dict = history.load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=self.pairlists.whitelist,
|
||||
timeframe=self.exchange._ft_has['mark_ohlcv_timeframe'],
|
||||
timeframe=self.exchange.get_option('mark_ohlcv_timeframe'),
|
||||
timerange=self.timerange,
|
||||
startup_candles=0,
|
||||
fail_without_data=True,
|
||||
@@ -278,12 +279,12 @@ class Backtesting:
|
||||
mark_rates_dict = history.load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=self.pairlists.whitelist,
|
||||
timeframe=self.exchange._ft_has['mark_ohlcv_timeframe'],
|
||||
timeframe=self.exchange.get_option('mark_ohlcv_timeframe'),
|
||||
timerange=self.timerange,
|
||||
startup_candles=0,
|
||||
fail_without_data=True,
|
||||
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||
candle_type=CandleType.from_string(self.exchange._ft_has["mark_ohlcv_price"])
|
||||
candle_type=CandleType.from_string(self.exchange.get_option("mark_ohlcv_price"))
|
||||
)
|
||||
# Combine data to avoid combining the data per trade.
|
||||
unavailable_pairs = []
|
||||
@@ -533,12 +534,16 @@ class Backtesting:
|
||||
|
||||
# Check if we should increase our position
|
||||
if stake_amount is not None and stake_amount > 0.0:
|
||||
|
||||
pos_trade = self._enter_trade(
|
||||
trade.pair, row, 'short' if trade.is_short else 'long', stake_amount, trade)
|
||||
if pos_trade is not None:
|
||||
self.wallets.update()
|
||||
return pos_trade
|
||||
check_adjust_entry = True
|
||||
if self.strategy.max_entry_position_adjustment > -1:
|
||||
entry_count = trade.nr_of_successful_entries
|
||||
check_adjust_entry = (entry_count <= self.strategy.max_entry_position_adjustment)
|
||||
if check_adjust_entry:
|
||||
pos_trade = self._enter_trade(
|
||||
trade.pair, row, 'short' if trade.is_short else 'long', stake_amount, trade)
|
||||
if pos_trade is not None:
|
||||
self.wallets.update()
|
||||
return pos_trade
|
||||
|
||||
if stake_amount is not None and stake_amount < 0.0:
|
||||
amount = abs(stake_amount) / current_rate
|
||||
@@ -549,7 +554,8 @@ class Backtesting:
|
||||
if remaining < min_stake:
|
||||
# Remaining stake is too low to be sold.
|
||||
return trade
|
||||
pos_trade = self._exit_trade(trade, row, current_rate, amount)
|
||||
exit_ = ExitCheckTuple(ExitType.PARTIAL_EXIT)
|
||||
pos_trade = self._get_exit_for_signal(trade, row, exit_, amount)
|
||||
if pos_trade is not None:
|
||||
order = pos_trade.orders[-1]
|
||||
if self._get_order_filled(order.price, row):
|
||||
@@ -569,12 +575,7 @@ class Backtesting:
|
||||
|
||||
# Check if we need to adjust our current positions
|
||||
if self.strategy.position_adjustment_enable:
|
||||
check_adjust_entry = True
|
||||
if self.strategy.max_entry_position_adjustment > -1:
|
||||
entry_count = trade.nr_of_successful_entries
|
||||
check_adjust_entry = (entry_count <= self.strategy.max_entry_position_adjustment)
|
||||
if check_adjust_entry:
|
||||
trade = self._get_adjust_trade_entry_for_candle(trade, row)
|
||||
trade = self._get_adjust_trade_entry_for_candle(trade, row)
|
||||
|
||||
enter = row[SHORT_IDX] if trade.is_short else row[LONG_IDX]
|
||||
exit_sig = row[ESHORT_IDX] if trade.is_short else row[ELONG_IDX]
|
||||
@@ -589,14 +590,15 @@ class Backtesting:
|
||||
return t
|
||||
return None
|
||||
|
||||
def _get_exit_for_signal(self, trade: LocalTrade, row: Tuple,
|
||||
exit_: ExitCheckTuple) -> Optional[LocalTrade]:
|
||||
def _get_exit_for_signal(
|
||||
self, trade: LocalTrade, row: Tuple, exit_: ExitCheckTuple,
|
||||
amount: Optional[float] = None) -> Optional[LocalTrade]:
|
||||
|
||||
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
|
||||
if exit_.exit_flag:
|
||||
trade.close_date = exit_candle_time
|
||||
exit_reason = exit_.exit_reason
|
||||
|
||||
amount_ = amount if amount is not None else trade.amount
|
||||
trade_dur = int((trade.close_date_utc - trade.open_date_utc).total_seconds() // 60)
|
||||
try:
|
||||
close_rate = self._get_close_rate(row, trade, exit_, trade_dur)
|
||||
@@ -605,7 +607,8 @@ class Backtesting:
|
||||
# call the custom exit price,with default value as previous close_rate
|
||||
current_profit = trade.calc_profit_ratio(close_rate)
|
||||
order_type = self.strategy.order_types['exit']
|
||||
if exit_.exit_type in (ExitType.EXIT_SIGNAL, ExitType.CUSTOM_EXIT):
|
||||
if exit_.exit_type in (ExitType.EXIT_SIGNAL, ExitType.CUSTOM_EXIT,
|
||||
ExitType.PARTIAL_EXIT):
|
||||
# Checks and adds an exit tag, after checking that the length of the
|
||||
# row has the length for an exit tag column
|
||||
if (
|
||||
@@ -633,22 +636,23 @@ class Backtesting:
|
||||
# Confirm trade exit:
|
||||
time_in_force = self.strategy.order_time_in_force['exit']
|
||||
|
||||
if (exit_.exit_type != ExitType.LIQUIDATION and not strategy_safe_wrapper(
|
||||
self.strategy.confirm_trade_exit, default_retval=True)(
|
||||
pair=trade.pair,
|
||||
trade=trade, # type: ignore[arg-type]
|
||||
order_type=order_type,
|
||||
amount=trade.amount,
|
||||
rate=close_rate,
|
||||
time_in_force=time_in_force,
|
||||
sell_reason=exit_reason, # deprecated
|
||||
exit_reason=exit_reason,
|
||||
current_time=exit_candle_time)):
|
||||
if (exit_.exit_type not in (ExitType.LIQUIDATION, ExitType.PARTIAL_EXIT)
|
||||
and not strategy_safe_wrapper(
|
||||
self.strategy.confirm_trade_exit, default_retval=True)(
|
||||
pair=trade.pair,
|
||||
trade=trade, # type: ignore[arg-type]
|
||||
order_type=order_type,
|
||||
amount=amount_,
|
||||
rate=close_rate,
|
||||
time_in_force=time_in_force,
|
||||
sell_reason=exit_reason, # deprecated
|
||||
exit_reason=exit_reason,
|
||||
current_time=exit_candle_time)):
|
||||
return None
|
||||
|
||||
trade.exit_reason = exit_reason
|
||||
|
||||
return self._exit_trade(trade, row, close_rate, trade.amount)
|
||||
return self._exit_trade(trade, row, close_rate, amount_)
|
||||
return None
|
||||
|
||||
def _exit_trade(self, trade: LocalTrade, sell_row: Tuple,
|
||||
@@ -656,7 +660,10 @@ class Backtesting:
|
||||
self.order_id_counter += 1
|
||||
exit_candle_time = sell_row[DATE_IDX].to_pydatetime()
|
||||
order_type = self.strategy.order_types['exit']
|
||||
amount = amount or trade.amount
|
||||
# amount = amount or trade.amount
|
||||
amount = amount_to_contract_precision(amount or trade.amount, trade.amount_precision,
|
||||
self.precision_mode, trade.contract_size)
|
||||
rate = price_to_precision(close_rate, trade.price_precision, self.precision_mode)
|
||||
order = Order(
|
||||
id=self.order_id_counter,
|
||||
ft_trade_id=trade.id,
|
||||
@@ -670,12 +677,12 @@ class Backtesting:
|
||||
side=trade.exit_side,
|
||||
order_type=order_type,
|
||||
status="open",
|
||||
price=close_rate,
|
||||
average=close_rate,
|
||||
price=rate,
|
||||
average=rate,
|
||||
amount=amount,
|
||||
filled=0,
|
||||
remaining=amount,
|
||||
cost=amount * close_rate,
|
||||
cost=amount * rate,
|
||||
)
|
||||
trade.orders.append(order)
|
||||
return trade
|
||||
@@ -821,7 +828,17 @@ class Backtesting:
|
||||
if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount):
|
||||
self.order_id_counter += 1
|
||||
base_currency = self.exchange.get_pair_base_currency(pair)
|
||||
amount = round((stake_amount / propose_rate) * leverage, 8)
|
||||
precision_price = self.exchange.get_precision_price(pair)
|
||||
propose_rate = price_to_precision(propose_rate, precision_price, self.precision_mode)
|
||||
amount_p = (stake_amount / propose_rate) * leverage
|
||||
|
||||
contract_size = self.exchange.get_contract_size(pair)
|
||||
precision_amount = self.exchange.get_precision_amount(pair)
|
||||
amount = amount_to_contract_precision(amount_p, precision_amount, self.precision_mode,
|
||||
contract_size)
|
||||
# Backcalculate actual stake amount.
|
||||
stake_amount = amount * propose_rate / leverage
|
||||
|
||||
is_short = (direction == 'short')
|
||||
# Necessary for Margin trading. Disabled until support is enabled.
|
||||
# interest_rate = self.exchange.get_interest_rate()
|
||||
@@ -850,9 +867,10 @@ class Backtesting:
|
||||
trading_mode=self.trading_mode,
|
||||
leverage=leverage,
|
||||
# interest_rate=interest_rate,
|
||||
amount_precision=self.exchange.get_precision_amount(pair),
|
||||
price_precision=self.exchange.get_precision_price(pair),
|
||||
amount_precision=precision_amount,
|
||||
price_precision=precision_price,
|
||||
precision_mode=self.precision_mode,
|
||||
contract_size=contract_size,
|
||||
orders=[],
|
||||
)
|
||||
|
||||
@@ -862,6 +880,7 @@ class Backtesting:
|
||||
pair=pair,
|
||||
open_rate=propose_rate,
|
||||
amount=amount,
|
||||
stake_amount=trade.stake_amount,
|
||||
leverage=leverage,
|
||||
is_short=is_short,
|
||||
))
|
||||
|
@@ -24,13 +24,15 @@ from pandas import DataFrame
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN
|
||||
from freqtrade.data.converter import trim_dataframes
|
||||
from freqtrade.data.history import get_timerange
|
||||
from freqtrade.enums import HyperoptState
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import deep_merge_dicts, file_dump_json, plural
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
|
||||
from freqtrade.optimize.hyperopt_auto import HyperOptAuto
|
||||
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools, hyperopt_serializer
|
||||
from freqtrade.optimize.hyperopt_tools import (HyperoptStateContainer, HyperoptTools,
|
||||
hyperopt_serializer)
|
||||
from freqtrade.optimize.optimize_reports import generate_strategy_stats
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver
|
||||
|
||||
@@ -74,10 +76,14 @@ class Hyperopt:
|
||||
self.dimensions: List[Dimension] = []
|
||||
|
||||
self.config = config
|
||||
self.min_date: datetime
|
||||
self.max_date: datetime
|
||||
|
||||
self.backtesting = Backtesting(self.config)
|
||||
self.pairlist = self.backtesting.pairlists.whitelist
|
||||
self.custom_hyperopt: HyperOptAuto
|
||||
self.analyze_per_epoch = self.config.get('analyze_per_epoch', False)
|
||||
HyperoptStateContainer.set_state(HyperoptState.STARTUP)
|
||||
|
||||
if not self.config.get('hyperopt'):
|
||||
self.custom_hyperopt = HyperOptAuto(self.config)
|
||||
@@ -290,6 +296,7 @@ class Hyperopt:
|
||||
Called once per epoch to optimize whatever is configured.
|
||||
Keep this function as optimized as possible!
