black formatting on freqai files

This commit is contained in:
robcaulk 2022-07-03 10:59:38 +02:00
parent 106131ff0f
commit ffb39a5029
7 changed files with 508 additions and 427 deletions

View File

@ -1,4 +1,3 @@
import collections
import json
import logging
@ -27,10 +26,11 @@ class FreqaiDataDrawer:
This object remains persistent throughout live/dry, unlike FreqaiDataKitchen, which is
reinstantiated for each coin.
"""
def __init__(self, full_path: Path, config: dict, follow_mode: bool = False):
self.config = config
self.freqai_info = config.get('freqai', {})
self.freqai_info = config.get("freqai", {})
# dictionary holding all pair metadata necessary to load in from disk
self.pair_dict: Dict[str, Any] = {}
# dictionary holding all actively inferenced models in memory given a model filename
@ -38,7 +38,6 @@ class FreqaiDataDrawer:
self.model_return_values: Dict[str, Any] = {}
self.pair_data_dict: Dict[str, Any] = {}
self.historic_data: Dict[str, Any] = {}
# self.populated_historic_data: Dict[str, Any] = {} ?
self.follower_dict: Dict[str, Any] = {}
self.full_path = full_path
self.follow_mode = follow_mode
@ -47,7 +46,6 @@ class FreqaiDataDrawer:
self.load_drawer_from_disk()
self.training_queue: Dict[str, int] = {}
self.history_lock = threading.Lock()
# self.create_training_queue(pair_whitelist)
def load_drawer_from_disk(self):
"""
@ -56,15 +54,17 @@ class FreqaiDataDrawer:
:returns:
exists: bool = whether or not the drawer was located
"""
exists = Path(self.full_path / str('pair_dictionary.json')).resolve().exists()
exists = Path(self.full_path / str("pair_dictionary.json")).resolve().exists()
if exists:
with open(self.full_path / str('pair_dictionary.json'), "r") as fp:
with open(self.full_path / str("pair_dictionary.json"), "r") as fp:
self.pair_dict = json.load(fp)
elif not self.follow_mode:
logger.info("Could not find existing datadrawer, starting from scratch")
else:
logger.warning(f'Follower could not find pair_dictionary at {self.full_path} '
'sending null values back to strategy')
logger.warning(
f"Follower could not find pair_dictionary at {self.full_path} "
"sending null values back to strategy"
)
return exists
@ -72,36 +72,41 @@ class FreqaiDataDrawer:
"""
Save data drawer full of all pair model metadata in present model folder.
"""
with open(self.full_path / str('pair_dictionary.json'), "w") as fp:
with open(self.full_path / str("pair_dictionary.json"), "w") as fp:
json.dump(self.pair_dict, fp, default=self.np_encoder)
def save_follower_dict_to_disk(self):
"""
Save follower dictionary to disk (used by strategy for persistent prediction targets)
"""
follower_name = self.config.get('bot_name', 'follower1')
with open(self.full_path / str('follower_dictionary-' +
follower_name + '.json'), "w") as fp:
follower_name = self.config.get("bot_name", "follower1")
with open(
self.full_path / str("follower_dictionary-" + follower_name + ".json"), "w"
) as fp:
json.dump(self.follower_dict, fp, default=self.np_encoder)
def create_follower_dict(self):
"""
Create or dictionary for each follower to maintain unique persistent prediction targets
"""
follower_name = self.config.get('bot_name', 'follower1')
whitelist_pairs = self.config.get('exchange', {}).get('pair_whitelist')
follower_name = self.config.get("bot_name", "follower1")
whitelist_pairs = self.config.get("exchange", {}).get("pair_whitelist")
exists = Path(self.full_path / str('follower_dictionary-' +
follower_name + '.json')).resolve().exists()
exists = (
Path(self.full_path / str("follower_dictionary-" + follower_name + ".json"))
.resolve()
.exists()
)
if exists:
logger.info('Found an existing follower dictionary')
logger.info("Found an existing follower dictionary")
for pair in whitelist_pairs:
self.follower_dict[pair] = {}
with open(self.full_path / str('follower_dictionary-' +
follower_name + '.json'), "w") as fp:
with open(
self.full_path / str("follower_dictionary-" + follower_name + ".json"), "w"
) as fp:
json.dump(self.follower_dict, fp, default=self.np_encoder)
def np_encoder(self, object):
@ -122,46 +127,48 @@ class FreqaiDataDrawer:
return_null_array: bool = Follower could not find pair metadata
"""
pair_in_dict = self.pair_dict.get(pair)
data_path_set = self.pair_dict.get(pair, {}).get('data_path', None)
data_path_set = self.pair_dict.get(pair, {}).get("data_path", None)
return_null_array = False
if pair_in_dict:
model_filename = self.pair_dict[pair]['model_filename']
trained_timestamp = self.pair_dict[pair]['trained_timestamp']
coin_first = self.pair_dict[pair]['first']
model_filename = self.pair_dict[pair]["model_filename"]
trained_timestamp = self.pair_dict[pair]["trained_timestamp"]
coin_first = self.pair_dict[pair]["first"]
elif not self.follow_mode:
self.pair_dict[pair] = {}
model_filename = self.pair_dict[pair]['model_filename'] = ''
coin_first = self.pair_dict[pair]['first'] = True
trained_timestamp = self.pair_dict[pair]['trained_timestamp'] = 0
self.pair_dict[pair]['priority'] = len(self.pair_dict)
model_filename = self.pair_dict[pair]["model_filename"] = ""
coin_first = self.pair_dict[pair]["first"] = True
trained_timestamp = self.pair_dict[pair]["trained_timestamp"] = 0
self.pair_dict[pair]["priority"] = len(self.pair_dict)
if not data_path_set and self.follow_mode:
logger.warning(f'Follower could not find current pair {pair} in '
f'pair_dictionary at path {self.full_path}, sending null values '
'back to strategy.')
logger.warning(
f"Follower could not find current pair {pair} in "
f"pair_dictionary at path {self.full_path}, sending null values "
"back to strategy."
)
return_null_array = True
return model_filename, trained_timestamp, coin_first, return_null_array
def set_pair_dict_info(self, metadata: dict) -> None:
pair_in_dict = self.pair_dict.get(metadata['pair'])
pair_in_dict = self.pair_dict.get(metadata["pair"])
if pair_in_dict:
return
else:
self.pair_dict[metadata['pair']] = {}
self.pair_dict[metadata['pair']]['model_filename'] = ''
self.pair_dict[metadata['pair']]['first'] = True
self.pair_dict[metadata['pair']]['trained_timestamp'] = 0
self.pair_dict[metadata['pair']]['priority'] = len(self.pair_dict)
self.pair_dict[metadata["pair"]] = {}
self.pair_dict[metadata["pair"]]["model_filename"] = ""
self.pair_dict[metadata["pair"]]["first"] = True
self.pair_dict[metadata["pair"]]["trained_timestamp"] = 0
self.pair_dict[metadata["pair"]]["priority"] = len(self.pair_dict)
return
def pair_to_end_of_training_queue(self, pair: str) -> None:
# march all pairs up in the queue
for p in self.pair_dict:
self.pair_dict[p]['priority'] -= 1
self.pair_dict[p]["priority"] -= 1
# send pair to end of queue
self.pair_dict[pair]['priority'] = len(self.pair_dict)
self.pair_dict[pair]["priority"] = len(self.pair_dict)
def set_initial_return_values(self, pair: str, dk, pred_df, do_preds) -> None:
"""
@ -172,16 +179,15 @@ class FreqaiDataDrawer:
self.model_return_values[pair] = pd.DataFrame()
for label in dk.label_list:
self.model_return_values[pair][label] = pred_df[label]
self.model_return_values[pair][f'{label}_mean'] = dk.data['labels_mean'][label]
self.model_return_values[pair][f'{label}_std'] = dk.data['labels_std'][label]
self.model_return_values[pair][f"{label}_mean"] = dk.data["labels_mean"][label]
self.model_return_values[pair][f"{label}_std"] = dk.data["labels_std"][label]
if self.freqai_info.get('feature_parameters', {}).get('DI_threshold', 0) > 0:
self.model_return_values[pair]['DI_values'] = dk.DI_values
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
self.model_return_values[pair]["DI_values"] = dk.DI_values
self.model_return_values[pair]['do_predict'] = do_preds
self.model_return_values[pair]["do_predict"] = do_preds
def append_model_predictions(self, pair: str, predictions, do_preds,
dk, len_df) -> None:
def append_model_predictions(self, pair: str, predictions, do_preds, dk, len_df) -> None:
# strat seems to feed us variable sized dataframes - and since we are trying to build our
# own return array in the same shape, we need to figure out how the size has changed
@ -198,17 +204,18 @@ class FreqaiDataDrawer:
for label in dk.label_list:
df[label].iloc[-1] = predictions[label].iloc[-1]
df[f"{label}_mean"].iloc[-1] = dk.data['labels_mean'][label]
df[f"{label}_std"].iloc[-1] = dk.data['labels_std'][label]
df[f"{label}_mean"].iloc[-1] = dk.data["labels_mean"][label]
df[f"{label}_std"].iloc[-1] = dk.data["labels_std"][label]
# df['prediction'].iloc[-1] = predictions[-1]
df['do_predict'].iloc[-1] = do_preds[-1]
df["do_predict"].iloc[-1] = do_preds[-1]
if self.freqai_info.get('feature_parameters', {}).get('DI_threshold', 0) > 0:
df['DI_values'].iloc[-1] = dk.DI_values[-1]
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
df["DI_values"].iloc[-1] = dk.DI_values[-1]
if length_difference < 0:
prepend_df = pd.DataFrame(np.zeros((abs(length_difference) - 1, len(df.columns))),
columns=df.columns)
prepend_df = pd.DataFrame(
np.zeros((abs(length_difference) - 1, len(df.columns))), columns=df.columns
)
df = pd.concat([prepend_df, df], axis=0)
def attach_return_values_to_return_dataframe(self, pair: str, dataframe) -> DataFrame:
@ -220,7 +227,7 @@ class FreqaiDataDrawer:
dataframe: DataFrame = strat dataframe with return values attached
"""
df = self.model_return_values[pair]
to_keep = [col for col in dataframe.columns if not col.startswith('&')]
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
dataframe = pd.concat([dataframe[to_keep], df], axis=1)
return dataframe
@ -237,10 +244,10 @@ class FreqaiDataDrawer:
dataframe[f"{label}_std"] = 0
# dataframe['prediction'] = 0
dataframe['do_predict'] = 0
dataframe["do_predict"] = 0
if self.freqai_info.get('feature_parameters', {}).get('DI_threshold', 0) > 0:
dataframe['DI_value'] = 0
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
dataframe["DI_value"] = 0
dk.return_dataframe = dataframe
@ -261,29 +268,30 @@ class FreqaiDataDrawer:
if coin not in delete_dict:
delete_dict[coin] = {}
delete_dict[coin]['num_folders'] = 1
delete_dict[coin]['timestamps'] = {int(timestamp): dir}
delete_dict[coin]["num_folders"] = 1
delete_dict[coin]["timestamps"] = {int(timestamp): dir}
else:
delete_dict[coin]['num_folders'] += 1
delete_dict[coin]['timestamps'][int(timestamp)] = dir
delete_dict[coin]["num_folders"] += 1
delete_dict[coin]["timestamps"][int(timestamp)] = dir
for coin in delete_dict:
if delete_dict[coin]['num_folders'] > 2:
if delete_dict[coin]["num_folders"] > 2:
sorted_dict = collections.OrderedDict(
sorted(delete_dict[coin]['timestamps'].items()))
sorted(delete_dict[coin]["timestamps"].items())
)
num_delete = len(sorted_dict) - 2
deleted = 0
for k, v in sorted_dict.items():
if deleted >= num_delete:
break
logger.info(f'Freqai purging old model file {v}')
logger.info(f"Freqai purging old model file {v}")
shutil.rmtree(v)
deleted += 1
def update_follower_metadata(self):
# follower needs to load from disk to get any changes made by leader to pair_dict
self.load_drawer_from_disk()
if self.config.get('freqai', {}).get('purge_old_models', False):
if self.config.get("freqai", {}).get("purge_old_models", False):
self.purge_old_models()
# to be used if we want to send predictions directly to the follower instead of forcing

