Commit Graph

30 Commits

Author SHA1 Message Date
Richard Jozsa
d03fe1f8ee add latest experimental version of gymnasium 2023-03-16 00:53:37 +01:00
robcaulk
0fd8e214e4 add documentation for tensorboard_log, change how users interact with tensorboard_log 2022-12-11 15:31:29 +01:00
initrv
cb8fc3c8c7 custom info to tensorboard_metrics 2022-12-11 15:37:45 +03:00
robcaulk
24766928ba reorganize/generalize tensorboard callback 2022-12-04 13:54:30 +01:00
robcaulk
be890b52fd remove np import 2022-11-26 13:44:58 +01:00
robcaulk
aaaa5a5f64 add documentation for net_arch, other small changes 2022-11-26 13:44:58 +01:00
Matthias
bdfedb5fcb Improve typehints / reduce warnings from mypy 2022-11-26 13:03:07 +01:00
robcaulk
81fd2e588f ensure typing, remove unsued code 2022-11-26 12:11:59 +01:00
robcaulk
44b042ba51 remove unused function 2022-11-24 17:53:26 +01:00
robcaulk
af9e400562 add test coverage, fix bug in base environment. Ensure proper fee is used. 2022-11-13 15:31:37 +01:00
robcaulk
81f800a79b switch to using FT calc_profi_pct, reverse entry/exit fees 2022-11-13 13:41:17 +01:00
robcaulk
e71a8b8ac1 add ability to integrate state info or not, and prevent state info integration during backtesting 2022-11-12 18:46:48 +01:00
robcaulk
77c360b264 improve typing, improve docstrings, ensure global tests pass 2022-09-23 19:17:27 +02:00
robcaulk
7766350c15 refactor environment inheritence tree to accommodate flexible action types/counts. fix bug in train profit handling 2022-08-28 19:21:57 +02:00
robcaulk
94cfc8e63f fix multiproc callback, add continual learning to multiproc, fix totalprofit bug in env, set eval_freq automatically, improve default reward 2022-08-25 11:46:18 +02:00
robcaulk
d1bee29b1e improve default reward, fix bugs in environment 2022-08-24 18:32:40 +02:00
robcaulk
c0cee5df07 add continual retraining feature, handly mypy typing reqs, improve docstrings 2022-08-24 13:00:55 +02:00
robcaulk
b26ed7dea4 fix generic reward, add time duration to reward 2022-08-24 13:00:55 +02:00
robcaulk
280a1dc3f8 add live rate, add trade duration 2022-08-24 13:00:55 +02:00
robcaulk
29f0e01c4a expose environment reward parameters to the user config 2022-08-24 13:00:55 +02:00
robcaulk
d88a0dbf82 add sb3_contrib models to the available agents. include sb3_contrib in requirements. 2022-08-24 13:00:55 +02:00
robcaulk
8b3a8234ac fix env bug, allow example strat to short 2022-08-24 13:00:55 +02:00
robcaulk
3eb897c2f8 reuse callback, allow user to acces all stable_baselines3 agents via config 2022-08-24 13:00:55 +02:00
robcaulk
4b9499e321 improve nomenclature and fix short exit bug 2022-08-24 13:00:55 +02:00
robcaulk
f95602f6bd persist a single training environment. 2022-08-24 13:00:55 +02:00
robcaulk
5d4e5e69fe reinforce training with state info, reinforce prediction with state info, restructure config to accommodate all parameters from any user imported model type. Set 5Act to default env on TDQN. Clean example config. 2022-08-24 13:00:55 +02:00
sonnhfit
45218faeb0 fix coding convention 2022-08-24 13:00:55 +02:00
MukavaValkku
2080ff86ed 5ac base fixes in logic 2022-08-24 13:00:55 +02:00
sonnhfit
0475b7cb18 remove unuse code and fix coding conventions 2022-08-24 13:00:55 +02:00
robcaulk
926023935f make base 3ac and base 5ac environments. TDQN defaults to 3AC. 2022-08-24 13:00:55 +02:00