|
||||
"""
|
||||
HyperoptStateContainer.set_state(HyperoptState.OPTIMIZE)
|
||||
backtest_start_time = datetime.now(timezone.utc)
|
||||
params_dict = self._get_params_dict(self.dimensions, raw_params)
|
||||
|
||||
@@ -321,6 +328,10 @@ class Hyperopt:
|
||||
|
||||
with self.data_pickle_file.open('rb') as f:
|
||||
processed = load(f, mmap_mode='r')
|
||||
if self.analyze_per_epoch:
|
||||
# Data is not yet analyzed, rerun populate_indicators.
|
||||
processed = self.advise_and_trim(processed)
|
||||
|
||||
bt_results = self.backtesting.backtest(
|
||||
processed=processed,
|
||||
start_date=self.min_date,
|
||||
@@ -406,22 +417,33 @@ class Hyperopt:
|
||||
def _set_random_state(self, random_state: Optional[int]) -> int:
|
||||
return random_state or random.randint(1, 2**16 - 1)
|
||||
|
||||
def prepare_hyperopt_data(self) -> None:
|
||||
data, timerange = self.backtesting.load_bt_data()
|
||||
self.backtesting.load_bt_data_detail()
|
||||
logger.info("Dataload complete. Calculating indicators")
|
||||
|
||||
def advise_and_trim(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
|
||||
preprocessed = self.backtesting.strategy.advise_all_indicators(data)
|
||||
|
||||
# Trim startup period from analyzed dataframe to get correct dates for output.
|
||||
processed = trim_dataframes(preprocessed, timerange, self.backtesting.required_startup)
|
||||
processed = trim_dataframes(preprocessed, self.timerange, self.backtesting.required_startup)
|
||||
self.min_date, self.max_date = get_timerange(processed)
|
||||
return processed
|
||||
|
||||
logger.info(f'Hyperopting with data from {self.min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(self.max_date - self.min_date).days} days)..')
|
||||
# Store non-trimmed data - will be trimmed after signal generation.
|
||||
dump(preprocessed, self.data_pickle_file)
|
||||
def prepare_hyperopt_data(self) -> None:
|
||||
HyperoptStateContainer.set_state(HyperoptState.DATALOAD)
|
||||
data, self.timerange = self.backtesting.load_bt_data()
|
||||
self.backtesting.load_bt_data_detail()
|
||||
logger.info("Dataload complete. Calculating indicators")
|
||||
|
||||
if not self.analyze_per_epoch:
|
||||
HyperoptStateContainer.set_state(HyperoptState.INDICATORS)
|
||||
|
||||
preprocessed = self.advise_and_trim(data)
|
||||
|
||||
logger.info(f'Hyperopting with data from '
|
||||
f'{self.min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(self.max_date - self.min_date).days} days)..')
|
||||
# Store non-trimmed data - will be trimmed after signal generation.
|
||||
dump(preprocessed, self.data_pickle_file)
|
||||
else:
|
||||
dump(data, self.data_pickle_file)
|
||||
|
||||
def get_asked_points(self, n_points: int) -> Tuple[List[List[Any]], List[bool]]:
|
||||
"""
|
||||
|
@@ -13,6 +13,7 @@ from colorama import Fore, Style
|
||||
from pandas import isna, json_normalize
|
||||
|
||||
from freqtrade.constants import FTHYPT_FILEVERSION, USERPATH_STRATEGIES
|
||||
from freqtrade.enums import HyperoptState
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import deep_merge_dicts, round_coin_value, round_dict, safe_value_fallback2
|
||||
from freqtrade.optimize.hyperopt_epoch_filters import hyperopt_filter_epochs
|
||||
@@ -32,6 +33,15 @@ def hyperopt_serializer(x):
|
||||
return str(x)
|
||||
|
||||
|
||||
class HyperoptStateContainer():
|
||||
""" Singleton class to track state of hyperopt"""
|
||||
state: HyperoptState = HyperoptState.OPTIMIZE
|
||||
|
||||
@classmethod
|
||||
def set_state(cls, value: HyperoptState):
|
||||
cls.state = value
|
||||
|
||||
|
||||
class HyperoptTools():
|
||||
|
||||
@staticmethod
|
||||
|
@@ -133,6 +133,7 @@ def migrate_trades_and_orders_table(
|
||||
amount_precision = get_column_def(cols, 'amount_precision', 'null')
|
||||
price_precision = get_column_def(cols, 'price_precision', 'null')
|
||||
precision_mode = get_column_def(cols, 'precision_mode', 'null')
|
||||
contract_size = get_column_def(cols, 'contract_size', 'null')
|
||||
|
||||
# Schema migration necessary
|
||||
with engine.begin() as connection:
|
||||
@@ -161,7 +162,7 @@ def migrate_trades_and_orders_table(
|
||||
timeframe, open_trade_value, close_profit_abs,
|
||||
trading_mode, leverage, liquidation_price, is_short,
|
||||
interest_rate, funding_fees, realized_profit,
|
||||
amount_precision, price_precision, precision_mode
|
||||
amount_precision, price_precision, precision_mode, contract_size
|
||||
)
|
||||
select id, lower(exchange), pair, {base_currency} base_currency,
|
||||
{stake_currency} stake_currency,
|
||||
@@ -189,7 +190,7 @@ def migrate_trades_and_orders_table(
|
||||
{is_short} is_short, {interest_rate} interest_rate,
|
||||
{funding_fees} funding_fees, {realized_profit} realized_profit,
|
||||
{amount_precision} amount_precision, {price_precision} price_precision,
|
||||
{precision_mode} precision_mode
|
||||
{precision_mode} precision_mode, {contract_size} contract_size
|
||||
from {trade_back_name}
|
||||
"""))
|
||||
|
||||
@@ -308,7 +309,7 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
|
||||
# if ('orders' not in previous_tables
|
||||
# or not has_column(cols_orders, 'stop_price')):
|
||||
migrating = False
|
||||
if not has_column(cols_trades, 'precision_mode'):
|
||||
if not has_column(cols_trades, 'contract_size'):
|
||||
migrating = True
|
||||
logger.info(f"Running database migration for trades - "
|
||||
f"backup: {table_back_name}, {order_table_bak_name}")
|
||||
|
@@ -14,7 +14,7 @@ from freqtrade.constants import (DATETIME_PRINT_FORMAT, MATH_CLOSE_PREC, NON_OPE
|
||||
BuySell, LongShort)
|
||||
from freqtrade.enums import ExitType, TradingMode
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.exchange import amount_to_precision, price_to_precision
|
||||
from freqtrade.exchange import amount_to_contract_precision, price_to_precision
|
||||
from freqtrade.leverage import interest
|
||||
from freqtrade.persistence.base import _DECL_BASE
|
||||
from freqtrade.util import FtPrecise
|
||||
@@ -296,6 +296,7 @@ class LocalTrade():
|
||||
amount_precision: Optional[float] = None
|
||||
price_precision: Optional[float] = None
|
||||
precision_mode: Optional[int] = None
|
||||
contract_size: Optional[float] = None
|
||||
|
||||
# Leverage trading properties
|
||||
liquidation_price: Optional[float] = None
|
||||
@@ -623,7 +624,8 @@ class LocalTrade():
|
||||
else:
|
||||
logger.warning(
|
||||
f'Got different open_order_id {self.open_order_id} != {order.order_id}')
|
||||
amount_tr = amount_to_precision(self.amount, self.amount_precision, self.precision_mode)
|
||||
amount_tr = amount_to_contract_precision(self.amount, self.amount_precision,
|
||||
self.precision_mode, self.contract_size)
|
||||
if isclose(order.safe_amount_after_fee, amount_tr, abs_tol=MATH_CLOSE_PREC):
|
||||
self.close(order.safe_price)
|
||||
else:
|
||||
@@ -841,7 +843,7 @@ class LocalTrade():
|
||||
avg_price = FtPrecise(0.0)
|
||||
close_profit = 0.0
|
||||
close_profit_abs = 0.0
|
||||
|
||||
profit = None
|
||||
for o in self.orders:
|
||||
if o.ft_is_open or not o.filled:
|
||||
continue
|
||||
@@ -868,8 +870,6 @@ class LocalTrade():
|
||||
close_profit_abs += profit
|
||||
close_profit = self.calc_profit_ratio(
|
||||
exit_rate, amount=exit_amount, open_rate=avg_price)
|
||||
if current_amount <= ZERO:
|
||||
profit = close_profit_abs
|
||||
else:
|
||||
total_stake = total_stake + self._calc_open_trade_value(tmp_amount, price)
|
||||
|
||||
@@ -878,8 +878,8 @@ class LocalTrade():
|
||||
self.realized_profit = close_profit_abs
|
||||
self.close_profit_abs = profit
|
||||
|
||||
current_amount_tr = amount_to_precision(float(current_amount),
|
||||
self.amount_precision, self.precision_mode)
|
||||
current_amount_tr = amount_to_contract_precision(
|
||||
float(current_amount), self.amount_precision, self.precision_mode, self.contract_size)
|
||||
if current_amount_tr > 0.0:
|
||||
# Trade is still open
|
||||
# Leverage not updated, as we don't allow changing leverage through DCA at the moment.
|
||||
@@ -894,6 +894,7 @@ class LocalTrade():
|
||||
# Close profit abs / maximum owned
|
||||
# Fees are considered as they are part of close_profit_abs
|
||||
self.close_profit = (close_profit_abs / total_stake) * self.leverage
|
||||
self.close_profit_abs = close_profit_abs
|
||||
|
||||
def select_order_by_order_id(self, order_id: str) -> Optional[Order]:
|
||||
"""
|
||||
@@ -1044,6 +1045,16 @@ class LocalTrade():
|
||||
"""
|
||||
return Trade.get_trades_proxy(is_open=True)
|
||||
|
||||
@staticmethod
|
||||
def get_open_trade_count() -> int:
|
||||
"""
|
||||
get open trade count
|
||||
"""
|
||||
if Trade.use_db:
|
||||
return Trade.query.filter(Trade.is_open.is_(True)).count()
|
||||
else:
|
||||
return len(LocalTrade.trades_open)
|
||||
|
||||
@staticmethod
|
||||
def stoploss_reinitialization(desired_stoploss):
|
||||
"""
|
||||
@@ -1132,6 +1143,7 @@ class Trade(_DECL_BASE, LocalTrade):
|
||||
amount_precision = Column(Float, nullable=True)
|
||||
price_precision = Column(Float, nullable=True)
|
||||
precision_mode = Column(Integer, nullable=True)
|
||||
contract_size = Column(Float, nullable=True)
|
||||
|
||||
# Leverage trading properties
|
||||
leverage = Column(Float, nullable=True, default=1.0)
|
||||
|
@@ -73,7 +73,7 @@ class VolumePairList(IPairList):
|
||||
|
||||
if (not self._use_range and not (
|
||||
self._exchange.exchange_has('fetchTickers')
|
||||
and self._exchange._ft_has["tickers_have_quoteVolume"])):
|
||||
and self._exchange.get_option("tickers_have_quoteVolume"))):
|
||||
raise OperationalException(
|
||||
"Exchange does not support dynamic whitelist in this configuration. "
|
||||
"Please edit your config and either remove Volumepairlist, "
|
||||
@@ -193,7 +193,7 @@ class VolumePairList(IPairList):
|
||||
) in candles else None
|
||||
# in case of candle data calculate typical price and quoteVolume for candle
|
||||
if pair_candles is not None and not pair_candles.empty:
|
||||
if self._exchange._ft_has["ohlcv_volume_currency"] == "base":
|
||||
if self._exchange.get_option("ohlcv_volume_currency") == "base":
|
||||
pair_candles['typical_price'] = (pair_candles['high'] + pair_candles['low']
|
||||
+ pair_candles['close']) / 3
|
||||
|
||||
|
@@ -193,7 +193,10 @@ class IResolver:
|
||||
:return: List of dicts containing 'name', 'class' and 'location' entries
|
||||
"""
|
||||
logger.debug(f"Searching for {cls.object_type.__name__} '{directory}'")
|
||||
objects = []
|
||||
objects: List[Dict[str, Any]] = []
|
||||
if not directory.is_dir():
|
||||
logger.info(f"'{directory}' is not a directory, skipping.")
|
||||
return objects
|
||||
for entry in directory.iterdir():
|
||||
if (
|
||||
recursive and entry.is_dir()
|
||||
|
@@ -216,9 +216,10 @@ def stop(rpc: RPC = Depends(get_rpc)):
|
||||
return rpc._rpc_stop()
|
||||
|
||||
|
||||
@router.post('/stopentry', response_model=StatusMsg, tags=['botcontrol'])
|
||||
@router.post('/stopbuy', response_model=StatusMsg, tags=['botcontrol'])
|
||||
def stop_buy(rpc: RPC = Depends(get_rpc)):
|
||||
return rpc._rpc_stopbuy()
|
||||
return rpc._rpc_stopentry()
|
||||
|
||||
|
||||
@router.post('/reload_config', response_model=StatusMsg, tags=['botcontrol'])
|
||||
|
@@ -657,7 +657,7 @@ class RPC:
|
||||
self._freqtrade.state = State.RELOAD_CONFIG
|
||||
return {'status': 'Reloading config ...'}
|
||||
|
||||
def _rpc_stopbuy(self) -> Dict[str, str]:
|
||||
def _rpc_stopentry(self) -> Dict[str, str]:
|
||||
"""
|
||||
Handler to stop buying, but handle open trades gracefully.