View File

@ -37,8 +37,13 @@ class FreqaiDataKitchen:
author: Robert Caulk, rob.caulk@gmail.com
"""
def __init__(self, config: Dict[str, Any], data_drawer: FreqaiDataDrawer, live: bool = False,
pair: str = ''):
def __init__(
self,
config: Dict[str, Any],
data_drawer: FreqaiDataDrawer,
live: bool = False,
pair: str = "",
):
self.data: Dict[Any, Any] = {}
self.data_dictionary: Dict[Any, Any] = {}
self.config = config
@ -60,8 +65,8 @@ class FreqaiDataKitchen:
self.svm_model: linear_model.SGDOneClassSVM = None
self.set_all_pairs()
if not self.live:
self.full_timerange = self.create_fulltimerange(self.config["timerange"],
self.freqai_config.get("train_period")
self.full_timerange = self.create_fulltimerange(
self.config["timerange"], self.freqai_config.get("train_period")
)
(self.training_timeranges, self.backtesting_timeranges) = self.split_timerange(
@ -72,24 +77,28 @@ class FreqaiDataKitchen:
# self.strat_dataframe: DataFrame = strat_dataframe
self.dd = data_drawer
def set_paths(self, pair: str, trained_timestamp: int = None,) -> None:
def set_paths(
self,
pair: str,
trained_timestamp: int = None,
) -> None:
"""
Set the paths to the data for the present coin/botloop
:params:
metadata: dict = strategy furnished pair metadata
trained_timestamp: int = timestamp of most recent training
"""
self.full_path = Path(self.config['user_data_dir'] /
"models" /
str(self.freqai_config.get('identifier')))
self.full_path = Path(
self.config["user_data_dir"] / "models" / str(self.freqai_config.get("identifier"))
)
self.data_path = Path(self.full_path / str("sub-train" + "-" +
pair.split("/")[0] +
str(trained_timestamp)))
self.data_path = Path(
self.full_path / str("sub-train" + "-" + pair.split("/")[0] + str(trained_timestamp))
)
return
def save_data(self, model: Any, coin: str = '', keras_model=False, label=None) -> None:
def save_data(self, model: Any, coin: str = "", keras_model=False, label=None) -> None:
"""
Saves all data associated with a model for a single sub-train time range
:params:
@ -114,7 +123,7 @@ class FreqaiDataKitchen:
self.data["data_path"] = str(self.data_path)
self.data["model_filename"] = str(self.model_filename)
self.data["training_features_list"] = list(self.data_dictionary["train_features"].columns)
self.data['label_list'] = self.label_list
self.data["label_list"] = self.label_list
# store the metadata
with open(save_path / str(self.model_filename + "_metadata.json"), "w") as fp:
json.dump(self.data, fp, default=self.np_encoder)
@ -124,14 +133,15 @@ class FreqaiDataKitchen:
save_path / str(self.model_filename + "_trained_df.pkl")
)
if self.freqai_config.get('feature_parameters', {}).get('principal_component_analysis'):
pk.dump(self.pca, open(self.data_path /
str(self.model_filename + "_pca_object.pkl"), "wb"))
if self.freqai_config.get("feature_parameters", {}).get("principal_component_analysis"):
pk.dump(
self.pca, open(self.data_path / str(self.model_filename + "_pca_object.pkl"), "wb")
)
# if self.live:
self.dd.model_dictionary[self.model_filename] = model
self.dd.pair_dict[coin]['model_filename'] = self.model_filename
self.dd.pair_dict[coin]['data_path'] = str(self.data_path)
self.dd.pair_dict[coin]["model_filename"] = self.model_filename
self.dd.pair_dict[coin]["data_path"] = str(self.data_path)
self.dd.save_drawer_to_disk()
# TODO add a helper function to let user save/load any data they are custom adding. We
@ -149,29 +159,32 @@ class FreqaiDataKitchen:
return
def load_data(self, coin: str = '', keras_model=False) -> Any:
def load_data(self, coin: str = "", keras_model=False) -> Any:
"""
loads all data required to make a prediction on a sub-train time range
:returns:
:model: User trained model which can be inferenced for new predictions
"""
if not self.dd.pair_dict[coin]['model_filename']:
if not self.dd.pair_dict[coin]["model_filename"]:
return None
if self.live:
self.model_filename = self.dd.pair_dict[coin]['model_filename']
self.data_path = Path(self.dd.pair_dict[coin]['data_path'])
if self.freqai_config.get('follow_mode', False):
self.model_filename = self.dd.pair_dict[coin]["model_filename"]
self.data_path = Path(self.dd.pair_dict[coin]["data_path"])
if self.freqai_config.get("follow_mode", False):
# follower can be on a different system which is rsynced to the leader:
self.data_path = Path(self.config["user_data_dir"] /
"models" / self.data_path.parts[-2] /
self.data_path.parts[-1])
self.data_path = Path(
self.config["user_data_dir"]
/ "models"
/ self.data_path.parts[-2]
/ self.data_path.parts[-1]
)
with open(self.data_path / str(self.model_filename + "_metadata.json"), "r") as fp:
self.data = json.load(fp)
self.training_features_list = self.data["training_features_list"]
self.label_list = self.data['label_list']
self.label_list = self.data["label_list"]
self.data_dictionary["train_features"] = pd.read_pickle(
self.data_path / str(self.model_filename + "_trained_df.pkl")
@ -200,16 +213,15 @@ class FreqaiDataKitchen:
model = load(self.data_path / str(self.model_filename + "_model.joblib"))
else:
from tensorflow import keras
model = keras.models.load_model(self.data_path / str(self.model_filename + "_model.h5"))
if Path(self.data_path / str(self.model_filename +
"_svm_model.joblib")).resolve().exists():
if Path(self.data_path / str(self.model_filename + "_svm_model.joblib")).resolve().exists():
self.svm_model = load(self.data_path / str(self.model_filename + "_svm_model.joblib"))
if not model:
raise OperationalException(
f"Unable to load model, ensure model exists at "
f"{self.data_path} "
f"Unable to load model, ensure model exists at " f"{self.data_path} "
)
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
@ -257,7 +269,7 @@ class FreqaiDataKitchen:
weights,
stratify=stratification,
# shuffle=False,
**self.config["freqai"]["data_split_parameters"]
**self.config["freqai"]["data_split_parameters"],
)
return self.build_data_dictionary(
@ -309,14 +321,14 @@ class FreqaiDataKitchen:
(drop_index == 0) & (drop_index_labels == 0)
] # assuming the labels depend entirely on the dataframe here.
logger.info(
f'dropped {len(unfiltered_dataframe) - len(filtered_dataframe)} training points'
f' due to NaNs in populated dataset {len(unfiltered_dataframe)}.'
f"dropped {len(unfiltered_dataframe) - len(filtered_dataframe)} training points"
f" due to NaNs in populated dataset {len(unfiltered_dataframe)}."
)
if (1 - len(filtered_dataframe) / len(unfiltered_dataframe)) > 0.1 and self.live:
logger.warning(
f' {(1 - len(filtered_dataframe)/len(unfiltered_dataframe)) * 100:.2f} percent'
' of training data dropped due to NaNs, model may perform inconsistent'
'with expectations'
f" {(1 - len(filtered_dataframe)/len(unfiltered_dataframe)) * 100:.2f} percent"
" of training data dropped due to NaNs, model may perform inconsistent"
"with expectations"
)
self.data["filter_drop_index_training"] = drop_index
@ -372,21 +384,27 @@ class FreqaiDataKitchen:
# standardize the data by training stats
train_max = data_dictionary["train_features"].max()
train_min = data_dictionary["train_features"].min()
data_dictionary["train_features"] = 2 * (
data_dictionary["train_features"] - train_min
) / (train_max - train_min) - 1
data_dictionary["test_features"] = 2 * (
data_dictionary["test_features"] - train_min
) / (train_max - train_min) - 1
data_dictionary["train_features"] = (
2 * (data_dictionary["train_features"] - train_min) / (train_max - train_min) - 1
)
data_dictionary["test_features"] = (
2 * (data_dictionary["test_features"] - train_min) / (train_max - train_min) - 1
)
train_labels_max = data_dictionary["train_labels"].max()
train_labels_min = data_dictionary["train_labels"].min()
data_dictionary["train_labels"] = 2 * (
data_dictionary["train_labels"] - train_labels_min
) / (train_labels_max - train_labels_min) - 1
data_dictionary["test_labels"] = 2 * (
data_dictionary["test_labels"] - train_labels_min
) / (train_labels_max - train_labels_min) - 1
data_dictionary["train_labels"] = (
2
* (data_dictionary["train_labels"] - train_labels_min)
/ (train_labels_max - train_labels_min)
- 1
)
data_dictionary["test_labels"] = (
2
* (data_dictionary["test_labels"] - train_labels_min)
/ (train_labels_max - train_labels_min)
- 1
)
for item in train_max.keys():
self.data[item + "_max"] = train_max[item]
@ -406,8 +424,12 @@ class FreqaiDataKitchen:
"""
for item in df.keys():
df[item] = 2 * (df[item] - self.data[item + "_min"]) / (self.data[item + "_max"] -
self.data[item + '_min']) - 1
df[item] = (
2
* (df[item] - self.data[item + "_min"])
/ (self.data[item + "_max"] - self.data[item + "_min"])
- 1
)
return df
@ -429,8 +451,9 @@ class FreqaiDataKitchen:
full_timerange = TimeRange.parse_timerange(tr)
