black formatting on freqai files

This commit is contained in:
robcaulk
2022-07-03 10:59:38 +02:00
parent 106131ff0f
commit ffb39a5029
7 changed files with 508 additions and 427 deletions

View File

@@ -1,4 +1,3 @@
import collections
import json
import logging
@@ -27,10 +26,11 @@ class FreqaiDataDrawer:
This object remains persistent throughout live/dry, unlike FreqaiDataKitchen, which is
reinstantiated for each coin.
"""
def __init__(self, full_path: Path, config: dict, follow_mode: bool = False):
self.config = config
self.freqai_info = config.get('freqai', {})
self.freqai_info = config.get("freqai", {})
# dictionary holding all pair metadata necessary to load in from disk
self.pair_dict: Dict[str, Any] = {}
# dictionary holding all actively inferenced models in memory given a model filename
@@ -38,7 +38,6 @@ class FreqaiDataDrawer:
self.model_return_values: Dict[str, Any] = {}
self.pair_data_dict: Dict[str, Any] = {}
self.historic_data: Dict[str, Any] = {}
# self.populated_historic_data: Dict[str, Any] = {} ?
self.follower_dict: Dict[str, Any] = {}
self.full_path = full_path
self.follow_mode = follow_mode
@@ -47,7 +46,6 @@ class FreqaiDataDrawer:
self.load_drawer_from_disk()
self.training_queue: Dict[str, int] = {}
self.history_lock = threading.Lock()
# self.create_training_queue(pair_whitelist)
def load_drawer_from_disk(self):
"""
@@ -56,15 +54,17 @@ class FreqaiDataDrawer:
:returns:
exists: bool = whether or not the drawer was located
"""
exists = Path(self.full_path / str('pair_dictionary.json')).resolve().exists()
exists = Path(self.full_path / str("pair_dictionary.json")).resolve().exists()
if exists:
with open(self.full_path / str('pair_dictionary.json'), "r") as fp:
with open(self.full_path / str("pair_dictionary.json"), "r") as fp:
self.pair_dict = json.load(fp)
elif not self.follow_mode:
logger.info("Could not find existing datadrawer, starting from scratch")
else:
logger.warning(f'Follower could not find pair_dictionary at {self.full_path} '
'sending null values back to strategy')
logger.warning(
f"Follower could not find pair_dictionary at {self.full_path} "
"sending null values back to strategy"
)
return exists
@@ -72,36 +72,41 @@ class FreqaiDataDrawer:
"""
Save data drawer full of all pair model metadata in present model folder.
"""
with open(self.full_path / str('pair_dictionary.json'), "w") as fp:
with open(self.full_path / str("pair_dictionary.json"), "w") as fp:
json.dump(self.pair_dict, fp, default=self.np_encoder)
def save_follower_dict_to_disk(self):
"""
Save follower dictionary to disk (used by strategy for persistent prediction targets)
"""
follower_name = self.config.get('bot_name', 'follower1')
with open(self.full_path / str('follower_dictionary-' +
follower_name + '.json'), "w") as fp:
follower_name = self.config.get("bot_name", "follower1")
with open(
self.full_path / str("follower_dictionary-" + follower_name + ".json"), "w"
) as fp:
json.dump(self.follower_dict, fp, default=self.np_encoder)
def create_follower_dict(self):
"""
Create or dictionary for each follower to maintain unique persistent prediction targets
"""
follower_name = self.config.get('bot_name', 'follower1')
whitelist_pairs = self.config.get('exchange', {}).get('pair_whitelist')
follower_name = self.config.get("bot_name", "follower1")
whitelist_pairs = self.config.get("exchange", {}).get("pair_whitelist")
exists = Path(self.full_path / str('follower_dictionary-' +
follower_name + '.json')).resolve().exists()
exists = (
Path(self.full_path / str("follower_dictionary-" + follower_name + ".json"))
.resolve()
.exists()
)
if exists:
logger.info('Found an existing follower dictionary')
logger.info("Found an existing follower dictionary")
for pair in whitelist_pairs:
self.follower_dict[pair] = {}
with open(self.full_path / str('follower_dictionary-' +
follower_name + '.json'), "w") as fp:
with open(
self.full_path / str("follower_dictionary-" + follower_name + ".json"), "w"
) as fp:
json.dump(self.follower_dict, fp, default=self.np_encoder)
def np_encoder(self, object):
@@ -122,46 +127,48 @@ class FreqaiDataDrawer:
return_null_array: bool = Follower could not find pair metadata
"""
pair_in_dict = self.pair_dict.get(pair)
data_path_set = self.pair_dict.get(pair, {}).get('data_path', None)
data_path_set = self.pair_dict.get(pair, {}).get("data_path", None)
return_null_array = False
if pair_in_dict:
model_filename = self.pair_dict[pair]['model_filename']
trained_timestamp = self.pair_dict[pair]['trained_timestamp']
coin_first = self.pair_dict[pair]['first']
model_filename = self.pair_dict[pair]["model_filename"]
trained_timestamp = self.pair_dict[pair]["trained_timestamp"]
coin_first = self.pair_dict[pair]["first"]
elif not self.follow_mode:
self.pair_dict[pair] = {}
model_filename = self.pair_dict[pair]['model_filename'] = ''
coin_first = self.pair_dict[pair]['first'] = True
trained_timestamp = self.pair_dict[pair]['trained_timestamp'] = 0
self.pair_dict[pair]['priority'] = len(self.pair_dict)
model_filename = self.pair_dict[pair]["model_filename"] = ""
coin_first = self.pair_dict[pair]["first"] = True
trained_timestamp = self.pair_dict[pair]["trained_timestamp"] = 0
self.pair_dict[pair]["priority"] = len(self.pair_dict)
if not data_path_set and self.follow_mode:
logger.warning(f'Follower could not find current pair {pair} in '
f'pair_dictionary at path {self.full_path}, sending null values '
'back to strategy.')
logger.warning(
f"Follower could not find current pair {pair} in "
f"pair_dictionary at path {self.full_path}, sending null values "
"back to strategy."
)
return_null_array = True
return model_filename, trained_timestamp, coin_first, return_null_array
def set_pair_dict_info(self, metadata: dict) -> None:
pair_in_dict = self.pair_dict.get(metadata['pair'])
pair_in_dict = self.pair_dict.get(metadata["pair"])
if pair_in_dict:
return
else:
self.pair_dict[metadata['pair']] = {}
self.pair_dict[metadata['pair']]['model_filename'] = ''
self.pair_dict[metadata['pair']]['first'] = True
self.pair_dict[metadata['pair']]['trained_timestamp'] = 0
self.pair_dict[metadata['pair']]['priority'] = len(self.pair_dict)
self.pair_dict[metadata["pair"]] = {}
self.pair_dict[metadata["pair"]]["model_filename"] = ""
self.pair_dict[metadata["pair"]]["first"] = True
self.pair_dict[metadata["pair"]]["trained_timestamp"] = 0
self.pair_dict[metadata["pair"]]["priority"] = len(self.pair_dict)
return
def pair_to_end_of_training_queue(self, pair: str) -> None:
# march all pairs up in the queue
for p in self.pair_dict:
self.pair_dict[p]['priority'] -= 1
self.pair_dict[p]["priority"] -= 1
# send pair to end of queue
self.pair_dict[pair]['priority'] = len(self.pair_dict)
self.pair_dict[pair]["priority"] = len(self.pair_dict)
def set_initial_return_values(self, pair: str, dk, pred_df, do_preds) -> None:
"""
@@ -172,16 +179,15 @@ class FreqaiDataDrawer:
self.model_return_values[pair] = pd.DataFrame()
for label in dk.label_list:
self.model_return_values[pair][label] = pred_df[label]
self.model_return_values[pair][f'{label}_mean'] = dk.data['labels_mean'][label]
self.model_return_values[pair][f'{label}_std'] = dk.data['labels_std'][label]
self.model_return_values[pair][f"{label}_mean"] = dk.data["labels_mean"][label]
self.model_return_values[pair][f"{label}_std"] = dk.data["labels_std"][label]
if self.freqai_info.get('feature_parameters', {}).get('DI_threshold', 0) > 0:
self.model_return_values[pair]['DI_values'] = dk.DI_values