|
||||
"""
|
||||
@@ -665,7 +665,7 @@ class RPC:
|
||||
# Set 'max_open_trades' to 0
|
||||
self._freqtrade.config['max_open_trades'] = 0
|
||||
|
||||
return {'status': 'No more buy will occur from now. Run /reload_config to reset.'}
|
||||
return {'status': 'No more entries will occur from now. Run /reload_config to reset.'}
|
||||
|
||||
def __exec_force_exit(self, trade: Trade, ordertype: Optional[str],
|
||||
amount: Optional[float] = None) -> None:
|
||||
|
@@ -114,18 +114,20 @@ class Telegram(RPCHandler):
|
||||
# TODO: DRY! - its not good to list all valid cmds here. But otherwise
|
||||
# this needs refactoring of the whole telegram module (same
|
||||
# problem in _help()).
|
||||
valid_keys: List[str] = [r'/start$', r'/stop$', r'/status$', r'/status table$',
|
||||
r'/trades$', r'/performance$', r'/buys', r'/entries',
|
||||
r'/sells', r'/exits', r'/mix_tags',
|
||||
r'/daily$', r'/daily \d+$', r'/profit$', r'/profit \d+',
|
||||
r'/stats$', r'/count$', r'/locks$', r'/balance$',
|
||||
r'/stopbuy$', r'/reload_config$', r'/show_config$',
|
||||
r'/logs$', r'/whitelist$', r'/whitelist(\ssorted|\sbaseonly)+$',
|
||||
r'/blacklist$', r'/bl_delete$',
|
||||
r'/weekly$', r'/weekly \d+$', r'/monthly$', r'/monthly \d+$',
|
||||
r'/forcebuy$', r'/forcelong$', r'/forceshort$',
|
||||
r'/forcesell$', r'/forceexit$',
|
||||
r'/edge$', r'/health$', r'/help$', r'/version$']
|
||||
valid_keys: List[str] = [
|
||||
r'/start$', r'/stop$', r'/status$', r'/status table$',
|
||||
r'/trades$', r'/performance$', r'/buys', r'/entries',
|
||||
r'/sells', r'/exits', r'/mix_tags',
|
||||
r'/daily$', r'/daily \d+$', r'/profit$', r'/profit \d+',
|
||||
r'/stats$', r'/count$', r'/locks$', r'/balance$',
|
||||
r'/stopbuy$', r'/stopentry$', r'/reload_config$', r'/show_config$',
|
||||
r'/logs$', r'/whitelist$', r'/whitelist(\ssorted|\sbaseonly)+$',
|
||||
r'/blacklist$', r'/bl_delete$',
|
||||
r'/weekly$', r'/weekly \d+$', r'/monthly$', r'/monthly \d+$',
|
||||
r'/forcebuy$', r'/forcelong$', r'/forceshort$',
|
||||
r'/forcesell$', r'/forceexit$',
|
||||
r'/edge$', r'/health$', r'/help$', r'/version$'
|
||||
]
|
||||
# Create keys for generation
|
||||
valid_keys_print = [k.replace('$', '') for k in valid_keys]
|
||||
|
||||
@@ -182,7 +184,7 @@ class Telegram(RPCHandler):
|
||||
CommandHandler(['unlock', 'delete_locks'], self._delete_locks),
|
||||
CommandHandler(['reload_config', 'reload_conf'], self._reload_config),
|
||||
CommandHandler(['show_config', 'show_conf'], self._show_config),
|
||||
CommandHandler('stopbuy', self._stopbuy),
|
||||
CommandHandler(['stopbuy', 'stopentry'], self._stopentry),
|
||||
CommandHandler('whitelist', self._whitelist),
|
||||
CommandHandler('blacklist', self._blacklist),
|
||||
CommandHandler(['blacklist_delete', 'bl_delete'], self._blacklist_delete),
|
||||
@@ -984,7 +986,7 @@ class Telegram(RPCHandler):
|
||||
self._send_msg(f"Status: `{msg['status']}`")
|
||||
|
||||
@authorized_only
|
||||
def _stopbuy(self, update: Update, context: CallbackContext) -> None:
|
||||
def _stopentry(self, update: Update, context: CallbackContext) -> None:
|
||||
"""
|
||||
Handler for /stop_buy.
|
||||
Sets max_open_trades to 0 and gracefully sells all open trades
|
||||
@@ -992,7 +994,7 @@ class Telegram(RPCHandler):
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
msg = self._rpc._rpc_stopbuy()
|
||||
msg = self._rpc._rpc_stopentry()
|
||||
self._send_msg(f"Status: `{msg['status']}`")
|
||||
|
||||
@authorized_only
|
||||
@@ -1488,7 +1490,7 @@ class Telegram(RPCHandler):
|
||||
"------------\n"
|
||||
"*/start:* `Starts the trader`\n"
|
||||
"*/stop:* Stops the trader\n"
|
||||
"*/stopbuy:* `Stops buying, but handles open trades gracefully` \n"
|
||||
"*/stopentry:* `Stops entering, but handles open trades gracefully` \n"
|
||||
"*/forceexit <trade_id>|all:* `Instantly exits the given trade or all trades, "
|
||||
"regardless of profit`\n"
|
||||
"*/fx <trade_id>|all:* `Alias to /forceexit`\n"
|
||||
|
@@ -7,6 +7,9 @@ from abc import ABC, abstractmethod
|
||||
from contextlib import suppress
|
||||
from typing import Any, Optional, Sequence, Union
|
||||
|
||||
from freqtrade.enums.hyperoptstate import HyperoptState
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptStateContainer
|
||||
|
||||
|
||||
with suppress(ImportError):
|
||||
from skopt.space import Integer, Real, Categorical
|
||||
@@ -57,6 +60,13 @@ class BaseParameter(ABC):
|
||||
Get-space - will be used by Hyperopt to get the hyperopt Space
|
||||
"""
|
||||
|
||||
def can_optimize(self):
|
||||
return (
|
||||
self.in_space
|
||||
and self.optimize
|
||||
and HyperoptStateContainer.state != HyperoptState.OPTIMIZE
|
||||
)
|
||||
|
||||
|
||||
class NumericParameter(BaseParameter):
|
||||
""" Internal parameter used for Numeric purposes """
|
||||
@@ -133,7 +143,7 @@ class IntParameter(NumericParameter):
|
||||
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
|
||||
calculating 100ds of indicators.
|
||||
"""
|
||||
if self.in_space and self.optimize:
|
||||
if self.can_optimize():
|
||||
# Scikit-optimize ranges are "inclusive", while python's "range" is exclusive
|
||||
return range(self.low, self.high + 1)
|
||||
else:
|
||||
@@ -212,7 +222,7 @@ class DecimalParameter(NumericParameter):
|
||||
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
|
||||
calculating 100ds of indicators.
|
||||
"""
|
||||
if self.in_space and self.optimize:
|
||||
if self.can_optimize():
|
||||
low = int(self.low * pow(10, self._decimals))
|
||||
high = int(self.high * pow(10, self._decimals)) + 1
|
||||
return [round(n * pow(0.1, self._decimals), self._decimals) for n in range(low, high)]
|
||||
@@ -261,7 +271,7 @@ class CategoricalParameter(BaseParameter):
|
||||
Returns a List with 1 item (`value`) in "non-hyperopt" mode, to avoid
|
||||
calculating 100ds of indicators.
|
||||
"""
|
||||
if self.in_space and self.optimize:
|
||||
if self.can_optimize():
|
||||
return self.opt_range
|
||||
else:
|
||||
return [self.value]
|
||||
|
@@ -17,7 +17,7 @@ pytest-mock==3.8.2
|
||||
pytest-random-order==1.0.4
|
||||
isort==5.10.1
|
||||
# For datetime mocking
|
||||
time-machine==2.7.1
|
||||
time-machine==2.8.1
|
||||
|
||||
# Convert jupyter notebooks to markdown documents
|
||||
nbconvert==6.5.3
|
||||
@@ -25,6 +25,6 @@ nbconvert==6.5.3
|
||||
# mypy types
|
||||
types-cachetools==5.2.1
|
||||
types-filelock==3.2.7
|
||||
types-requests==2.28.8
|
||||
types-requests==2.28.9
|
||||
types-tabulate==0.8.11
|
||||
types-python-dateutil==2.8.19
|
||||
|
@@ -2,7 +2,7 @@ numpy==1.23.2
|
||||
pandas==1.4.3
|
||||
pandas-ta==0.3.14b
|
||||
|
||||
ccxt==1.92.20
|
||||
ccxt==1.92.52
|
||||
# Pin cryptography for now due to rust build errors with piwheels
|
||||
cryptography==37.0.4
|
||||
aiohttp==3.8.1
|
||||
@@ -12,7 +12,7 @@ arrow==1.2.2
|
||||
cachetools==4.2.2
|
||||
requests==2.28.1
|
||||
urllib3==1.26.11
|
||||
jsonschema==4.9.1
|
||||
jsonschema==4.14.0
|
||||
TA-Lib==0.4.24
|
||||
technical==1.3.0
|
||||
tabulate==0.8.10
|
||||
@@ -34,7 +34,7 @@ orjson==3.7.12
|
||||
sdnotify==0.3.2
|
||||
|
||||
# API Server
|
||||
fastapi==0.79.0
|
||||
fastapi==0.79.1
|
||||
uvicorn==0.18.2
|
||||
pyjwt==2.4.0
|
||||
aiofiles==0.8.0
|
||||
|
@@ -361,6 +361,13 @@ class FtRestClient():
|
||||
"""
|
||||
return self._get("sysinfo")
|
||||
|
||||
def health(self):
|
||||
"""Provides a quick health check of the running bot.