config_timerange = TimeRange.parse_timerange(self.config["timerange"])
if config_timerange.stopts == 0:
config_timerange.stopts = int(datetime.datetime.now(
tz=datetime.timezone.utc).timestamp())
config_timerange.stopts = int(
datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
)
timerange_train = copy.deepcopy(full_timerange)
timerange_backtest = copy.deepcopy(full_timerange)
@ -518,7 +541,7 @@ class FreqaiDataKitchen:
# keeping a copy of the non-transformed features so we can check for errors during
# model load from disk
self.data['training_features_list_raw'] = copy.deepcopy(self.training_features_list)
self.data["training_features_list_raw"] = copy.deepcopy(self.training_features_list)
self.training_features_list = self.data_dictionary["train_features"].columns
self.data_dictionary["test_features"] = pd.DataFrame(
@ -530,7 +553,7 @@ class FreqaiDataKitchen:
self.data["n_kept_components"] = n_keep_components
self.pca = pca2
logger.info(f'PCA reduced total features from {n_components} to {n_keep_components}')
logger.info(f"PCA reduced total features from {n_components} to {n_keep_components}")
if not self.data_path.is_dir():
self.data_path.mkdir(parents=True, exist_ok=True)
@ -557,10 +580,10 @@ class FreqaiDataKitchen:
for prediction confidence in the Dissimilarity Index
"""
logger.info("computing average mean distance for all training points")
tc = self.freqai_config.get('model_training_parameters', {}).get('thread_count', -1)
tc = self.freqai_config.get("model_training_parameters", {}).get("thread_count", -1)
pairwise = pairwise_distances(self.data_dictionary["train_features"], n_jobs=tc)
avg_mean_dist = pairwise.mean(axis=1).mean()
logger.info(f'avg_mean_dist {avg_mean_dist:.2f}')
logger.info(f"avg_mean_dist {avg_mean_dist:.2f}")
return avg_mean_dist
@ -579,45 +602,49 @@ class FreqaiDataKitchen:
if (len(do_predict) - do_predict.sum()) > 0:
logger.info(
f'svm_remove_outliers() tossed {len(do_predict) - do_predict.sum()} predictions'
f"svm_remove_outliers() tossed {len(do_predict) - do_predict.sum()} predictions"
)
self.do_predict += do_predict
self.do_predict -= 1
else:
# use SGDOneClassSVM to increase speed?
nu = self.freqai_config.get('feature_parameters', {}).get('svm_nu', 0.2)
nu = self.freqai_config.get("feature_parameters", {}).get("svm_nu", 0.2)
self.svm_model = linear_model.SGDOneClassSVM(nu=nu).fit(
self.data_dictionary["train_features"]
)
y_pred = self.svm_model.predict(self.data_dictionary["train_features"])
dropped_points = np.where(y_pred == -1, 0, y_pred)
# keep_index = np.where(y_pred == 1)
self.data_dictionary["train_features"] = self.data_dictionary[
"train_features"][(y_pred == 1)]
self.data_dictionary["train_labels"] = self.data_dictionary[
"train_labels"][(y_pred == 1)]
self.data_dictionary["train_weights"] = self.data_dictionary[
"train_weights"][(y_pred == 1)]
self.data_dictionary["train_features"] = self.data_dictionary["train_features"][
(y_pred == 1)
]
self.data_dictionary["train_labels"] = self.data_dictionary["train_labels"][
(y_pred == 1)
]
self.data_dictionary["train_weights"] = self.data_dictionary["train_weights"][
(y_pred == 1)
]
logger.info(
f'svm_remove_outliers() tossed {len(y_pred) - dropped_points.sum()}'
f' train points from {len(y_pred)}'
f"svm_remove_outliers() tossed {len(y_pred) - dropped_points.sum()}"
f" train points from {len(y_pred)}"
)
# same for test data
y_pred = self.svm_model.predict(self.data_dictionary["test_features"])
dropped_points = np.where(y_pred == -1, 0, y_pred)
self.data_dictionary["test_features"] = self.data_dictionary[
"test_features"][(y_pred == 1)]
self.data_dictionary["test_labels"] = self.data_dictionary[
"test_labels"][(y_pred == 1)]
self.data_dictionary["test_weights"] = self.data_dictionary[
"test_weights"][(y_pred == 1)]
self.data_dictionary["test_features"] = self.data_dictionary["test_features"][
(y_pred == 1)
]
self.data_dictionary["test_labels"] = self.data_dictionary["test_labels"][(y_pred == 1)]
self.data_dictionary["test_weights"] = self.data_dictionary["test_weights"][
(y_pred == 1)
]
logger.info(
f'svm_remove_outliers() tossed {len(y_pred) - dropped_points.sum()}'
f' test points from {len(y_pred)}'
f"svm_remove_outliers() tossed {len(y_pred) - dropped_points.sum()}"
f" test points from {len(y_pred)}"
)
return
@ -631,8 +658,8 @@ class FreqaiDataKitchen:
features: list = the features to be used for training/prediction
"""
column_names = dataframe.columns
features = [c for c in column_names if '%' in c]
labels = [c for c in column_names if '&' in c]
features = [c for c in column_names if "%" in c]
labels = [c for c in column_names if "&" in c]
if not features:
raise OperationalException("Could not find any features!")
@ -657,16 +684,15 @@ class FreqaiDataKitchen:
self.DI_values = distance.min(axis=0) / self.data["avg_mean_dist"]
do_predict = np.where(
self.DI_values
< self.freqai_config.get("feature_parameters", {}).get("DI_threshold"),
self.DI_values < self.freqai_config.get("feature_parameters", {}).get("DI_threshold"),
1,
0,
)
if (len(do_predict) - do_predict.sum()) > 0:
logger.info(
f'DI tossed {len(do_predict) - do_predict.sum():.2f} predictions for '
'being too far from training data'
f"DI tossed {len(do_predict) - do_predict.sum():.2f} predictions for "
"being too far from training data"
)
self.do_predict += do_predict
@ -695,7 +721,7 @@ class FreqaiDataKitchen:
self.full_predictions = np.append(self.full_predictions, predictions)
self.full_do_predict = np.append(self.full_do_predict, do_predict)
if self.freqai_config.get('feature_parameters', {}).get('DI_threshold', 0) > 0:
if self.freqai_config.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
self.full_DI_values = np.append(self.full_DI_values, self.DI_values)
self.full_target_mean = np.append(self.full_target_mean, target_mean)
self.full_target_std = np.append(self.full_target_std, target_std)
@ -711,7 +737,7 @@ class FreqaiDataKitchen:
filler = np.zeros(len_dataframe - len(self.full_predictions)) # startup_candle_count
self.full_predictions = np.append(filler, self.full_predictions)
self.full_do_predict = np.append(filler, self.full_do_predict)
if self.freqai_config.get('feature_parameters', {}).get('DI_threshold', 0) > 0:
if self.freqai_config.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
self.full_DI_values = np.append(filler, self.full_DI_values)
self.full_target_mean = np.append(filler, self.full_target_mean)
self.full_target_std = np.append(filler, self.full_target_std)
@ -722,8 +748,9 @@ class FreqaiDataKitchen:
backtest_timerange = TimeRange.parse_timerange(backtest_tr)
if backtest_timerange.stopts == 0:
backtest_timerange.stopts = int(datetime.datetime.now(
tz=datetime.timezone.utc).timestamp())
backtest_timerange.stopts = int(
datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
)
backtest_timerange.startts = backtest_timerange.startts - backtest_period * SECONDS_IN_DAY
start = datetime.datetime.utcfromtimestamp(backtest_timerange.startts)
@ -731,9 +758,7 @@ class FreqaiDataKitchen:
full_timerange = start.strftime("%Y%m%d") + "-" + stop.strftime("%Y%m%d")
self.full_path = Path(
self.config["user_data_dir"]
/ "models"
/ str(self.freqai_config.get("identifier"))
self.config["user_data_dir"] / "models" / str(self.freqai_config.get("identifier"))
)
config_path = Path(self.config["config_files"][0])
@ -758,61 +783,71 @@ class FreqaiDataKitchen:
"""
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
elapsed_time = (time - trained_timestamp) / 3600 # hours
max_time = self.freqai_config.get('expiration_hours', 0)
max_time = self.freqai_config.get("expiration_hours", 0)
if max_time > 0:
return elapsed_time > max_time
else:
return False
def check_if_new_training_required(self, trained_timestamp: int) -> Tuple[bool,
TimeRange, TimeRange]:
def check_if_new_training_required(
self, trained_timestamp: int
) -> Tuple[bool, TimeRange, TimeRange]:
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
trained_timerange = TimeRange()
data_load_timerange = TimeRange()
# find the max indicator length required
max_timeframe_chars = self.freqai_config.get('timeframes')[-1]
max_period = self.freqai_config.get('feature_parameters', {}).get(
'indicator_max_period', 50)
max_timeframe_chars = self.freqai_config.get("timeframes")[-1]
max_period = self.freqai_config.get("feature_parameters", {}).get(
"indicator_max_period", 50
)
additional_seconds = 0
if max_timeframe_chars[-1] == 'd':
if max_timeframe_chars[-1] == "d":
additional_seconds = max_period * SECONDS_IN_DAY * int(max_timeframe_chars[-2])
elif max_timeframe_chars[-1] == 'h':
elif max_timeframe_chars[-1] == "h":
additional_seconds = max_period * 3600 * int(max_timeframe_chars[-2])