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
self.model_return_values[pair]["DI_values"] = dk.DI_values
self.model_return_values[pair]['do_predict'] = do_preds
self.model_return_values[pair]["do_predict"] = do_preds
def append_model_predictions(self, pair: str, predictions, do_preds,
dk, len_df) -> None:
def append_model_predictions(self, pair: str, predictions, do_preds, dk, len_df) -> None:
# strat seems to feed us variable sized dataframes - and since we are trying to build our
# own return array in the same shape, we need to figure out how the size has changed
@@ -198,17 +204,18 @@ class FreqaiDataDrawer:
for label in dk.label_list:
df[label].iloc[-1] = predictions[label].iloc[-1]
df[f"{label}_mean"].iloc[-1] = dk.data['labels_mean'][label]
df[f"{label}_std"].iloc[-1] = dk.data['labels_std'][label]
df[f"{label}_mean"].iloc[-1] = dk.data["labels_mean"][label]
df[f"{label}_std"].iloc[-1] = dk.data["labels_std"][label]
# df['prediction'].iloc[-1] = predictions[-1]
df['do_predict'].iloc[-1] = do_preds[-1]
df["do_predict"].iloc[-1] = do_preds[-1]
if self.freqai_info.get('feature_parameters', {}).get('DI_threshold', 0) > 0:
df['DI_values'].iloc[-1] = dk.DI_values[-1]
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
df["DI_values"].iloc[-1] = dk.DI_values[-1]
if length_difference < 0:
prepend_df = pd.DataFrame(np.zeros((abs(length_difference) - 1, len(df.columns))),
columns=df.columns)
prepend_df = pd.DataFrame(
np.zeros((abs(length_difference) - 1, len(df.columns))), columns=df.columns
)
df = pd.concat([prepend_df, df], axis=0)
def attach_return_values_to_return_dataframe(self, pair: str, dataframe) -> DataFrame:
@@ -220,7 +227,7 @@ class FreqaiDataDrawer:
dataframe: DataFrame = strat dataframe with return values attached
"""
df = self.model_return_values[pair]
to_keep = [col for col in dataframe.columns if not col.startswith('&')]
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
dataframe = pd.concat([dataframe[to_keep], df], axis=1)
return dataframe
@@ -237,10 +244,10 @@ class FreqaiDataDrawer:
dataframe[f"{label}_std"] = 0
# dataframe['prediction'] = 0
dataframe['do_predict'] = 0
dataframe["do_predict"] = 0
if self.freqai_info.get('feature_parameters', {}).get('DI_threshold', 0) > 0:
dataframe['DI_value'] = 0
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
dataframe["DI_value"] = 0
dk.return_dataframe = dataframe
@@ -261,29 +268,30 @@ class FreqaiDataDrawer:
if coin not in delete_dict:
delete_dict[coin] = {}
delete_dict[coin]['num_folders'] = 1
delete_dict[coin]['timestamps'] = {int(timestamp): dir}
delete_dict[coin]["num_folders"] = 1
delete_dict[coin]["timestamps"] = {int(timestamp): dir}
else:
delete_dict[coin]['num_folders'] += 1
delete_dict[coin]['timestamps'][int(timestamp)] = dir
delete_dict[coin]["num_folders"] += 1
delete_dict[coin]["timestamps"][int(timestamp)] = dir
for coin in delete_dict:
if delete_dict[coin]['num_folders'] > 2:
if delete_dict[coin]["num_folders"] > 2:
sorted_dict = collections.OrderedDict(
sorted(delete_dict[coin]['timestamps'].items()))
sorted(delete_dict[coin]["timestamps"].items())
)
num_delete = len(sorted_dict) - 2
deleted = 0
for k, v in sorted_dict.items():
if deleted >= num_delete:
break
logger.info(f'Freqai purging old model file {v}')
logger.info(f"Freqai purging old model file {v}")
shutil.rmtree(v)
deleted += 1
def update_follower_metadata(self):
# follower needs to load from disk to get any changes made by leader to pair_dict
self.load_drawer_from_disk()
if self.config.get('freqai', {}).get('purge_old_models', False):
if self.config.get("freqai", {}).get("purge_old_models", False):
self.purge_old_models()
# to be used if we want to send predictions directly to the follower instead of forcing