|
||||
|
||||
:return: json object
|
||||
"""
|
||||
return self._get("health")
|
||||
|
||||
|
||||
def add_arguments():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
@@ -1430,6 +1430,27 @@ def test_start_list_data(testdatadir, capsys):
|
||||
assert "\n| XRP/USDT | 1h | futures |\n" in captured.out
|
||||
assert "\n| XRP/USDT | 1h, 8h | mark |\n" in captured.out
|
||||
|
||||
args = [
|
||||
"list-data",
|
||||
"--data-format-ohlcv",
|
||||
"json",
|
||||
"--pairs", "XRP/ETH",
|
||||
"--datadir",
|
||||
str(testdatadir),
|
||||
"--show-timerange",
|
||||
]
|
||||
pargs = get_args(args)
|
||||
pargs['config'] = None
|
||||
start_list_data(pargs)
|
||||
captured = capsys.readouterr()
|
||||
assert "Found 2 pair / timeframe combinations." in captured.out
|
||||
assert ("\n| Pair | Timeframe | Type | From | To |\n"
|
||||
in captured.out)
|
||||
assert "UNITTEST/BTC" not in captured.out
|
||||
assert (
|
||||
"\n| XRP/ETH | 1m | spot | 2019-10-11 00:00:00 | 2019-10-13 11:19:00 |\n"
|
||||
in captured.out)
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("init_persistence")
|
||||
def test_show_trades(mocker, fee, capsys, caplog):
|
||||
|
@@ -3085,416 +3085,416 @@ def leverage_tiers():
|
||||
return {
|
||||
"1000SHIB/USDT": [
|
||||
{
|
||||
'min': 0,
|
||||
'max': 50000,
|
||||
'mmr': 0.01,
|
||||
'lev': 50,
|
||||
'minNotional': 0,
|
||||
'maxNotional': 50000,
|
||||
'maintenanceMarginRate': 0.01,
|
||||
'maxLeverage': 50,
|
||||
'maintAmt': 0.0
|
||||
},
|
||||
{
|
||||
'min': 50000,
|
||||
'max': 150000,
|
||||
'mmr': 0.025,
|
||||
'lev': 20,
|
||||
'minNotional': 50000,
|
||||
'maxNotional': 150000,
|
||||
'maintenanceMarginRate': 0.025,
|
||||
'maxLeverage': 20,
|
||||
'maintAmt': 750.0
|
||||
},
|
||||
{
|
||||
'min': 150000,
|
||||
'max': 250000,
|
||||
'mmr': 0.05,
|
||||
'lev': 10,
|
||||
'minNotional': 150000,
|
||||
'maxNotional': 250000,
|
||||
'maintenanceMarginRate': 0.05,
|
||||
'maxLeverage': 10,
|
||||
'maintAmt': 4500.0
|
||||
},
|
||||
{
|
||||
'min': 250000,
|
||||
'max': 500000,
|
||||
'mmr': 0.1,
|
||||
'lev': 5,
|
||||
'minNotional': 250000,
|
||||
'maxNotional': 500000,
|
||||
'maintenanceMarginRate': 0.1,
|
||||
'maxLeverage': 5,
|
||||
'maintAmt': 17000.0
|
||||
},
|
||||
{
|
||||
'min': 500000,
|
||||
'max': 1000000,
|
||||
'mmr': 0.125,
|
||||
'lev': 4,
|
||||
'minNotional': 500000,
|
||||
'maxNotional': 1000000,
|
||||
'maintenanceMarginRate': 0.125,
|
||||
'maxLeverage': 4,
|
||||
'maintAmt': 29500.0
|
||||
},
|
||||
{
|
||||
'min': 1000000,
|
||||
'max': 2000000,
|
||||
'mmr': 0.25,
|
||||
'lev': 2,
|
||||
'minNotional': 1000000,
|
||||
'maxNotional': 2000000,
|
||||
'maintenanceMarginRate': 0.25,
|
||||
'maxLeverage': 2,
|
||||
'maintAmt': 154500.0
|
||||
},
|
||||
{
|
||||
'min': 2000000,
|
||||
'max': 30000000,
|
||||
'mmr': 0.5,
|
||||
'lev': 1,
|
||||
'minNotional': 2000000,
|
||||
'maxNotional': 30000000,
|
||||
'maintenanceMarginRate': 0.5,
|
||||
'maxLeverage': 1,
|
||||
'maintAmt': 654500.0
|
||||
},
|
||||
],
|
||||
"1INCH/USDT": [
|
||||
{
|
||||
'min': 0,
|
||||
'max': 5000,
|
||||
'mmr': 0.012,
|
||||
'lev': 50,
|
||||
'minNotional': 0,
|
||||
'maxNotional': 5000,
|
||||
'maintenanceMarginRate': 0.012,
|
||||
'maxLeverage': 50,
|
||||
'maintAmt': 0.0
|
||||
},
|
||||
{
|
||||
'min': 5000,
|
||||
'max': 25000,
|
||||
'mmr': 0.025,
|
||||
'lev': 20,
|
||||
'minNotional': 5000,
|
||||
'maxNotional': 25000,
|
||||
'maintenanceMarginRate': 0.025,
|
||||
'maxLeverage': 20,
|
||||
'maintAmt': 65.0
|
||||
},
|
||||
{
|
||||
'min': 25000,
|
||||
'max': 100000,
|
||||
'mmr': 0.05,
|
||||
'lev': 10,
|
||||
'minNotional': 25000,
|
||||
'maxNotional': 100000,
|
||||
'maintenanceMarginRate': 0.05,
|
||||
'maxLeverage': 10,
|
||||
'maintAmt': 690.0
|
||||
},
|
||||
{
|
||||
'min': 100000,
|
||||
'max': 250000,
|
||||
'mmr': 0.1,
|
||||
'lev': 5,
|
||||
'minNotional': 100000,
|
||||
'maxNotional': 250000,
|
||||
'maintenanceMarginRate': 0.1,
|
||||
'maxLeverage': 5,
|
||||
'maintAmt': 5690.0
|
||||
},
|
||||
{
|
||||
'min': 250000,
|
||||
'max': 1000000,
|
||||
'mmr': 0.125,
|
||||
'lev': 2,
|
||||
'minNotional': 250000,
|
||||
'maxNotional': 1000000,
|
||||
'maintenanceMarginRate': 0.125,
|
||||
'maxLeverage': 2,
|
||||
'maintAmt': 11940.0
|
||||
},
|
||||
{
|
||||
'min': 1000000,
|
||||
'max': 100000000,
|
||||
'mmr': 0.5,
|
||||
'lev': 1,
|
||||
'minNotional': 1000000,
|
||||
'maxNotional': 100000000,
|
||||
'maintenanceMarginRate': 0.5,
|
||||
'maxLeverage': 1,
|
||||
'maintAmt': 386940.0
|
||||
},
|
||||
],
|
||||
"AAVE/USDT": [
|
||||
{
|
||||
'min': 0,
|
||||
'max': 5000,
|
||||
'mmr': 0.01,
|
||||
'lev': 50,
|
||||
'minNotional': 0,
|
||||
'maxNotional': 5000,
|
||||
'maintenanceMarginRate': 0.01,
|
||||
'maxLeverage': 50,
|
||||
'maintAmt': 0.0
|
||||
},
|
||||
{
|
||||
'min': 5000,
|
||||
'max': 25000,
|
||||
'mmr': 0.02,
|
||||
'lev': 25,
|
||||
'minNotional': 5000,
|
||||
'maxNotional': 25000,
|
||||
'maintenanceMarginRate': 0.02,
|
||||
'maxLeverage': 25,
|
||||
'maintAmt': 75.0
|
||||
},
|
||||
{
|
||||
'min': 25000,
|
||||
'max': 100000,
|
||||
'mmr': 0.05,
|
||||
'lev': 10,
|
||||
'minNotional': 25000,
|
||||
'maxNotional': 100000,
|
||||
'maintenanceMarginRate': 0.05,
|
||||
'maxLeverage': 10,
|
||||
'maintAmt': 700.0
|
||||
},
|
||||
{
|
||||
'min': 100000,
|
||||
'max': 250000,
|
||||
'mmr': 0.1,
|
||||
'lev': 5,
|
||||
'minNotional': 100000,
|
||||
'maxNotional': 250000,
|
||||
'maintenanceMarginRate': 0.1,
|
||||
'maxLeverage': 5,
|
||||
'maintAmt': 5700.0
|
||||
},
|
||||
{
|
||||
'min': 250000,
|
||||
'max': 1000000,
|
||||
'mmr': 0.125,
|
||||
'lev': 2,
|
||||
'minNotional': 250000,
|
||||
'maxNotional': 1000000,
|
||||
'maintenanceMarginRate': 0.125,
|
||||
'maxLeverage': 2,
|
||||
'maintAmt': 11950.0
|
||||
},
|
||||
{
|
||||
'min': 10000000,
|
||||
'max': 50000000,
|
||||
'mmr': 0.5,
|
||||
'lev': 1,
|
||||
'minNotional': 10000000,
|
||||
'maxNotional': 50000000,
|
||||
'maintenanceMarginRate': 0.5,
|
||||
'maxLeverage': 1,
|
||||
'maintAmt': 386950.0
|
||||
},
|
||||
],
|
||||
"ADA/BUSD": [
|
||||
{
|
||||
"min": 0,
|
||||
"max": 100000,
|
||||
"mmr": 0.025,
|
||||
"lev": 20,
|
||||
"minNotional": 0,
|
||||
"maxNotional": 100000,
|
||||
"maintenanceMarginRate": 0.025,
|
||||
"maxLeverage": 20,
|
||||
"maintAmt": 0.0
|
||||
},
|
||||
{
|
||||
"min": 100000,
|
||||
"max": 500000,
|
||||
"mmr": 0.05,
|
||||
"lev": 10,
|
||||
"minNotional": 100000,
|
||||
"maxNotional": 500000,
|
||||
"maintenanceMarginRate": 0.05,
|
||||
"maxLeverage": 10,
|
||||
"maintAmt": 2500.0
|
||||
},
|
||||
{
|
||||
"min": 500000,
|
||||
"max": 1000000,
|
||||
"mmr": 0.1,
|
||||
"lev": 5,
|
||||
"minNotional": 500000,
|
||||
"maxNotional": 1000000,
|
||||
"maintenanceMarginRate": 0.1,
|
||||
"maxLeverage": 5,
|
||||
"maintAmt": 27500.0
|
||||
},
|
||||
{
|
||||
"min": 1000000,
|
||||
"max": 2000000,
|
||||
"mmr": 0.15,
|
||||
"lev": 3,
|
||||
"minNotional": 1000000,
|
||||
"maxNotional": 2000000,
|
||||
"maintenanceMarginRate": 0.15,
|
||||
"maxLeverage": 3,
|
||||
"maintAmt": 77500.0
|
||||
},
|
||||
{
|
||||
"min": 2000000,
|
||||
"max": 5000000,
|
||||
"mmr": 0.25,
|
||||
"lev": 2,
|
||||
"minNotional": 2000000,
|
||||
"maxNotional": 5000000,
|
||||
"maintenanceMarginRate": 0.25,
|
||||
"maxLeverage": 2,
|
||||
"maintAmt": 277500.0
|
||||
},
|
||||
{
|
||||
"min": 5000000,
|
||||
"max": 30000000,
|
||||
"mmr": 0.5,
|
||||
"lev": 1,
|
||||
"minNotional": 5000000,
|
||||
"maxNotional": 30000000,
|
||||
"maintenanceMarginRate": 0.5,
|
||||
"maxLeverage": 1,
|
||||
"maintAmt": 1527500.0
|
||||
},
|
||||
],
|
||||
'BNB/BUSD': [
|
||||
{
|
||||
"min": 0, # stake(before leverage) = 0
|
||||
"max": 100000, # max stake(before leverage) = 5000
|
||||
"mmr": 0.025,
|
||||
"lev": 20,
|
||||
"minNotional": 0, # stake(before leverage) = 0
|
||||
"maxNotional": 100000, # max stake(before leverage) = 5000
|
||||
"maintenanceMarginRate": 0.025,
|
||||
"maxLeverage": 20,
|
||||
"maintAmt": 0.0
|
||||
},
|
||||
{
|
||||
"min": 100000, # stake = 10000.0
|
||||
"max": 500000, # max_stake = 50000.0
|
||||
"mmr": 0.05,
|
||||
"lev": 10,
|
||||
"minNotional": 100000, # stake = 10000.0
|
||||
"maxNotional": 500000, # max_stake = 50000.0
|
||||
"maintenanceMarginRate": 0.05,
|
||||
"maxLeverage": 10,
|
||||
"maintAmt": 2500.0
|
||||
},
|
||||
{
|
||||
"min": 500000, # stake = 100000.0
|
||||
"max": 1000000, # max_stake = 200000.0
|
||||
"mmr": 0.1,
|
||||
"lev": 5,
|
||||
"minNotional": 500000, # stake = 100000.0
|
||||
"maxNotional": 1000000, # max_stake = 200000.0
|
||||
"maintenanceMarginRate": 0.1,
|
||||
"maxLeverage": 5,
|
||||
"maintAmt": 27500.0
|
||||
},
|
||||
{
|
||||
"min": 1000000, # stake = 333333.3333333333
|
||||
"max": 2000000, # max_stake = 666666.6666666666
|
||||
"mmr": 0.15,
|
||||
"lev": 3,
|
||||
"minNotional": 1000000, # stake = 333333.3333333333
|
||||
"maxNotional": 2000000, # max_stake = 666666.6666666666
|
||||
"maintenanceMarginRate": 0.15,
|
||||
"maxLeverage": 3,
|
||||
"maintAmt": 77500.0
|
||||
},
|
||||
{
|
||||
"min": 2000000, # stake = 1000000.0
|
||||
"max": 5000000, # max_stake = 2500000.0
|
||||
"mmr": 0.25,
|
||||
"lev": 2,
|
||||
"minNotional": 2000000, # stake = 1000000.0
|
||||
"maxNotional": 5000000, # max_stake = 2500000.0
|
||||
"maintenanceMarginRate": 0.25,
|
||||
"maxLeverage": 2,
|
||||
"maintAmt": 277500.0
|
||||
},
|
||||
{
|
||||
"min": 5000000, # stake = 5000000.0
|
||||
"max": 30000000, # max_stake = 30000000.0
|
||||
"mmr": 0.5,
|
||||
"lev": 1,
|
||||
"minNotional": 5000000, # stake = 5000000.0
|
||||
"maxNotional": 30000000, # max_stake = 30000000.0
|
||||
"maintenanceMarginRate": 0.5,
|
||||
"maxLeverage": 1,
|
||||
"maintAmt": 1527500.0
|
||||
}
|
||||
],
|
||||
'BNB/USDT': [
|
||||
{
|
||||
"min": 0, # stake = 0.0
|
||||
"max": 10000, # max_stake = 133.33333333333334
|
||||
"mmr": 0.0065,
|
||||
"lev": 75,
|
||||
"minNotional": 0, # stake = 0.0
|
||||
"maxNotional": 10000, # max_stake = 133.33333333333334
|
||||
"maintenanceMarginRate": 0.0065,
|
||||
"maxLeverage": 75,
|
||||
"maintAmt": 0.0
|
||||
},
|
||||
{
|
||||
"min": 10000, # stake = 200.0
|
||||
"max": 50000, # max_stake = 1000.0
|
||||
"mmr": 0.01,
|
||||
"lev": 50,
|
||||
"minNotional": 10000, # stake = 200.0
|
||||
"maxNotional": 50000, # max_stake = 1000.0
|
||||
"maintenanceMarginRate": 0.01,
|
||||
"maxLeverage": 50,
|
||||
"maintAmt": 35.0