elif max_timeframe_chars[-1] == 'm':
elif max_timeframe_chars[-1] == "m":
if len(max_timeframe_chars) == 2:
additional_seconds = max_period * 60 * int(max_timeframe_chars[-2])
elif len(max_timeframe_chars) == 3:
additional_seconds = max_period * 60 * int(float(max_timeframe_chars[0:2]))
else:
logger.warning('FreqAI could not detect max timeframe and therefore may not '
'download the proper amount of data for training')
logger.warning(
"FreqAI could not detect max timeframe and therefore may not "
"download the proper amount of data for training"
)
# logger.info(f'Extending data download by {additional_seconds/SECONDS_IN_DAY:.2f} days')
if trained_timestamp != 0:
elapsed_time = (time - trained_timestamp) / SECONDS_IN_DAY
retrain = elapsed_time > self.freqai_config.get('backtest_period')
retrain = elapsed_time > self.freqai_config.get("backtest_period")
if retrain:
trained_timerange.startts = int(time - self.freqai_config.get(
'train_period', 0) * SECONDS_IN_DAY)
trained_timerange.startts = int(
time - self.freqai_config.get("train_period", 0) * SECONDS_IN_DAY
)
trained_timerange.stopts = int(time)
# we want to load/populate indicators on more data than we plan to train on so
# because most of the indicators have a rolling timeperiod, and are thus NaNs
# unless they have data further back in time before the start of the train period
data_load_timerange.startts = int(time - self.freqai_config.get(
'train_period', 0) * SECONDS_IN_DAY
- additional_seconds)
data_load_timerange.startts = int(
time
- self.freqai_config.get("train_period", 0) * SECONDS_IN_DAY
- additional_seconds
)
data_load_timerange.stopts = int(time)
else: # user passed no live_trained_timerange in config
trained_timerange.startts = int(time - self.freqai_config.get('train_period') *
SECONDS_IN_DAY)
trained_timerange.startts = int(
time - self.freqai_config.get("train_period") * SECONDS_IN_DAY
)
trained_timerange.stopts = int(time)
data_load_timerange.startts = int(time - self.freqai_config.get(
'train_period', 0) * SECONDS_IN_DAY
- additional_seconds)
data_load_timerange.startts = int(
time
- self.freqai_config.get("train_period", 0) * SECONDS_IN_DAY
- additional_seconds
)
data_load_timerange.stopts = int(time)
retrain = True
@ -822,9 +857,10 @@ class FreqaiDataKitchen:
coin, _ = pair.split("/")
# set the new data_path
self.data_path = Path(self.full_path / str("sub-train" + "-" +
pair.split("/")[0] +
str(int(trained_timerange.stopts))))
self.data_path = Path(
self.full_path
/ str("sub-train" + "-" + pair.split("/")[0] + str(int(trained_timerange.stopts)))
)
self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts))
@ -860,19 +896,23 @@ class FreqaiDataKitchen:
timerange: TimeRange = The full data timerange for populating the indicators
and training the model.
"""
exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'],
self.config, validate=False, freqai=True)
exchange = ExchangeResolver.load_exchange(
self.config["exchange"]["name"], self.config, validate=False, freqai=True
)
new_pairs_days = int((timerange.stopts - timerange.startts) / SECONDS_IN_DAY)
refresh_backtest_ohlcv_data(
exchange, pairs=self.all_pairs,
timeframes=self.freqai_config.get('timeframes'),
datadir=self.config['datadir'], timerange=timerange,
exchange,
pairs=self.all_pairs,
timeframes=self.freqai_config.get("timeframes"),
datadir=self.config["datadir"],
timerange=timerange,
new_pairs_days=new_pairs_days,
erase=False, data_format=self.config.get('dataformat_ohlcv', 'json'),
trading_mode=self.config.get('trading_mode', 'spot'),
prepend=self.config.get('prepend_data', False)
erase=False,
data_format=self.config.get("dataformat_ohlcv", "json"),
trading_mode=self.config.get("trading_mode", "spot"),
prepend=self.config.get("prepend_data", False),
)
def update_historic_data(self, strategy: IStrategy) -> None:
@ -888,34 +928,36 @@ class FreqaiDataKitchen:
history_data = self.dd.historic_data
for pair in self.all_pairs:
for tf in self.freqai_config.get('timeframes'):
for tf in self.freqai_config.get("timeframes"):
# check if newest candle is already appended
df_dp = strategy.dp.get_pair_dataframe(pair, tf)
if len(df_dp.index) == 0:
continue
if (
str(history_data[pair][tf].iloc[-1]['date']) ==
str(df_dp.iloc[-1:]['date'].iloc[-1])
if str(history_data[pair][tf].iloc[-1]["date"]) == str(
df_dp.iloc[-1:]["date"].iloc[-1]
):
continue
index = df_dp.loc[
df_dp['date'] ==
history_data[pair][tf].iloc[-1]['date']
].index[0] + 1
index = (
df_dp.loc[df_dp["date"] == history_data[pair][tf].iloc[-1]["date"]].index[0]
+ 1
)
history_data[pair][tf] = pd.concat(
[history_data[pair][tf],
strategy.dp.get_pair_dataframe(pair, tf).iloc[index:]],
ignore_index=True, axis=0
[
history_data[pair][tf],
strategy.dp.get_pair_dataframe(pair, tf).iloc[index:],
],
ignore_index=True,
axis=0,
)
# logger.info(f'Length of history data {len(history_data[pair][tf])}')
def set_all_pairs(self) -> None:
self.all_pairs = copy.deepcopy(self.freqai_config.get('corr_pairlist', []))
for pair in self.config.get('exchange', '').get('pair_whitelist'):
self.all_pairs = copy.deepcopy(self.freqai_config.get("corr_pairlist", []))
for pair in self.config.get("exchange", "").get("pair_whitelist"):
if pair not in self.all_pairs:
self.all_pairs.append(pair)
@ -932,17 +974,19 @@ class FreqaiDataKitchen:
for pair in self.all_pairs:
if pair not in history_data:
history_data[pair] = {}
for tf in self.freqai_config.get('timeframes'):
history_data[pair][tf] = load_pair_history(datadir=self.config['datadir'],
for tf in self.freqai_config.get("timeframes"):
history_data[pair][tf] = load_pair_history(
datadir=self.config["datadir"],
timeframe=tf,
pair=pair, timerange=timerange,
data_format=self.config.get(
'dataformat_ohlcv', 'json'),
candle_type=self.config.get(
'trading_mode', 'spot'))
pair=pair,
timerange=timerange,
data_format=self.config.get("dataformat_ohlcv", "json"),
candle_type=self.config.get("trading_mode", "spot"),
)
def get_base_and_corr_dataframes(self, timerange: TimeRange,
pair: str) -> Tuple[Dict[Any, Any], Dict[Any, Any]]:
def get_base_and_corr_dataframes(
self, timerange: TimeRange, pair: str
) -> Tuple[Dict[Any, Any], Dict[Any, Any]]:
"""
Searches through our historic_data in memory and returns the dataframes relevant
to the present pair.
@ -956,21 +1000,19 @@ class FreqaiDataKitchen:
corr_dataframes: Dict[Any, Any] = {}
base_dataframes: Dict[Any, Any] = {}
historic_data = self.dd.historic_data
pairs = self.freqai_config.get('corr_pairlist', [])
pairs = self.freqai_config.get("corr_pairlist", [])
for tf in self.freqai_config.get('timeframes'):
base_dataframes[tf] = self.slice_dataframe(
timerange,
historic_data[pair][tf]
)
for tf in self.freqai_config.get("timeframes"):
base_dataframes[tf] = self.slice_dataframe(timerange, historic_data[pair][tf])
if pairs:
for p in pairs:
if pair in p:
continue # dont repeat anything from whitelist
if p not in corr_dataframes:
corr_dataframes[p] = {}
corr_dataframes[p][tf] = self.slice_dataframe(timerange,
historic_data[p][tf])
corr_dataframes[p][tf] = self.slice_dataframe(
timerange, historic_data[p][tf]
)
return corr_dataframes, base_dataframes
@ -1006,10 +1048,9 @@ class FreqaiDataKitchen:
# return corr_dataframes, base_dataframes
def use_strategy_to_populate_indicators(self, strategy: IStrategy,
corr_dataframes: dict,
base_dataframes: dict,
pair: str) -> DataFrame:
def use_strategy_to_populate_indicators(
self, strategy: IStrategy, corr_dataframes: dict, base_dataframes: dict, pair: str
) -> DataFrame:
"""
Use the user defined strategy for populating indicators during
retrain
@ -1023,17 +1064,12 @@ class FreqaiDataKitchen:
:returns:
dataframe: DataFrame = dataframe containing populated indicators
"""
dataframe = base_dataframes[self.config['timeframe']].copy()
dataframe = base_dataframes[self.config["timeframe"]].copy()
pairs = self.freqai_config.get("corr_pairlist", [])
for tf in self.freqai_config.get("timeframes"):
dataframe = strategy.populate_any_indicators(
pair,
pair,
dataframe.copy(),
tf,
base_dataframes[tf],
coin=pair.split("/")[0] + "-"
pair, pair, dataframe.copy(), tf, base_dataframes[tf], coin=pair.split("/")[0] + "-"
)
if pairs:
for i in pairs:
@ -1045,7 +1081,7 @@ class FreqaiDataKitchen:
dataframe.copy(),
tf,
corr_dataframes[i][tf],
coin=i.split("/")[0] + "-"
coin=i.split("/")[0] + "-",
)
return dataframe
@ -1056,7 +1092,7 @@ class FreqaiDataKitchen:
"""
import scipy as spy
self.data['labels_mean'], self.data['labels_std'] = {}, {}
self.data["labels_mean"], self.data["labels_std"] = {}, {}
for label in self.label_list:
f = spy.stats.norm.fit(self.data_dictionary["train_labels"][label])
self.data["labels_mean"][label], self.data["labels_std"][label] = f[0], f[1]

View File

@ -29,6 +29,7 @@ logger = logging.getLogger(__name__)
def threaded(fn):
def wrapper(*args, **kwargs):
threading.Thread(target=fn, args=args, kwargs=kwargs).start()
return wrapper
@ -46,7 +47,7 @@ class IFreqaiModel(ABC):
self.config = config
self.assert_config(self.config)
self.freqai_info = config["freqai"]
self.data_split_parameters = config.get('freqai', {}).get("data_split_parameters")
self.data_split_parameters = config.get("freqai", {}).get("data_split_parameters")
self.model_training_parameters = config.get("freqai", {}).get("model_training_parameters")
self.feature_parameters = config.get("freqai", {}).get("feature_parameters")
self.time_last_trained = None
@ -58,23 +59,21 @@ class IFreqaiModel(ABC):
self.first = True
self.update_historic_data = 0
self.set_full_path()
self.follow_mode = self.freqai_info.get('follow_mode', False)
self.follow_mode = self.freqai_info.get("follow_mode", False)
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
self.lock = threading.Lock()
self.follow_mode = self.freqai_info.get('follow_mode', False)
self.identifier = self.freqai_info.get('identifier', 'no_id_provided')
self.follow_mode = self.freqai_info.get("follow_mode", False)
self.identifier = self.freqai_info.get("identifier", "no_id_provided")
self.scanning = False
self.ready_to_scan = False
self.first = True
self.keras = self.freqai_info.get('keras', False)
self.CONV_WIDTH = self.freqai_info.get('conv_width', 2)
self.keras = self.freqai_info.get("keras", False)
self.CONV_WIDTH = self.freqai_info.get("conv_width", 2)
def assert_config(self, config: Dict[str, Any]) -> None:
if not config.get('freqai', {}):
raise OperationalException(
"No freqai parameters found in configuration file."
)
if not config.get("freqai", {}):
raise OperationalException("No freqai parameters found in configuration file.")
def start(self, dataframe: DataFrame, metadata: dict, strategy: IStrategy) -> DataFrame:
"""
@ -92,8 +91,7 @@ class IFreqaiModel(ABC):
self.dd.set_pair_dict_info(metadata)
if self.live:
self.dk = FreqaiDataKitchen(self.config, self.dd,
self.live, metadata["pair"])
self.dk = FreqaiDataKitchen(self.config, self.dd, self.live, metadata["pair"])
dk = self.start_live(dataframe, metadata, strategy, self.dk)
# For backtesting, each pair enters and then gets trained for each window along the
@ -103,7 +101,7 @@ class IFreqaiModel(ABC):
# the concatenated results for the full backtesting period back to the strategy.
elif not self.follow_mode:
self.dk = FreqaiDataKitchen(self.config, self.dd, self.live, metadata["pair"])
logger.info(f'Training {len(self.dk.training_timeranges)} timeranges')
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
dk = self.start_backtesting(dataframe, metadata, self.dk)
dataframe = self.remove_features_from_df(dk.return_dataframe)
@ -120,14 +118,13 @@ class IFreqaiModel(ABC):
"""
while 1:
time.sleep(1)
for pair in self.config.get('exchange', {}).get('pair_whitelist'):
for pair in self.config.get("exchange", {}).get("pair_whitelist"):
(_, trained_timestamp, _, _) = self.dd.get_pair_dict_info(pair)
if self.dd.pair_dict[pair]['priority'] != 1:
if self.dd.pair_dict[pair]["priority"] != 1:
continue
dk = FreqaiDataKitchen(self.config, self.dd,
self.live, pair)
dk = FreqaiDataKitchen(self.config, self.dd, self.live, pair)
# file_exists = False
@ -138,17 +135,21 @@ class IFreqaiModel(ABC):
# model_filename=model_filename,
# scanning=True)
(retrain,
(
retrain,
new_trained_timerange,
data_load_timerange) = dk.check_if_new_training_required(trained_timestamp)
data_load_timerange,
) = dk.check_if_new_training_required(trained_timestamp)
dk.set_paths(pair, new_trained_timerange.stopts)
if retrain: # or not file_exists:
self.train_model_in_series(new_trained_timerange, pair,
strategy, dk, data_load_timerange)
self.train_model_in_series(
new_trained_timerange, pair, strategy, dk, data_load_timerange
)
def start_backtesting(self, dataframe: DataFrame, metadata: dict,
dk: FreqaiDataKitchen) -> FreqaiDataKitchen:
def start_backtesting(
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
) -> FreqaiDataKitchen:
"""
The main broad execution for backtesting. For backtesting, each pair enters and then gets
trained for each window along the sliding window defined by "train_period" (training window)
@ -169,10 +170,8 @@ class IFreqaiModel(ABC):
# tr_backtest is the backtesting time range e.g. the week directly
# following tr_train. Both of these windows slide through the
# entire backtest
for tr_train, tr_backtest in zip(
dk.training_timeranges, dk.backtesting_timeranges
):
(_, _, _, _) = self.dd.get_pair_dict_info(metadata['pair'])
for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges):
(_, _, _, _) = self.dd.get_pair_dict_info(metadata["pair"])
gc.collect()
dk.data = {} # clean the pair specific data between training window sliding
self.training_timerange = tr_train
@ -181,40 +180,48 @@ class IFreqaiModel(ABC):
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
trained_timestamp = tr_train # TimeRange.parse_timerange(tr_train)
tr_train_startts_str = datetime.datetime.utcfromtimestamp(
tr_train.startts).strftime('%Y-%m-%d %H:%M:%S')
tr_train_stopts_str = datetime.datetime.utcfromtimestamp(
tr_train.stopts).strftime('%Y-%m-%d %H:%M:%S')
tr_train_startts_str = datetime.datetime.utcfromtimestamp(tr_train.startts).strftime(
"%Y-%m-%d %H:%M:%S"
)
tr_train_stopts_str = datetime.datetime.utcfromtimestamp(tr_train.stopts).strftime(
"%Y-%m-%d %H:%M:%S"
)
logger.info("Training %s", metadata["pair"])
logger.info(f'Training {tr_train_startts_str} to {tr_train_stopts_str}')
logger.info(f"Training {tr_train_startts_str} to {tr_train_stopts_str}")
dk.data_path = Path(dk.full_path /
str("sub-train" + "-" + metadata['pair'].split("/")[0] +
str(int(trained_timestamp.stopts))))
if not self.model_exists(metadata["pair"], dk,
trained_timestamp=trained_timestamp.stopts):
self.model = self.train(dataframe_train, metadata['pair'], dk)
self.dd.pair_dict[metadata['pair']][
'trained_timestamp'] = trained_timestamp.stopts
dk.set_new_model_names(metadata['pair'], trained_timestamp)
dk.save_data(self.model, metadata['pair'], keras_model=self.keras)
dk.data_path = Path(
dk.full_path
/ str(
"sub-train"
+ "-"
+ metadata["pair"].split("/")[0]
+ str(int(trained_timestamp.stopts))
)
)
if not self.model_exists(
metadata["pair"], dk, trained_timestamp=trained_timestamp.stopts
):
self.model = self.train(dataframe_train, metadata["pair"], dk)
self.dd.pair_dict[metadata["pair"]]["trained_timestamp"] = trained_timestamp.stopts
dk.set_new_model_names(metadata["pair"], trained_timestamp)
dk.save_data(self.model, metadata["pair"], keras_model=self.keras)
else:
self.model = dk.load_data(metadata['pair'], keras_model=self.keras)
self.model = dk.load_data(metadata["pair"], keras_model=self.keras)
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
preds, do_preds = self.predict(dataframe_backtest, dk)
dk.append_predictions(preds, do_preds, len(dataframe_backtest))
print('predictions', len(dk.full_predictions),
'do_predict', len(dk.full_do_predict))
print("predictions", len(dk.full_predictions), "do_predict", len(dk.full_do_predict))
dk.fill_predictions(len(dataframe))
return dk
def start_live(self, dataframe: DataFrame, metadata: dict,
strategy: IStrategy, dk: FreqaiDataKitchen) -> FreqaiDataKitchen:
def start_live(
self, dataframe: DataFrame, metadata: dict, strategy: IStrategy, dk: FreqaiDataKitchen
) -> FreqaiDataKitchen:
"""
The main broad execution for dry/live. This function will check if a retraining should be
performed, and if so, retrain and reset the model.
@ -232,14 +239,11 @@ class IFreqaiModel(ABC):
self.dd.update_follower_metadata()
# get the model metadata associated with the current pair
(_,
trained_timestamp,
_,
return_null_array) = self.dd.get_pair_dict_info(metadata['pair'])
(_, trained_timestamp, _, return_null_array) = self.dd.get_pair_dict_info(metadata["pair"])
# if the metadata doesnt exist, the follower returns null arrays to strategy
if self.follow_mode and return_null_array:
logger.info('Returning null array from follower to strategy')
logger.info("Returning null array from follower to strategy")
self.dd.return_null_values_to_strategy(dataframe, dk)
return dk
@ -253,16 +257,18 @@ class IFreqaiModel(ABC):
# if not trainable, load existing data
if not self.follow_mode:
(_,
new_trained_timerange,
data_load_timerange) = dk.check_if_new_training_required(trained_timestamp)
dk.set_paths(metadata['pair'], new_trained_timerange.stopts)
(_, new_trained_timerange, data_load_timerange) = dk.check_if_new_training_required(
trained_timestamp
)
dk.set_paths(metadata["pair"], new_trained_timerange.stopts)
# download candle history if it is not already in memory
if not self.dd.historic_data:
logger.info('Downloading all training data for all pairs in whitelist and '
'corr_pairlist, this may take a while if you do not have the '
'data saved')
logger.info(
"Downloading all training data for all pairs in whitelist and "
"corr_pairlist, this may take a while if you do not have the "
"data saved"
)
dk.download_all_data_for_training(data_load_timerange)
dk.load_all_pair_histories(data_load_timerange)
@ -271,53 +277,47 @@ class IFreqaiModel(ABC):
self.start_scanning(strategy)
elif self.follow_mode:
dk.set_paths(metadata['pair'], trained_timestamp)