|
||||
},
|
||||
{
|
||||
"min": 50000, # stake = 2000.0
|
||||
"max": 250000, # max_stake = 10000.0
|
||||
"mmr": 0.02,
|
||||
"lev": 25,
|
||||
"minNotional": 50000, # stake = 2000.0
|
||||
"maxNotional": 250000, # max_stake = 10000.0
|
||||
"maintenanceMarginRate": 0.02,
|
||||
"maxLeverage": 25,
|
||||
"maintAmt": 535.0
|
||||
},
|
||||
{
|
||||
"min": 250000, # stake = 25000.0
|
||||
"max": 1000000, # max_stake = 100000.0
|
||||
"mmr": 0.05,
|
||||
"lev": 10,
|
||||
"minNotional": 250000, # stake = 25000.0
|
||||
"maxNotional": 1000000, # max_stake = 100000.0
|
||||
"maintenanceMarginRate": 0.05,
|
||||
"maxLeverage": 10,
|
||||
"maintAmt": 8035.0
|
||||
},
|
||||
{
|
||||
"min": 1000000, # stake = 200000.0
|
||||
"max": 2000000, # max_stake = 400000.0
|
||||
"mmr": 0.1,
|
||||
"lev": 5,
|
||||
"minNotional": 1000000, # stake = 200000.0
|
||||
"maxNotional": 2000000, # max_stake = 400000.0
|
||||
"maintenanceMarginRate": 0.1,
|
||||
"maxLeverage": 5,
|
||||
"maintAmt": 58035.0
|
||||
},
|
||||
{
|
||||
"min": 2000000, # stake = 500000.0
|
||||
"max": 5000000, # max_stake = 1250000.0
|
||||
"mmr": 0.125,
|
||||
"lev": 4,
|
||||
"minNotional": 2000000, # stake = 500000.0
|
||||
"maxNotional": 5000000, # max_stake = 1250000.0
|
||||
"maintenanceMarginRate": 0.125,
|
||||
"maxLeverage": 4,
|
||||
"maintAmt": 108035.0
|
||||
},
|
||||
{
|
||||
"min": 5000000, # stake = 1666666.6666666667
|
||||
"max": 10000000, # max_stake = 3333333.3333333335
|
||||
"mmr": 0.15,
|
||||
"lev": 3,
|
||||
"minNotional": 5000000, # stake = 1666666.6666666667
|
||||
"maxNotional": 10000000, # max_stake = 3333333.3333333335
|
||||
"maintenanceMarginRate": 0.15,
|
||||
"maxLeverage": 3,
|
||||
"maintAmt": 233035.0
|
||||
},
|
||||
{
|
||||
"min": 10000000, # stake = 5000000.0
|
||||
"max": 20000000, # max_stake = 10000000.0
|
||||
"mmr": 0.25,
|
||||
"lev": 2,
|
||||
"minNotional": 10000000, # stake = 5000000.0
|
||||
"maxNotional": 20000000, # max_stake = 10000000.0
|
||||
"maintenanceMarginRate": 0.25,
|
||||
"maxLeverage": 2,
|
||||
"maintAmt": 1233035.0
|
||||
},
|
||||
{
|
||||
"min": 20000000, # stake = 20000000.0
|
||||
"max": 50000000, # max_stake = 50000000.0
|
||||
"mmr": 0.5,
|
||||
"lev": 1,
|
||||
"minNotional": 20000000, # stake = 20000000.0
|
||||
"maxNotional": 50000000, # max_stake = 50000000.0
|
||||
"maintenanceMarginRate": 0.5,
|
||||
"maxLeverage": 1,
|
||||
"maintAmt": 6233035.0
|
||||
},
|
||||
],
|
||||
'BTC/USDT': [
|
||||
{
|
||||
"min": 0, # stake = 0.0
|
||||
"max": 50000, # max_stake = 400.0
|
||||
"mmr": 0.004,
|
||||
"lev": 125,
|
||||
"minNotional": 0, # stake = 0.0
|
||||
"maxNotional": 50000, # max_stake = 400.0
|
||||
"maintenanceMarginRate": 0.004,
|
||||
"maxLeverage": 125,
|
||||
"maintAmt": 0.0
|
||||
},
|
||||
{
|
||||
"min": 50000, # stake = 500.0
|
||||
"max": 250000, # max_stake = 2500.0
|
||||
"mmr": 0.005,
|
||||
"lev": 100,
|
||||
"minNotional": 50000, # stake = 500.0
|
||||
"maxNotional": 250000, # max_stake = 2500.0
|
||||
"maintenanceMarginRate": 0.005,
|
||||
"maxLeverage": 100,
|
||||
"maintAmt": 50.0
|
||||
},
|
||||
{
|
||||
"min": 250000, # stake = 5000.0
|
||||
"max": 1000000, # max_stake = 20000.0
|
||||
"mmr": 0.01,
|
||||
"lev": 50,
|
||||
"minNotional": 250000, # stake = 5000.0
|
||||
"maxNotional": 1000000, # max_stake = 20000.0
|
||||
"maintenanceMarginRate": 0.01,
|
||||
"maxLeverage": 50,
|
||||
"maintAmt": 1300.0
|
||||
},
|
||||
{
|
||||
"min": 1000000, # stake = 50000.0
|
||||
"max": 7500000, # max_stake = 375000.0
|
||||
"mmr": 0.025,
|
||||
"lev": 20,
|
||||
"minNotional": 1000000, # stake = 50000.0
|
||||
"maxNotional": 7500000, # max_stake = 375000.0
|
||||
"maintenanceMarginRate": 0.025,
|
||||
"maxLeverage": 20,
|
||||
"maintAmt": 16300.0
|
||||
},
|
||||
{
|
||||
"min": 7500000, # stake = 750000.0
|
||||
"max": 40000000, # max_stake = 4000000.0
|
||||
"mmr": 0.05,
|
||||
"lev": 10,
|
||||
"minNotional": 7500000, # stake = 750000.0
|
||||
"maxNotional": 40000000, # max_stake = 4000000.0
|
||||
"maintenanceMarginRate": 0.05,
|
||||
"maxLeverage": 10,
|
||||
"maintAmt": 203800.0
|
||||
},
|
||||
{
|
||||
"min": 40000000, # stake = 8000000.0
|
||||
"max": 100000000, # max_stake = 20000000.0
|
||||
"mmr": 0.1,
|
||||
"lev": 5,
|
||||
"minNotional": 40000000, # stake = 8000000.0
|
||||
"maxNotional": 100000000, # max_stake = 20000000.0
|
||||
"maintenanceMarginRate": 0.1,
|
||||
"maxLeverage": 5,
|
||||
"maintAmt": 2203800.0
|
||||
},
|
||||
{
|
||||
"min": 100000000, # stake = 25000000.0
|
||||
"max": 200000000, # max_stake = 50000000.0
|
||||
"mmr": 0.125,
|
||||
"lev": 4,
|
||||
"minNotional": 100000000, # stake = 25000000.0
|
||||
"maxNotional": 200000000, # max_stake = 50000000.0
|
||||
"maintenanceMarginRate": 0.125,
|
||||
"maxLeverage": 4,
|
||||
"maintAmt": 4703800.0
|
||||
},
|
||||
{
|
||||
"min": 200000000, # stake = 66666666.666666664
|
||||
"max": 400000000, # max_stake = 133333333.33333333
|
||||
"mmr": 0.15,
|
||||
"lev": 3,
|
||||
"minNotional": 200000000, # stake = 66666666.666666664
|
||||
"maxNotional": 400000000, # max_stake = 133333333.33333333
|
||||
"maintenanceMarginRate": 0.15,
|
||||
"maxLeverage": 3,
|
||||
"maintAmt": 9703800.0
|
||||
},
|
||||
{
|
||||
"min": 400000000, # stake = 200000000.0
|
||||
"max": 600000000, # max_stake = 300000000.0
|
||||
"mmr": 0.25,
|
||||
"lev": 2,
|
||||
"minNotional": 400000000, # stake = 200000000.0
|
||||
"maxNotional": 600000000, # max_stake = 300000000.0
|
||||
"maintenanceMarginRate": 0.25,
|
||||
"maxLeverage": 2,
|
||||
"maintAmt": 4.97038E7
|
||||
},
|
||||
{
|
||||
"min": 600000000, # stake = 600000000.0
|
||||
"max": 1000000000, # max_stake = 1000000000.0
|
||||
"mmr": 0.5,
|
||||
"lev": 1,
|
||||
"minNotional": 600000000, # stake = 600000000.0
|
||||
"maxNotional": 1000000000, # max_stake = 1000000000.0
|
||||
"maintenanceMarginRate": 0.5,
|
||||
"maxLeverage": 1,
|
||||
"maintAmt": 1.997038E8
|
||||
},
|
||||
],
|
||||
"ZEC/USDT": [
|
||||
{
|
||||
'min': 0,
|
||||
'max': 50000,
|
||||
'mmr': 0.01,
|
||||
'lev': 50,
|
||||
'minNotional': 0,
|
||||
'maxNotional': 50000,
|
||||
'maintenanceMarginRate': 0.01,
|
||||
'maxLeverage': 50,
|
||||
'maintAmt': 0.0
|
||||
},
|
||||
{
|
||||
'min': 50000,
|
||||
'max': 150000,
|
||||
'mmr': 0.025,
|
||||
'lev': 20,
|
||||
'minNotional': 50000,
|
||||
'maxNotional': 150000,
|
||||
'maintenanceMarginRate': 0.025,
|
||||
'maxLeverage': 20,
|
||||
'maintAmt': 750.0
|
||||
},
|
||||
{
|
||||
'min': 150000,
|
||||
'max': 250000,
|
||||
'mmr': 0.05,
|
||||
'lev': 10,
|
||||
'minNotional': 150000,
|
||||
'maxNotional': 250000,
|
||||
'maintenanceMarginRate': 0.05,
|
||||
'maxLeverage': 10,
|
||||
'maintAmt': 4500.0
|
||||
},
|
||||
{
|
||||
'min': 250000,
|
||||
'max': 500000,
|
||||
'mmr': 0.1,
|
||||
'lev': 5,
|
||||
'minNotional': 250000,
|
||||
'maxNotional': 500000,
|
||||
'maintenanceMarginRate': 0.1,
|
||||
'maxLeverage': 5,
|
||||
'maintAmt': 17000.0
|
||||
},
|
||||
{
|
||||
'min': 500000,
|
||||
'max': 1000000,
|
||||
'mmr': 0.125,
|
||||
'lev': 4,
|
||||
'minNotional': 500000,
|
||||
'maxNotional': 1000000,
|
||||
'maintenanceMarginRate': 0.125,
|
||||
'maxLeverage': 4,
|
||||
'maintAmt': 29500.0
|
||||
},
|
||||
{
|
||||
'min': 1000000,
|
||||
'max': 2000000,
|
||||
'mmr': 0.25,
|
||||
'lev': 2,
|
||||
'minNotional': 1000000,
|
||||
'maxNotional': 2000000,
|
||||
'maintenanceMarginRate': 0.25,
|
||||
'maxLeverage': 2,
|
||||
'maintAmt': 154500.0
|
||||
},
|
||||
{
|
||||
'min': 2000000,
|
||||
'max': 30000000,
|
||||
'mmr': 0.5,
|
||||
'lev': 1,
|
||||
'minNotional': 2000000,
|
||||
'maxNotional': 30000000,
|
||||
'maintenanceMarginRate': 0.5,
|
||||
'maxLeverage': 1,
|
||||
'maintAmt': 654500.0
|
||||
},
|
||||
]
|
||||
|
@@ -376,96 +376,96 @@ def test_fill_leverage_tiers_binance(default_conf, mocker):
|
||||
assert exchange._leverage_tiers == {
|
||||
'ADA/BUSD': [
|
||||
{
|
||||
"min": 0,
|
||||
"max": 100000,
|
||||
"mmr": 0.025,
|
||||
"lev": 20,
|
||||
"minNotional": 0,
|
||||
"maxNotional": 100000,
|
||||
"maintenanceMarginRate": 0.025,
|
||||
"maxLeverage": 20,
|
||||
"maintAmt": 0.0
|
||||
},
|
||||
{
|
||||
"min": 100000,
|
||||
"max": 500000,
|
||||
"mmr": 0.05,
|
||||
"lev": 10,
|
||||
"minNotional": 100000,
|
||||
"maxNotional": 500000,
|
||||
"maintenanceMarginRate": 0.05,
|
||||
"maxLeverage": 10,
|
||||
"maintAmt": 2500.0
|
||||
},
|
||||
{
|
||||
"min": 500000,
|
||||
"max": 1000000,
|
||||
"mmr": 0.1,
|
||||
"lev": 5,
|
||||
"minNotional": 500000,
|
||||
"maxNotional": 1000000,
|
||||
"maintenanceMarginRate": 0.1,
|
||||
"maxLeverage": 5,
|
||||
"maintAmt": 27500.0
|
||||
},
|
||||
{
|
||||
"min": 1000000,
|
||||
"max": 2000000,
|
||||
"mmr": 0.15,
|
||||
"lev": 3,
|
||||
"minNotional": 1000000,
|
||||
"maxNotional": 2000000,
|
||||
"maintenanceMarginRate": 0.15,
|
||||
"maxLeverage": 3,
|
||||
"maintAmt": 77500.0
|
||||
},
|
||||
{
|
||||
"min": 2000000,
|
||||
"max": 5000000,
|
||||
"mmr": 0.25,
|
||||
"lev": 2,
|
||||
"minNotional": 2000000,
|
||||
"maxNotional": 5000000,
|
||||
"maintenanceMarginRate": 0.25,
|
||||
"maxLeverage": 2,
|
||||
"maintAmt": 277500.0
|
||||
},
|
||||
{
|
||||
"min": 5000000,
|
||||
"max": 30000000,
|
||||
"mmr": 0.5,
|
||||
"lev": 1,
|
||||
"minNotional": 5000000,
|
||||
"maxNotional": 30000000,
|
||||
"maintenanceMarginRate": 0.5,
|
||||
"maxLeverage": 1,
|
||||
"maintAmt": 1527500.0
|
||||
}
|
||||
],
|
||||
"ZEC/USDT": [
|
||||
{
|
||||
'min': 0,
|
||||
'max': 50000,
|
||||
'mmr': 0.01,
|
||||
'lev': 50,
|
||||
'minNotional': 0,
|
||||
'maxNotional': 50000,
|
||||
'maintenanceMarginRate': 0.01,
|
||||
'maxLeverage': 50,
|
||||
'maintAmt': 0.0
|
||||
},
|
||||
{
|
||||
'min': 50000,
|
||||
'max': 150000,
|
||||
'mmr': 0.025,
|
||||
'lev': 20,
|
||||
'minNotional': 50000,
|
||||
'maxNotional': 150000,
|
||||
'maintenanceMarginRate': 0.025,
|
||||
'maxLeverage': 20,
|
||||
'maintAmt': 750.0
|
||||
},
|
||||
{
|
||||
'min': 150000,
|
||||
'max': 250000,
|
||||
'mmr': 0.05,
|
||||
'lev': 10,
|
||||
'minNotional': 150000,
|
||||
'maxNotional': 250000,
|
||||
'maintenanceMarginRate': 0.05,
|
||||
'maxLeverage': 10,
|
||||
'maintAmt': 4500.0
|
||||
},
|
||||
{
|
||||
'min': 250000,
|
||||
'max': 500000,
|
||||
'mmr': 0.1,
|
||||
'lev': 5,
|
||||
'minNotional': 250000,
|
||||
'maxNotional': 500000,
|
||||
'maintenanceMarginRate': 0.1,
|
||||
'maxLeverage': 5,
|
||||
'maintAmt': 17000.0
|
||||
},
|
||||
{
|
||||
'min': 500000,
|
||||
'max': 1000000,
|
||||
'mmr': 0.125,
|
||||
'lev': 4,
|
||||
'minNotional': 500000,
|
||||
'maxNotional': 1000000,
|
||||
'maintenanceMarginRate': 0.125,
|
||||
'maxLeverage': 4,
|
||||
'maintAmt': 29500.0
|
||||
},
|
||||
{
|
||||
'min': 1000000,
|
||||
'max': 2000000,
|
||||
'mmr': 0.25,
|
||||
'lev': 2,
|
||||
'minNotional': 1000000,
|
||||
'maxNotional': 2000000,
|
||||
'maintenanceMarginRate': 0.25,
|
||||
'maxLeverage': 2,
|
||||
'maintAmt': 154500.0
|
||||
},
|
||||
{
|
||||
'min': 2000000,
|
||||
'max': 30000000,
|
||||
'mmr': 0.5,
|
||||
'lev': 1,
|
||||
'minNotional': 2000000,
|
||||
'maxNotional': 30000000,
|
||||
'maintenanceMarginRate': 0.5,
|
||||
'maxLeverage': 1,
|
||||
'maintAmt': 654500.0
|
||||
},
|
||||
]
|
||||
|
@@ -137,6 +137,10 @@ def exchange_futures(request, exchange_conf, class_mocker):
|
||||
'freqtrade.exchange.binance.Binance.fill_leverage_tiers')
|
||||
class_mocker.patch('freqtrade.exchange.exchange.Exchange.fetch_trading_fees')
|
||||
class_mocker.patch('freqtrade.exchange.okx.Okx.additional_exchange_init')
|
||||
class_mocker.patch('freqtrade.exchange.exchange.Exchange.load_cached_leverage_tiers',
|
||||
return_value=None)
|
||||
class_mocker.patch('freqtrade.exchange.exchange.Exchange.cache_leverage_tiers')
|
||||
|
||||
exchange = ExchangeResolver.load_exchange(
|
||||
request.param, exchange_conf, validate=True, load_leverage_tiers=True)
|
||||
|
||||
@@ -405,14 +409,14 @@ class TestCCXTExchange():
|
||||
assert (isinstance(futures_leverage, float) or isinstance(futures_leverage, int))
|
||||
assert futures_leverage >= 1.0
|
||||
|
||||
def test_ccxt__get_contract_size(self, exchange_futures):
|
||||
def test_ccxt_get_contract_size(self, exchange_futures):
|
||||
futures, futures_name = exchange_futures
|
||||
if futures:
|
||||
futures_pair = EXCHANGES[futures_name].get(
|
||||
'futures_pair',
|
||||
EXCHANGES[futures_name]['pair']
|
||||
)
|
||||
contract_size = futures._get_contract_size(futures_pair)
|
||||
contract_size = futures.get_contract_size(futures_pair)
|
||||
assert (isinstance(contract_size, float) or isinstance(contract_size, int))
|
||||
assert contract_size >= 0.0
|
||||
|
||||
@@ -464,6 +468,7 @@ class TestCCXTExchange():
|
||||
False,
|
||||
100,
|
||||
100,
|
||||
100,
|
||||
)
|
||||
assert (isinstance(liquidation_price, float))
|
||||
assert liquidation_price >= 0.0
|
||||
@@ -474,6 +479,7 @@ class TestCCXTExchange():
|
||||
False,
|
||||
100,
|
||||
100,
|
||||
100,
|
||||
)
|
||||
assert (isinstance(liquidation_price, float))
|
||||
assert liquidation_price >= 0.0
|
||||
|
@@ -181,11 +181,11 @@ def test_init_ccxt_kwargs(default_conf, mocker, caplog):
|
||||
assert log_has("Applying additional ccxt config: {'TestKWARG': 11, 'TestKWARG44': 11}", caplog)
|
||||
assert log_has(asynclogmsg, caplog)
|
||||
# Test additional headers case
|
||||
Exchange._headers = {'hello': 'world'}
|
||||
Exchange._ccxt_params = {'hello': 'world'}
|
||||
ex = Exchange(conf)
|
||||
|
||||
assert log_has("Applying additional ccxt config: {'TestKWARG': 11, 'TestKWARG44': 11}", caplog)
|
||||
assert ex._api.headers == {'hello': 'world'}
|
||||
assert ex._api.hello == 'world'
|
||||
assert ex._ccxt_config == {}
|
||||
Exchange._headers = {}
|
||||
|
||||
@@ -2352,10 +2352,11 @@ def test_fetch_l2_order_book(default_conf, mocker, order_book_l2, exchange_name)
|
||||
order_book = exchange.fetch_l2_order_book(pair='ETH/BTC', limit=val)
|
||||
assert api_mock.fetch_l2_order_book.call_args_list[0][0][0] == 'ETH/BTC'
|
||||
# Not all exchanges support all limits for orderbook
|
||||
if not exchange._ft_has['l2_limit_range'] or val in exchange._ft_has['l2_limit_range']:
|
||||
if (not exchange.get_option('l2_limit_range')
|
||||
or val in exchange.get_option('l2_limit_range')):
|
||||
assert api_mock.fetch_l2_order_book.call_args_list[0][0][1] == val
|
||||
else:
|
||||
next_limit = exchange.get_next_limit_in_list(val, exchange._ft_has['l2_limit_range'])
|
||||
next_limit = exchange.get_next_limit_in_list(val, exchange.get_option('l2_limit_range'))
|
||||
assert api_mock.fetch_l2_order_book.call_args_list[0][0][1] == next_limit
|
||||
|
||||
|
||||
@@ -3311,16 +3312,16 @@ def test_merge_ft_has_dict(default_conf, mocker):
|
||||
|
||||
ex = Kraken(default_conf)
|
||||
assert ex._ft_has != Exchange._ft_has_default
|
||||
assert ex._ft_has['trades_pagination'] == 'id'
|
||||
assert ex._ft_has['trades_pagination_arg'] == 'since'
|
||||
assert ex.get_option('trades_pagination') == 'id'
|
||||
assert ex.get_option('trades_pagination_arg') == 'since'
|
||||
|
||||
# Binance defines different values
|
||||
ex = Binance(default_conf)
|
||||
assert ex._ft_has != Exchange._ft_has_default
|
||||
assert ex._ft_has['stoploss_on_exchange']
|
||||
assert ex._ft_has['order_time_in_force'] == ['gtc', 'fok', 'ioc']
|
||||
assert ex._ft_has['trades_pagination'] == 'id'
|
||||
assert ex._ft_has['trades_pagination_arg'] == 'fromId'
|
||||
assert ex.get_option('stoploss_on_exchange')
|
||||
assert ex.get_option('order_time_in_force') == ['gtc', 'fok', 'ioc']
|
||||
assert ex.get_option('trades_pagination') == 'id'
|
||||
assert ex.get_option('trades_pagination_arg') == 'fromId'
|
||||
|
||||
conf = copy.deepcopy(default_conf)
|
||||
conf['exchange']['_ft_has_params'] = {"DeadBeef": 20,
|
||||
@@ -4131,7 +4132,8 @@ def test_get_or_calculate_liquidation_price(mocker, default_conf):
|
||||
pair='NEAR/USDT:USDT',
|
||||
open_rate=18.884,
|
||||
is_short=False,
|
||||
position=0.8,
|
||||
amount=0.8,
|
||||
stake_amount=18.884 * 0.8,
|
||||
wallet_balance=0.8,
|
||||
)
|
||||
assert liq_price == 17.47
|
||||
@@ -4142,7 +4144,8 @@ def test_get_or_calculate_liquidation_price(mocker, default_conf):
|
||||
pair='NEAR/USDT:USDT',
|
||||
open_rate=18.884,
|
||||
is_short=False,
|
||||
position=0.8,
|
||||
amount=0.8,
|
||||
stake_amount=18.884 * 0.8,
|
||||
wallet_balance=0.8,
|
||||
)
|
||||
assert liq_price == 17.540699999999998
|
||||
@@ -4287,7 +4290,7 @@ def test__fetch_and_calculate_funding_fees_datetime_called(
|
||||
('XLTCUSDT', 0.01, 'futures'),
|
||||
('ETH/USDT:USDT', 10, 'futures')
|
||||
])
|
||||
def test__get_contract_size(mocker, default_conf, pair, expected_size, trading_mode):
|
||||
def est__get_contract_size(mocker, default_conf, pair, expected_size, trading_mode):
|
||||
api_mock = MagicMock()
|
||||
default_conf['trading_mode'] = trading_mode
|
||||
default_conf['margin_mode'] = 'isolated'
|
||||
@@ -4306,7 +4309,7 @@ def test__get_contract_size(mocker, default_conf, pair, expected_size, trading_m
|
||||
'contractSize': '10',
|
||||
}
|
||||
})
|
||||
size = exchange._get_contract_size(pair)
|
||||
size = exchange.get_contract_size(pair)
|
||||
assert expected_size == size
|
||||
|
||||
|
||||
@@ -4542,7 +4545,8 @@ def test_liquidation_price_is_none(
|
||||
pair='DOGE/USDT',
|
||||
open_rate=open_rate,
|
||||
is_short=is_short,
|
||||
position=71200.81144,
|
||||
amount=71200.81144,
|
||||
stake_amount=open_rate * 71200.81144,
|
||||
wallet_balance=-56354.57,
|
||||
mm_ex_1=0.10,
|
||||
upnl_ex_1=0.0
|
||||
@@ -4551,7 +4555,7 @@ def test_liquidation_price_is_none(
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'exchange_name, is_short, trading_mode, margin_mode, wallet_balance, '
|
||||
'mm_ex_1, upnl_ex_1, maintenance_amt, position, open_rate, '
|
||||
'mm_ex_1, upnl_ex_1, maintenance_amt, amount, open_rate, '
|
||||
'mm_ratio, expected',
|
||||
[
|
||||
("binance", False, 'futures', 'isolated', 1535443.01, 0.0,
|
||||
@@ -4565,7 +4569,7 @@ def test_liquidation_price_is_none(
|
||||
])
|
||||
def test_liquidation_price(
|
||||
mocker, default_conf, exchange_name, open_rate, is_short, trading_mode,
|
||||
margin_mode, wallet_balance, mm_ex_1, upnl_ex_1, maintenance_amt, position, mm_ratio, expected
|
||||
margin_mode, wallet_balance, mm_ex_1, upnl_ex_1, maintenance_amt, amount, mm_ratio, expected
|
||||
):
|
||||
default_conf['trading_mode'] = trading_mode
|
||||
default_conf['margin_mode'] = margin_mode
|
||||
@@ -4579,7 +4583,8 @@ def test_liquidation_price(
|
||||
wallet_balance=wallet_balance,
|
||||
mm_ex_1=mm_ex_1,
|
||||
upnl_ex_1=upnl_ex_1,
|
||||
position=position,
|
||||
amount=amount,
|
||||
stake_amount=open_rate * amount,
|
||||
), 2), expected)
|
||||
|
||||
|
||||
@@ -4791,6 +4796,20 @@ def test_load_leverage_tiers(mocker, default_conf, leverage_tiers, exchange_name
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize('exchange_name', EXCHANGES)
|
||||
async def test_get_market_leverage_tiers(mocker, default_conf, exchange_name):
|
||||
default_conf['exchange']['name'] = exchange_name
|
||||
await async_ccxt_exception(
|
||||
mocker,
|
||||
default_conf,
|
||||
MagicMock(),
|
||||
"get_market_leverage_tiers",
|
||||
"fetch_market_leverage_tiers",
|
||||
symbol='BTC/USDT:USDT'
|
||||
)
|
||||
|
||||
|
||||
def test_parse_leverage_tier(mocker, default_conf):
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
|
||||
@@ -4811,10 +4830,10 @@ def test_parse_leverage_tier(mocker, default_conf):
|
||||
}
|
||||
|
||||
assert exchange.parse_leverage_tier(tier) == {
|
||||
"min": 0,
|
||||
"max": 100000,
|
||||
"mmr": 0.025,
|
||||
"lev": 20,
|
||||
"minNotional": 0,
|
||||
"maxNotional": 100000,
|
||||
"maintenanceMarginRate": 0.025,
|
||||
"maxLeverage": 20,
|
||||
"maintAmt": 0.0,
|
||||
}
|
||||
|
||||
@@ -4840,10 +4859,10 @@ def test_parse_leverage_tier(mocker, default_conf):
|
||||
}
|
||||
|
||||
assert exchange.parse_leverage_tier(tier2) == {
|
||||
'min': 0,
|
||||
'max': 2000,
|
||||
'mmr': 0.01,
|
||||
'lev': 75,
|
||||
'minNotional': 0,
|
||||
'maxNotional': 2000,
|
||||
'maintenanceMarginRate': 0.01,
|
||||
'maxLeverage': 75,
|
||||
"maintAmt": None,
|
||||
}
|
||||
|
||||
@@ -5096,6 +5115,7 @@ def test_get_liquidation_price(
|
||||
pair='ETH/USDT:USDT',
|
||||
open_rate=open_rate,
|
||||
amount=amount,
|
||||
stake_amount=amount * open_rate / leverage,
|
||||
leverage=leverage,
|
||||
is_short=is_short,
|
||||
)
|
||||
@@ -5131,7 +5151,7 @@ def test_stoploss_contract_size(mocker, default_conf, contract_size, order_amoun
|
||||
mocker.patch('freqtrade.exchange.Exchange.price_to_precision', lambda s, x, y: y)
|
||||
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange._get_contract_size = MagicMock(return_value=contract_size)
|
||||