logger.info('FreqAI instance set to follow_mode, finding existing pair'
f'using { self.identifier }')
dk.set_paths(metadata["pair"], trained_timestamp)
logger.info(
"FreqAI instance set to follow_mode, finding existing pair"
f"using { self.identifier }"
)
# load the model and associated data into the data kitchen
self.model = dk.load_data(coin=metadata['pair'], keras_model=self.keras)
self.model = dk.load_data(coin=metadata["pair"], keras_model=self.keras)
if not self.model:
logger.warning('No model ready, returning null values to strategy.')
logger.warning("No model ready, returning null values to strategy.")
self.dd.return_null_values_to_strategy(dataframe, dk)
return dk
# ensure user is feeding the correct indicators to the model
self.check_if_feature_list_matches_strategy(dataframe, dk)
self.build_strategy_return_arrays(dataframe, dk, metadata['pair'], trained_timestamp)
self.build_strategy_return_arrays(dataframe, dk, metadata["pair"], trained_timestamp)
return dk
def build_strategy_return_arrays(self, dataframe: DataFrame,
dk: FreqaiDataKitchen, pair: str,
trained_timestamp: int) -> None:
def build_strategy_return_arrays(
self, dataframe: DataFrame, dk: FreqaiDataKitchen, pair: str, trained_timestamp: int
) -> None:
# hold the historical predictions in memory so we are sending back
# correct array to strategy
if pair not in self.dd.model_return_values:
pred_df, do_preds = self.predict(dataframe, dk)
# mypy doesnt like the typing in else statement, so we need to explicitly add to
# dataframe separately
# for label in dk.label_list:
# dataframe[label] = pred_df[label]
# dataframe['do_predict'] = do_preds
# dk.append_predictions(preds, do_preds, len(dataframe))
# dk.fill_predictions(len(dataframe))
self.dd.set_initial_return_values(pair, dk, pred_df, do_preds)
dk.return_dataframe = self.dd.attach_return_values_to_return_dataframe(pair, dataframe)
return
elif self.dk.check_if_model_expired(trained_timestamp):
pred_df = DataFrame(np.zeros((2, len(dk.label_list))), columns=dk.label_list)
do_preds, dk.DI_values = np.ones(2) * 2, np.zeros(2)
logger.warning('Model expired, returning null values to strategy. Strategy '
'construction should take care to consider this event with '
'prediction == 0 and do_predict == 2')
logger.warning(
"Model expired, returning null values to strategy. Strategy "
"construction should take care to consider this event with "
"prediction == 0 and do_predict == 2"
)
else:
# Only feed in the most recent candle for prediction in live scenario
pred_df, do_preds = self.predict(dataframe.iloc[-self.CONV_WIDTH:], dk, first=False)
@ -327,8 +327,9 @@ class IFreqaiModel(ABC):
return
def check_if_feature_list_matches_strategy(self, dataframe: DataFrame,
dk: FreqaiDataKitchen) -> None:
def check_if_feature_list_matches_strategy(
self, dataframe: DataFrame, dk: FreqaiDataKitchen
) -> None:
"""
Ensure user is passing the proper feature set if they are reusing an `identifier` pointing
to a folder holding existing models.
@ -337,16 +338,18 @@ class IFreqaiModel(ABC):
dk: FreqaiDataKitchen = non-persistent data container/analyzer for current coin/bot loop
"""
dk.find_features(dataframe)
if 'training_features_list_raw' in dk.data:
feature_list = dk.data['training_features_list_raw']
if "training_features_list_raw" in dk.data:
feature_list = dk.data["training_features_list_raw"]
else:
feature_list = dk.training_features_list
if dk.training_features_list != feature_list:
raise OperationalException("Trying to access pretrained model with `identifier` "
raise OperationalException(
"Trying to access pretrained model with `identifier` "
"but found different features furnished by current strategy."
"Change `identifer` to train from scratch, or ensure the"
"strategy is furnishing the same features as the pretrained"
"model")
"model"
)
def data_cleaning_train(self, dk: FreqaiDataKitchen) -> None:
"""
@ -356,13 +359,13 @@ class IFreqaiModel(ABC):
of how outlier data points are dropped from the dataframe used for training.
"""
if self.freqai_info.get('feature_parameters', {}).get('principal_component_analysis'):
if self.freqai_info.get("feature_parameters", {}).get("principal_component_analysis"):
dk.principal_component_analysis()
if self.freqai_info.get('feature_parameters', {}).get('use_SVM_to_remove_outliers'):
if self.freqai_info.get("feature_parameters", {}).get("use_SVM_to_remove_outliers"):
dk.use_SVM_to_remove_outliers(predict=False)
if self.freqai_info.get('feature_parameters', {}).get('DI_threshold'):
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold"):
dk.data["avg_mean_dist"] = dk.compute_distances()
# if self.feature_parameters["determine_statistical_distributions"]:
@ -381,13 +384,13 @@ class IFreqaiModel(ABC):
of how the do_predict vector is modified. do_predict is ultimately passed back to strategy
for buy signals.
"""
if self.freqai_info.get('feature_parameters', {}).get('principal_component_analysis'):
if self.freqai_info.get("feature_parameters", {}).get("principal_component_analysis"):
dk.pca_transform(dataframe)
if self.freqai_info.get('feature_parameters', {}).get('use_SVM_to_remove_outliers'):
if self.freqai_info.get("feature_parameters", {}).get("use_SVM_to_remove_outliers"):
dk.use_SVM_to_remove_outliers(predict=True)
if self.freqai_info.get('feature_parameters', {}).get('DI_threshold'):
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold"):
dk.check_if_pred_in_training_spaces()
# if self.feature_parameters["determine_statistical_distributions"]:
@ -395,8 +398,14 @@ class IFreqaiModel(ABC):
# if self.feature_parameters["remove_outliers"]:
# dk.remove_outliers(predict=True) # creates dropped index
def model_exists(self, pair: str, dk: FreqaiDataKitchen, trained_timestamp: int = None,
model_filename: str = '', scanning: bool = False) -> bool:
def model_exists(
self,
pair: str,
dk: FreqaiDataKitchen,
trained_timestamp: int = None,
model_filename: str = "",
scanning: bool = False,
) -> bool:
"""
Given a pair and path, check if a model already exists
:param pair: pair e.g. BTC/USD
@ -416,25 +425,33 @@ class IFreqaiModel(ABC):
return file_exists
def set_full_path(self) -> None:
self.full_path = Path(self.config['user_data_dir'] /
"models" /
str(self.freqai_info.get('identifier')))
self.full_path = Path(
self.config["user_data_dir"] / "models" / str(self.freqai_info.get("identifier"))
)
self.full_path.mkdir(parents=True, exist_ok=True)
shutil.copy(self.config['config_files'][0], Path(self.full_path,
Path(self.config['config_files'][0]).name))
shutil.copy(
self.config["config_files"][0],
Path(self.full_path, Path(self.config["config_files"][0]).name),
)
def remove_features_from_df(self, dataframe: DataFrame) -> DataFrame:
"""
Remove the features from the dataframe before returning it to strategy. This keeps it
compact for Frequi purposes.
"""
to_keep = [col for col in dataframe.columns
if not col.startswith('%') or col.startswith('%%')]
to_keep = [
col for col in dataframe.columns if not col.startswith("%") or col.startswith("%%")
]
return dataframe[to_keep]
def train_model_in_series(self, new_trained_timerange: TimeRange, pair: str,
strategy: IStrategy, dk: FreqaiDataKitchen,
data_load_timerange: TimeRange):
def train_model_in_series(
self,
new_trained_timerange: TimeRange,
pair: str,
strategy: IStrategy,
dk: FreqaiDataKitchen,
data_load_timerange: TimeRange,
):
"""
Retreive data and train model in single threaded mode (only used if model directory is empty
upon startup for dry/live )
@ -447,13 +464,13 @@ class IFreqaiModel(ABC):
(larger than new_trained_timerange so that new_trained_timerange does not contain any NaNs)
"""
corr_dataframes, base_dataframes = dk.get_base_and_corr_dataframes(data_load_timerange,
pair)
corr_dataframes, base_dataframes = dk.get_base_and_corr_dataframes(
data_load_timerange, pair
)
unfiltered_dataframe = dk.use_strategy_to_populate_indicators(strategy,
corr_dataframes,
base_dataframes,
pair)
unfiltered_dataframe = dk.use_strategy_to_populate_indicators(
strategy, corr_dataframes, base_dataframes, pair
)
unfiltered_dataframe = dk.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
@ -462,15 +479,15 @@ class IFreqaiModel(ABC):
model = self.train(unfiltered_dataframe, pair, dk)
self.dd.pair_dict[pair]['trained_timestamp'] = new_trained_timerange.stopts
self.dd.pair_dict[pair]["trained_timestamp"] = new_trained_timerange.stopts
dk.set_new_model_names(pair, new_trained_timerange)
self.dd.pair_dict[pair]['first'] = False
if self.dd.pair_dict[pair]['priority'] == 1 and self.scanning:
self.dd.pair_dict[pair]["first"] = False
if self.dd.pair_dict[pair]["priority"] == 1 and self.scanning:
with self.lock:
self.dd.pair_to_end_of_training_queue(pair)
dk.save_data(model, coin=pair, keras_model=self.keras)
if self.freqai_info.get('purge_old_models', False):
if self.freqai_info.get("purge_old_models", False):
self.dd.purge_old_models()
# self.retrain = False
@ -503,8 +520,9 @@ class IFreqaiModel(ABC):
return
@abstractmethod
def predict(self, dataframe: DataFrame,
dk: FreqaiDataKitchen, first: bool = True) -> Tuple[DataFrame, npt.ArrayLike]:
def predict(
self, dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = True
) -> Tuple[DataFrame, npt.ArrayLike]:
"""
Filter the prediction features data and predict with it.
:param:

View File

@ -45,8 +45,9 @@ class CatboostPredictionModel(IFreqaiModel):
return dataframe["s"]
def train(self, unfiltered_dataframe: DataFrame,
pair: str, dk: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
for storing, saving, loading, and analyzing the data.
@ -57,8 +58,7 @@ class CatboostPredictionModel(IFreqaiModel):
:model: Trained model which can be used to inference (self.predict)
"""
logger.info('--------------------Starting training '
f'{pair} --------------------')
logger.info("--------------------Starting training " f"{pair} --------------------")
# unfiltered_labels = self.make_labels(unfiltered_dataframe, dk)
# filter the features requested by user in the configuration file and elegantly handle NaNs
@ -78,13 +78,14 @@ class CatboostPredictionModel(IFreqaiModel):
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
' features')
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
logger.info(f'--------------------done training {pair}--------------------')
logger.info(f"--------------------done training {pair}--------------------")
return model
@ -110,14 +111,17 @@ class CatboostPredictionModel(IFreqaiModel):
model = CatBoostRegressor(
allow_writing_files=False,
verbose=100, early_stopping_rounds=400, **self.model_training_parameters
verbose=100,
early_stopping_rounds=400,
**self.model_training_parameters,
)
model.fit(X=train_data, eval_set=test_data)
return model
def predict(self, unfiltered_dataframe: DataFrame,
dk: FreqaiDataKitchen, first: bool = False) -> Tuple[DataFrame, DataFrame]:
def predict(
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
@ -141,8 +145,10 @@ class CatboostPredictionModel(IFreqaiModel):
pred_df = DataFrame(predictions, columns=dk.label_list)
for label in dk.label_list:
pred_df[label] = ((pred_df[label] + 1) *
(dk.data["labels_max"][label] -
dk.data["labels_min"][label]) / 2) + dk.data["labels_min"][label]
pred_df[label] = (
(pred_df[label] + 1)
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
/ 2
) + dk.data["labels_min"][label]
return (pred_df, dk.do_predict)