exchange.get_contract_size = MagicMock(return_value=contract_size)
|
||||
|
||||
api_mock.create_order.reset_mock()
|
||||
order = exchange.stoploss(
|
||||
|
@@ -1,4 +1,5 @@
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock, PropertyMock
|
||||
|
||||
import pytest
|
||||
@@ -6,7 +7,7 @@ import pytest
|
||||
from freqtrade.enums import MarginMode, TradingMode
|
||||
from freqtrade.enums.candletype import CandleType
|
||||
from freqtrade.exchange.exchange import timeframe_to_minutes
|
||||
from tests.conftest import get_mock_coro, get_patched_exchange
|
||||
from tests.conftest import get_mock_coro, get_patched_exchange, log_has
|
||||
from tests.exchange.test_exchange import ccxt_exceptionhandlers
|
||||
|
||||
|
||||
@@ -267,7 +268,10 @@ def test_additional_exchange_init_okx(default_conf, mocker):
|
||||
"additional_exchange_init", "fetch_accounts")
|
||||
|
||||
|
||||
def test_load_leverage_tiers_okx(default_conf, mocker, markets):
|
||||
def test_load_leverage_tiers_okx(default_conf, mocker, markets, tmpdir, caplog, time_machine):
|
||||
|
||||
default_conf['datadir'] = Path(tmpdir)
|
||||
# fd_mock = mocker.patch('freqtrade.exchange.exchange.file_dump_json')
|
||||
api_mock = MagicMock()
|
||||
type(api_mock).has = PropertyMock(return_value={
|
||||
'fetchLeverageTiers': False,
|
||||
@@ -410,48 +414,66 @@ def test_load_leverage_tiers_okx(default_conf, mocker, markets):
|
||||
assert exchange._leverage_tiers == {
|
||||
'ADA/USDT:USDT': [
|
||||
{
|
||||
'min': 0,
|
||||
'max': 500,
|
||||
'mmr': 0.02,
|
||||
'lev': 75,
|
||||
'minNotional': 0,
|
||||
'maxNotional': 500,
|
||||
'maintenanceMarginRate': 0.02,
|
||||
'maxLeverage': 75,
|
||||
'maintAmt': None
|
||||
},
|
||||
{
|
||||
'min': 501,
|
||||
'max': 1000,
|
||||
'mmr': 0.025,
|
||||
'lev': 50,
|
||||
'minNotional': 501,
|
||||
'maxNotional': 1000,
|
||||
'maintenanceMarginRate': 0.025,
|
||||
'maxLeverage': 50,
|
||||
'maintAmt': None
|
||||
},
|
||||
{
|
||||
'min': 1001,
|
||||
'max': 2000,
|
||||
'mmr': 0.03,
|
||||
'lev': 20,
|
||||
'minNotional': 1001,
|
||||
'maxNotional': 2000,
|
||||
'maintenanceMarginRate': 0.03,
|
||||
'maxLeverage': 20,
|
||||
'maintAmt': None
|
||||
},
|
||||
],
|
||||
'ETH/USDT:USDT': [
|
||||
{
|
||||
'min': 0,
|
||||
'max': 2000,
|
||||
'mmr': 0.01,
|
||||
'lev': 75,
|
||||
'minNotional': 0,
|
||||
'maxNotional': 2000,
|
||||
'maintenanceMarginRate': 0.01,
|
||||
'maxLeverage': 75,
|
||||
'maintAmt': None
|
||||
},
|
||||
{
|
||||
'min': 2001,
|
||||
'max': 4000,
|
||||
'mmr': 0.015,
|
||||
'lev': 50,
|
||||
'minNotional': 2001,
|
||||
'maxNotional': 4000,
|
||||
'maintenanceMarginRate': 0.015,
|
||||
'maxLeverage': 50,
|
||||
'maintAmt': None
|
||||
},
|
||||
{
|
||||
'min': 4001,
|
||||
'max': 8000,
|
||||
'mmr': 0.02,
|
||||
'lev': 20,
|
||||
'minNotional': 4001,
|
||||
'maxNotional': 8000,
|
||||
'maintenanceMarginRate': 0.02,
|
||||
'maxLeverage': 20,
|
||||
'maintAmt': None
|
||||
},
|
||||
],
|
||||
}
|
||||
filename = (default_conf['datadir'] /
|
||||
f"futures/leverage_tiers_{default_conf['stake_currency']}.json")
|
||||
assert filename.is_file()
|
||||
|
||||
logmsg = 'Cached leverage tiers are outdated. Will update.'
|
||||
assert not log_has(logmsg, caplog)
|
||||
|
||||
api_mock.fetch_market_leverage_tiers.reset_mock()
|
||||
|
||||
exchange.load_leverage_tiers()
|
||||
assert not log_has(logmsg, caplog)
|
||||
|
||||
api_mock.fetch_market_leverage_tiers.call_count == 0
|
||||
# 2 day passes ...
|
||||
time_machine.move_to(datetime.now() + timedelta(days=2))
|
||||
exchange.load_leverage_tiers()
|
||||
|
||||
assert log_has(logmsg, caplog)
|
||||
|
@@ -1,5 +1,6 @@
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
@@ -81,6 +82,51 @@ def get_patched_freqaimodel(mocker, freqaiconf):
|
||||
return freqaimodel
|
||||
|
||||
|
||||
def make_data_dictionary(mocker, freqai_conf):
|
||||
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||
|
||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||
freqai = strategy.freqai
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||
freqai.dk.pair = "ADA/BTC"
|
||||
timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||
|
||||
freqai.dd.pair_dict = MagicMock()
|
||||
|
||||
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||
new_timerange = TimeRange.parse_timerange("20180120-20180130")
|
||||
|
||||
corr_dataframes, base_dataframes = freqai.dd.get_base_and_corr_dataframes(
|
||||
data_load_timerange, freqai.dk.pair, freqai.dk
|
||||
)
|
||||
|
||||
unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators(
|
||||
strategy, corr_dataframes, base_dataframes, freqai.dk.pair
|
||||
)
|
||||
|
||||
unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe)
|
||||
|
||||
freqai.dk.find_features(unfiltered_dataframe)
|
||||
|
||||
features_filtered, labels_filtered = freqai.dk.filter_features(
|
||||
unfiltered_dataframe,
|
||||
freqai.dk.training_features_list,
|
||||
freqai.dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
data_dictionary = freqai.dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
|
||||
data_dictionary = freqai.dk.normalize_data(data_dictionary)
|
||||
|
||||
return freqai
|
||||
|
||||
|
||||
def get_freqai_live_analyzed_dataframe(mocker, freqaiconf):
|
||||
strategy = get_patched_freqai_strategy(mocker, freqaiconf)
|
||||
exchange = get_patched_exchange(mocker, freqaiconf)
|
||||
|
@@ -5,7 +5,8 @@ from pathlib import Path
|
||||
import pytest
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from tests.freqai.conftest import get_patched_data_kitchen
|
||||
from tests.conftest import log_has_re
|
||||
from tests.freqai.conftest import get_patched_data_kitchen, make_data_dictionary
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
@@ -66,3 +67,30 @@ def test_check_if_model_expired(mocker, freqai_conf, timestamp, expected):
|
||||
dk = get_patched_data_kitchen(mocker, freqai_conf)
|
||||
assert dk.check_if_model_expired(timestamp) == expected
|
||||
shutil.rmtree(Path(dk.full_path))
|
||||
|
||||
|
||||
def test_use_DBSCAN_to_remove_outliers(mocker, freqai_conf, caplog):
|
||||
freqai = make_data_dictionary(mocker, freqai_conf)
|
||||
# freqai_conf['freqai']['feature_parameters'].update({"outlier_protection_percentage": 1})
|
||||
freqai.dk.use_DBSCAN_to_remove_outliers(predict=False)
|
||||
assert log_has_re(
|
||||
"DBSCAN found eps of 2.42.",
|
||||
caplog,
|
||||
)
|
||||
|
||||
|
||||
def test_compute_distances(mocker, freqai_conf):
|
||||
freqai = make_data_dictionary(mocker, freqai_conf)
|
||||
freqai_conf['freqai']['feature_parameters'].update({"DI_threshold": 1})
|
||||
avg_mean_dist = freqai.dk.compute_distances()
|
||||
assert round(avg_mean_dist, 2) == 2.56
|
||||
|
||||
|
||||
def test_use_SVM_to_remove_outliers_and_outlier_protection(mocker, freqai_conf, caplog):
|
||||
freqai = make_data_dictionary(mocker, freqai_conf)
|
||||
freqai_conf['freqai']['feature_parameters'].update({"outlier_protection_percentage": 0.1})
|
||||
freqai.dk.use_SVM_to_remove_outliers(predict=False)
|
||||
assert log_has_re(
|
||||
"SVM detected 8.46%",
|
||||
caplog,
|
||||
)
|
||||
|
@@ -550,6 +550,7 @@ def test_backtest__enter_trade_futures(default_conf_usdt, fee, mocker) -> None:
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_max_pair_stake_amount", return_value=float('inf'))
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_max_leverage", return_value=100)
|
||||
mocker.patch("freqtrade.optimize.backtesting.price_to_precision", lambda p, *args: p)
|
||||
patch_exchange(mocker)
|
||||
default_conf_usdt['stake_amount'] = 300
|
||||
default_conf_usdt['max_open_trades'] = 2
|
||||
@@ -559,13 +560,13 @@ def test_backtest__enter_trade_futures(default_conf_usdt, fee, mocker) -> None:
|
||||
default_conf_usdt['exchange']['pair_whitelist'] = ['.*']
|
||||
backtesting = Backtesting(default_conf_usdt)
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
pair = 'UNITTEST/USDT:USDT'
|
||||
pair = 'ETH/USDT:USDT'
|
||||
row = [
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0),
|
||||
0.001, # Open
|
||||
0.0012, # High
|
||||
0.00099, # Low
|
||||
0.0011, # Close
|
||||
0.1, # Open
|
||||
0.12, # High
|
||||
0.099, # Low
|
||||
0.11, # Close
|
||||
1, # enter_long
|
||||
0, # exit_long
|
||||
1, # enter_short
|
||||
@@ -580,8 +581,8 @@ def test_backtest__enter_trade_futures(default_conf_usdt, fee, mocker) -> None:
|
||||
return_value=(0.01, 0.01))
|
||||
|
||||
# leverage = 5
|
||||
# ep1(trade.open_rate) = 0.001
|
||||
# position(trade.amount) = 1500000
|
||||
# ep1(trade.open_rate) = 0.1
|
||||
# position(trade.amount) = 15000
|
||||
# stake_amount = 300 -> wb = 300 / 5 = 60
|
||||
# mmr = 0.01
|
||||
# cum_b = 0.01
|
||||
@@ -591,26 +592,26 @@ def test_backtest__enter_trade_futures(default_conf_usdt, fee, mocker) -> None:
|
||||
# Binance, Long
|
||||
# liquidation_price
|
||||
# = ((wb + cum_b) - (side_1 * position * ep1)) / ((position * mmr_b) - (side_1 * position))
|
||||
# = ((300 + 0.01) - (1 * 1500000 * 0.001)) / ((1500000 * 0.01) - (1 * 1500000))
|
||||
# = ((300 + 0.01) - (1 * 15000 * 0.1)) / ((15000 * 0.01) - (1 * 15000))
|
||||
# = 0.0008080740740740741
|
||||
# freqtrade_liquidation_price = liq + (abs(open_rate - liq) * liq_buffer * side_1)
|
||||
# = 0.0008080740740740741 + ((0.001 - 0.0008080740740740741) * 0.05 * 1)
|
||||
# = 0.0008176703703703704
|
||||
# = 0.08080740740740741 + ((0.1 - 0.08080740740740741) * 0.05 * 1)
|
||||
# = 0.08176703703703704
|
||||
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='long')
|
||||
assert pytest.approx(trade.liquidation_price) == 0.00081767037
|
||||
assert pytest.approx(trade.liquidation_price) == 0.081767037
|
||||
|
||||
# Binance, Short
|
||||
# liquidation_price
|
||||
# = ((wb + cum_b) - (side_1 * position * ep1)) / ((position * mmr_b) - (side_1 * position))
|
||||
# = ((300 + 0.01) - ((-1) * 1500000 * 0.001)) / ((1500000 * 0.01) - ((-1) * 1500000))
|
||||
# = ((300 + 0.01) - ((-1) * 15000 * 0.1)) / ((15000 * 0.01) - ((-1) * 15000))
|
||||
# = 0.0011881254125412541
|
||||
# freqtrade_liquidation_price = liq + (abs(open_rate - liq) * liq_buffer * side_1)
|
||||
# = 0.0011881254125412541 + (abs(0.001 - 0.0011881254125412541) * 0.05 * -1)
|
||||
# = 0.0011787191419141915
|
||||
# = 0.11881254125412541 + (abs(0.1 - 0.11881254125412541) * 0.05 * -1)
|
||||
# = 0.11787191419141915
|
||||
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='short')
|
||||
assert pytest.approx(trade.liquidation_price) == 0.0011787191
|
||||
assert pytest.approx(trade.liquidation_price) == 0.11787191
|
||||
|
||||
# Stake-amount too high!
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=600.0)
|
||||
|
@@ -18,6 +18,8 @@ from tests.conftest import patch_exchange
|
||||
def test_backtest_position_adjustment(default_conf, fee, mocker, testdatadir) -> None:
|
||||
default_conf['use_exit_signal'] = False
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
mocker.patch('freqtrade.optimize.backtesting.amount_to_contract_precision',
|
||||
lambda x, *args, **kwargs: round(x, 8))
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_max_pair_stake_amount", return_value=float('inf'))
|
||||
patch_exchange(mocker)
|
||||
|
@@ -663,7 +663,7 @@ def test_rpc_stop(mocker, default_conf) -> None:
|
||||
assert freqtradebot.state == State.STOPPED
|
||||
|
||||
|
||||
def test_rpc_stopbuy(mocker, default_conf) -> None:
|
||||
def test_rpc_stopentry(mocker, default_conf) -> None:
|
||||
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
@@ -676,8 +676,8 @@ def test_rpc_stopbuy(mocker, default_conf) -> None:
|
||||
freqtradebot.state = State.RUNNING
|
||||
|
||||
assert freqtradebot.config['max_open_trades'] != 0
|
||||
result = rpc._rpc_stopbuy()
|
||||
assert {'status': 'No more buy will occur from now. Run /reload_config to reset.'} == result
|
||||
result = rpc._rpc_stopentry()
|
||||
assert {'status': 'No more entries will occur from now. Run /reload_config to reset.'} == result
|
||||
assert freqtradebot.config['max_open_trades'] == 0
|
||||
|
||||
|
||||
|
@@ -422,13 +422,20 @@ def test_api_reloadconf(botclient):
|
||||
assert ftbot.state == State.RELOAD_CONFIG
|
||||
|
||||
|
||||
def test_api_stopbuy(botclient):
|
||||
def test_api_stopentry(botclient):
|
||||
ftbot, client = botclient
|
||||
assert ftbot.config['max_open_trades'] != 0
|
||||
|
||||
rc = client_post(client, f"{BASE_URI}/stopbuy")
|
||||
assert_response(rc)
|
||||
assert rc.json() == {'status': 'No more buy will occur from now. Run /reload_config to reset.'}
|
||||
assert rc.json() == {
|
||||
'status': 'No more entries will occur from now. Run /reload_config to reset.'}
|
||||
assert ftbot.config['max_open_trades'] == 0
|
||||
|
||||
rc = client_post(client, f"{BASE_URI}/stopentry")
|
||||
assert_response(rc)
|
||||
assert rc.json() == {
|
||||
'status': 'No more entries will occur from now. Run /reload_config to reset.'}
|
||||
assert ftbot.config['max_open_trades'] == 0
|
||||
|
||||
|
||||
|
@@ -103,7 +103,8 @@ def test_telegram_init(default_conf, mocker, caplog) -> None:
|
||||
"['stats'], ['daily'], ['weekly'], ['monthly'], "
|
||||
"['count'], ['locks'], ['unlock', 'delete_locks'], "
|
||||
"['reload_config', 'reload_conf'], ['show_config', 'show_conf'], "
|
||||
"['stopbuy'], ['whitelist'], ['blacklist'], ['blacklist_delete', 'bl_delete'], "
|
||||
"['stopbuy', 'stopentry'], ['whitelist'], ['blacklist'], "
|
||||
"['blacklist_delete', 'bl_delete'], "
|
||||
"['logs'], ['edge'], ['health'], ['help'], ['version']"
|
||||
"]")
|
||||
|
||||
@@ -896,10 +897,10 @@ def test_stopbuy_handle(default_conf, update, mocker) -> None:
|
||||
telegram, freqtradebot, msg_mock = get_telegram_testobject(mocker, default_conf)
|
||||
|
||||
assert freqtradebot.config['max_open_trades'] != 0
|
||||
telegram._stopbuy(update=update, context=MagicMock())
|
||||
telegram._stopentry(update=update, context=MagicMock())
|
||||
assert freqtradebot.config['max_open_trades'] == 0
|
||||
assert msg_mock.call_count == 1
|
||||
assert 'No more buy will occur from now. Run /reload_config to reset.' \
|
||||
assert 'No more entries will occur from now. Run /reload_config to reset.' \
|
||||
in msg_mock.call_args_list[0][0][0]
|
||||
|
||||
|
||||
|
@@ -12,7 +12,9 @@ from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.data.history import load_data
|
||||
from freqtrade.enums import ExitCheckTuple, ExitType, SignalDirection
|
||||
from freqtrade.enums.hyperoptstate import HyperoptState
|
||||
from freqtrade.exceptions import OperationalException, StrategyError
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptStateContainer
|
||||
from freqtrade.optimize.space import SKDecimal
|
||||
from freqtrade.persistence import PairLocks, Trade
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
@@ -859,7 +861,9 @@ def test_strategy_safe_wrapper_trade_copy(fee):
|
||||
|
||||
|
||||
def test_hyperopt_parameters():
|
||||
HyperoptStateContainer.set_state(HyperoptState.INDICATORS)
|
||||
from skopt.space import Categorical, Integer, Real
|
||||
|
||||
with pytest.raises(OperationalException, match=r"Name is determined.*"):
|
||||
IntParameter(low=0, high=5, default=1, name='hello')
|
||||
|
||||
@@ -937,6 +941,12 @@ def test_hyperopt_parameters():
|
||||
|
||||
assert list(boolpar.range) == [True, False]
|
||||
|
||||
HyperoptStateContainer.set_state(HyperoptState.OPTIMIZE)
|
||||
assert len(list(intpar.range)) == 1
|
||||
assert len(list(fltpar.range)) == 1
|
||||
assert len(list(catpar.range)) == 1
|
||||
assert len(list(boolpar.range)) == 1
|
||||
|
||||
|
||||
def test_auto_hyperopt_interface(default_conf):
|
||||
default_conf.update({'strategy': 'HyperoptableStrategyV2'})
|
||||
|
@@ -48,6 +48,10 @@ def test_search_all_strategies_with_failed():
|
||||
assert len([x for x in strategies if x['class'] is not None]) == 9
|
||||
assert len([x for x in strategies if x['class'] is None]) == 1
|
||||
|
||||
directory = Path(__file__).parent / "strats_nonexistingdir"
|
||||
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
|
||||
assert len(strategies) == 0
|
||||
|
||||
|
||||
def test_load_strategy(default_conf, result):
|
||||
default_conf.update({'strategy': 'SampleStrategy',
|
||||
|
@@ -473,8 +473,6 @@ def test_create_trade_no_signal(default_conf_usdt, fee, mocker) -> None:
|
||||
freqtrade = FreqtradeBot(default_conf_usdt)
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=False)
|
||||
|
||||
Trade.query = MagicMock()
|
||||
Trade.query.filter = MagicMock()
|
||||
assert not freqtrade.create_trade('ETH/USDT')
|
||||
|
||||
|
||||
|
@@ -1689,6 +1689,7 @@ def test_get_open(fee, is_short, use_db):
|
||||
|
||||
create_mock_trades(fee, is_short, use_db)
|
||||
assert len(Trade.get_open_trades()) == 4
|
||||
assert Trade.get_open_trade_count() == 4
|
||||
|
||||
Trade.use_db = True
|
||||
|
||||
@@ -1701,6 +1702,7 @@ def test_get_open_lev(fee, use_db):
|
||||
|
||||
create_mock_trades_with_leverage(fee, use_db)
|
||||
assert len(Trade.get_open_trades()) == 5
|
||||
assert Trade.get_open_trade_count() == 5
|
||||
|
||||
Trade.use_db = True
|
||||
|
||||
@@ -2892,8 +2894,8 @@ def test_order_to_ccxt(limit_buy_order_open):
|
||||
(('buy', 100, 9), (200.0, 8.5, 1700.0, 0.0, None, None)),
|
||||
(('sell', 100, 10), (100.0, 8.5, 850.0, 150.0, 150.0, 0.17647059)),
|
||||
(('buy', 150, 11), (250.0, 10, 2500.0, 150.0, 150.0, 0.17647059)),
|
||||
(('sell', 100, 12), (150.0, 10.0, 1500.0, 350.0, 350.0, 0.2)),
|
||||
(('sell', 150, 14), (150.0, 10.0, 1500.0, 950.0, 950.0, 0.40)),
|
||||
(('sell', 100, 12), (150.0, 10.0, 1500.0, 350.0, 200.0, 0.2)),
|
||||
(('sell', 150, 14), (150.0, 10.0, 1500.0, 950.0, 600.0, 0.40)),
|
||||
],
|
||||
'end_profit': 950.0,
|
||||
'end_profit_ratio': 0.283582,
|
||||
@@ -2958,9 +2960,8 @@ def test_recalc_trade_from_orders_dca(data) -> None:
|
||||
assert trade.amount == result[0]
|
||||
assert trade.open_rate == result[1]
|
||||
assert trade.stake_amount == result[2]
|
||||
# TODO: enable the below.
|
||||
assert pytest.approx(trade.realized_profit) == result[3]
|
||||
# assert pytest.approx(trade.close_profit_abs) == result[4]
|
||||
assert pytest.approx(trade.close_profit_abs) == result[4]
|
||||
assert pytest.approx(trade.close_profit) == result[5]
|
||||
|
||||
trade.close(price)
|
||||
|