View File

@ -28,8 +28,9 @@ class CatboostPredictionMultiModel(IFreqaiModel):
return dataframe
def train(self, unfiltered_dataframe: DataFrame,
pair: str, dk: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
for storing, saving, loading, and analyzing the data.
@ -40,8 +41,7 @@ class CatboostPredictionMultiModel(IFreqaiModel):
:model: Trained model which can be used to inference (self.predict)
"""
logger.info('--------------------Starting training '
f'{pair} --------------------')
logger.info("--------------------Starting training " f"{pair} --------------------")
# unfiltered_labels = self.make_labels(unfiltered_dataframe, dk)
# filter the features requested by user in the configuration file and elegantly handle NaNs
@ -61,13 +61,14 @@ class CatboostPredictionMultiModel(IFreqaiModel):
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
' features')
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
logger.info(f'--------------------done training {pair}--------------------')
logger.info(f"--------------------done training {pair}--------------------")
return model
@ -80,22 +81,26 @@ class CatboostPredictionMultiModel(IFreqaiModel):
"""
cbr = CatBoostRegressor(
allow_writing_files=False, gpu_ram_part=0.5,
verbose=100, early_stopping_rounds=400, **self.model_training_parameters
allow_writing_files=False,
gpu_ram_part=0.5,
verbose=100,
early_stopping_rounds=400,
**self.model_training_parameters,
)
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
# eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
sample_weight = data_dictionary['train_weights']
sample_weight = data_dictionary["train_weights"]
model = MultiOutputRegressor(estimator=cbr)
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
return model
def predict(self, unfiltered_dataframe: DataFrame,
dk: FreqaiDataKitchen, first: bool = False) -> Tuple[DataFrame, DataFrame]:
def predict(
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
@ -119,8 +124,10 @@ class CatboostPredictionMultiModel(IFreqaiModel):
pred_df = DataFrame(predictions, columns=dk.label_list)
for label in dk.label_list:
pred_df[label] = ((pred_df[label] + 1) *
(dk.data["labels_max"][label] -
dk.data["labels_min"][label]) / 2) + dk.data["labels_min"][label]
pred_df[label] = (
(pred_df[label] + 1)
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
/ 2
) + dk.data["labels_min"][label]
return (pred_df, dk.do_predict)

View File

@ -27,8 +27,9 @@ class LightGBMPredictionModel(IFreqaiModel):
return dataframe
def train(self, unfiltered_dataframe: DataFrame,
pair: str, dk: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
def train(
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
for storing, saving, loading, and analyzing the data.
@ -39,8 +40,7 @@ class LightGBMPredictionModel(IFreqaiModel):
:model: Trained model which can be used to inference (self.predict)
"""
logger.info('--------------------Starting training '
f'{pair} --------------------')
logger.info("--------------------Starting training " f"{pair} --------------------")
# unfiltered_labels = self.make_labels(unfiltered_dataframe, dk)
# filter the features requested by user in the configuration file and elegantly handle NaNs
@ -60,13 +60,14 @@ class LightGBMPredictionModel(IFreqaiModel):
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
' features')
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
)
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
model = self.fit(data_dictionary)
logger.info(f'--------------------done training {pair}--------------------')
logger.info(f"--------------------done training {pair}--------------------")
return model
@ -89,8 +90,9 @@ class LightGBMPredictionModel(IFreqaiModel):
return model
def predict(self, unfiltered_dataframe: DataFrame,
dk: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
def predict(
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
@ -116,8 +118,10 @@ class LightGBMPredictionModel(IFreqaiModel):
pred_df = DataFrame(predictions, columns=dk.label_list)
for label in dk.label_list:
pred_df[label] = ((pred_df[label] + 1) *
(dk.data["labels_max"][label] -
dk.data["labels_min"][label]) / 2) + dk.data["labels_min"][label]
pred_df[label] = (
(pred_df[label] + 1)
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
/ 2
) + dk.data["labels_min"][label]
return (pred_df, dk.do_predict)

View File

@ -120,9 +120,7 @@ class FreqaiExampleStrategy(IStrategy):
informative["close"] / informative[f"{coin}bb_lowerband-period_{t}"]
)
informative[f"%-{coin}roc-period_{t}"] = ta.ROC(
informative, timeperiod=t
)
informative[f"%-{coin}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
macd = ta.MACD(informative, timeperiod=t)
informative[f"%-{coin}macd-period_{t}"] = macd["macd"]
@ -152,17 +150,17 @@ class FreqaiExampleStrategy(IStrategy):
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if pair == self.freqai_info['corr_pairlist'][0] and tf == self.timeframe:
if pair == self.freqai_info["corr_pairlist"][0] and tf == self.timeframe:
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df['&-s_close'] = (
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info['feature_parameters']["period"])
.rolling(self.freqai_info['feature_parameters']["period"])
.shift(-self.freqai_info["feature_parameters"]["period"])
.rolling(self.freqai_info["feature_parameters"]["period"])
.mean()
/ df["close"]
- 1
@ -231,19 +229,20 @@ class FreqaiExampleStrategy(IStrategy):
def get_ticker_indicator(self):
return int(self.config["timeframe"][:-1])
def custom_exit(self, pair: str, trade: Trade, current_time, current_rate,
current_profit, **kwargs):
def custom_exit(
self, pair: str, trade: Trade, current_time, current_rate, current_profit, **kwargs
):
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
trade_date = timeframe_to_prev_date(self.config['timeframe'], trade.open_date_utc)
trade_candle = dataframe.loc[(dataframe['date'] == trade_date)]
trade_date = timeframe_to_prev_date(self.config["timeframe"], trade.open_date_utc)
trade_candle = dataframe.loc[(dataframe["date"] == trade_date)]
if trade_candle.empty:
return None
trade_candle = trade_candle.squeeze()
follow_mode = self.config.get('freqai', {}).get('follow_mode', False)
follow_mode = self.config.get("freqai", {}).get("follow_mode", False)
if not follow_mode:
pair_dict = self.model.bridge.data_drawer.pair_dict
@ -252,30 +251,33 @@ class FreqaiExampleStrategy(IStrategy):
entry_tag = trade.enter_tag
if ('prediction' + entry_tag not in pair_dict[pair] or
pair_dict[pair]['prediction' + entry_tag] > 0):
if (
"prediction" + entry_tag not in pair_dict[pair]
or pair_dict[pair]["prediction" + entry_tag] > 0
):
with self.model.bridge.lock:
pair_dict[pair]['prediction' + entry_tag] = abs(trade_candle['&-s_close'])
pair_dict[pair]["prediction" + entry_tag] = abs(trade_candle["&-s_close"])
if not follow_mode:
self.model.bridge.data_drawer.save_drawer_to_disk()
else:
self.model.bridge.data_drawer.save_follower_dict_to_disk()
roi_price = pair_dict[pair]['prediction' + entry_tag]
roi_price = pair_dict[pair]["prediction" + entry_tag]
roi_time = self.max_roi_time_long.value
roi_decay = roi_price * (1 - ((current_time - trade.open_date_utc).seconds) /
(roi_time * 60))
roi_decay = roi_price * (
1 - ((current_time - trade.open_date_utc).seconds) / (roi_time * 60)
)
if roi_decay < 0:
roi_decay = self.linear_roi_offset.value
else:
roi_decay += self.linear_roi_offset.value
if current_profit > roi_decay:
return 'roi_custom_win'
return "roi_custom_win"
if current_profit < -roi_decay:
return 'roi_custom_loss'
return "roi_custom_loss"
def confirm_trade_exit(
self,
@ -287,7 +289,7 @@ class FreqaiExampleStrategy(IStrategy):
time_in_force: str,
exit_reason: str,
current_time,
**kwargs
**kwargs,
) -> bool:
entry_tag = trade.enter_tag
@ -316,7 +318,7 @@ class FreqaiExampleStrategy(IStrategy):
current_time,
entry_tag,
side: str,
**kwargs
**kwargs,
) -> bool:
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)