remove populate_any_indicators
This commit is contained in:
@@ -1315,123 +1315,54 @@ class FreqaiDataKitchen:
|
||||
dataframe: DataFrame = dataframe containing populated indicators
|
||||
"""
|
||||
|
||||
# this is a hack to check if the user is using the populate_any_indicators function
|
||||
# check if the user is using the deprecated populate_any_indicators function
|
||||
new_version = inspect.getsource(strategy.populate_any_indicators) == (
|
||||
inspect.getsource(IStrategy.populate_any_indicators))
|
||||
|
||||
if new_version:
|
||||
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
|
||||
pairs: List[str] = self.freqai_config["feature_parameters"].get(
|
||||
"include_corr_pairlist", [])
|
||||
if not new_version:
|
||||
raise OperationalException(
|
||||
"You are using the `populate_any_indicators()` function"
|
||||
" which was deprecated on March 1, 2023. Please refer "
|
||||
"to the strategy migration guide to use the new "
|
||||
"feature_engineering_* methods: \n"
|
||||
"https://www.freqtrade.io/en/stable/strategy_migration/#freqai-strategy \n"
|
||||
"And the feature_engineering_* documentation: \n"
|
||||
"https://www.freqtrade.io/en/latest/freqai-feature-engineering/"
|
||||
)
|
||||
|
||||
for tf in tfs:
|
||||
if tf not in base_dataframes:
|
||||
base_dataframes[tf] = pd.DataFrame()
|
||||
for p in pairs:
|
||||
if p not in corr_dataframes:
|
||||
corr_dataframes[p] = {}
|
||||
if tf not in corr_dataframes[p]:
|
||||
corr_dataframes[p][tf] = pd.DataFrame()
|
||||
|
||||
if not prediction_dataframe.empty:
|
||||
dataframe = prediction_dataframe.copy()
|
||||
else:
|
||||
dataframe = base_dataframes[self.config["timeframe"]].copy()
|
||||
|
||||
corr_pairs: List[str] = self.freqai_config["feature_parameters"].get(
|
||||
"include_corr_pairlist", [])
|
||||
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
|
||||
corr_dataframes, base_dataframes)
|
||||
metadata = {"pair": pair}
|
||||
dataframe = strategy.feature_engineering_standard(dataframe.copy(), metadata=metadata)
|
||||
# ensure corr pairs are always last
|
||||
for corr_pair in corr_pairs:
|
||||
if pair == corr_pair:
|
||||
continue # dont repeat anything from whitelist
|
||||
if corr_pairs and do_corr_pairs:
|
||||
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
|
||||
corr_dataframes, base_dataframes, True)
|
||||
|
||||
dataframe = strategy.set_freqai_targets(dataframe.copy(), metadata=metadata)
|
||||
|
||||
self.get_unique_classes_from_labels(dataframe)
|
||||
|
||||
dataframe = self.remove_special_chars_from_feature_names(dataframe)
|
||||
|
||||
if self.config.get('reduce_df_footprint', False):
|
||||
dataframe = reduce_dataframe_footprint(dataframe)
|
||||
|
||||
return dataframe
|
||||
|
||||
else:
|
||||
# the user is using the populate_any_indicators functions which is deprecated
|
||||
|
||||
df = self.use_strategy_to_populate_indicators_old_version(
|
||||
strategy, corr_dataframes, base_dataframes, pair,
|
||||
prediction_dataframe, do_corr_pairs)
|
||||
return df
|
||||
|
||||
def use_strategy_to_populate_indicators_old_version(
|
||||
self,
|
||||
strategy: IStrategy,
|
||||
corr_dataframes: dict = {},
|
||||
base_dataframes: dict = {},
|
||||
pair: str = "",
|
||||
prediction_dataframe: DataFrame = pd.DataFrame(),
|
||||
do_corr_pairs: bool = True,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Use the user defined strategy for populating indicators during retrain
|
||||
:param strategy: IStrategy = user defined strategy object
|
||||
:param corr_dataframes: dict = dict containing the df pair dataframes
|
||||
(for user defined timeframes)
|
||||
:param base_dataframes: dict = dict containing the current pair dataframes
|
||||
(for user defined timeframes)
|
||||
:param metadata: dict = strategy furnished pair metadata
|
||||
:return:
|
||||
dataframe: DataFrame = dataframe containing populated indicators
|
||||
"""
|
||||
|
||||
# for prediction dataframe creation, we let dataprovider handle everything in the strategy
|
||||
# so we create empty dictionaries, which allows us to pass None to
|
||||
# `populate_any_indicators()`. Signaling we want the dp to give us the live dataframe.
|
||||
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
|
||||
pairs: List[str] = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
|
||||
pairs: List[str] = self.freqai_config["feature_parameters"].get(
|
||||
"include_corr_pairlist", [])
|
||||
|
||||
for tf in tfs:
|
||||
if tf not in base_dataframes:
|
||||
base_dataframes[tf] = pd.DataFrame()
|
||||
for p in pairs:
|
||||
if p not in corr_dataframes:
|
||||
corr_dataframes[p] = {}
|
||||
if tf not in corr_dataframes[p]:
|
||||
corr_dataframes[p][tf] = pd.DataFrame()
|
||||
|
||||
if not prediction_dataframe.empty:
|
||||
dataframe = prediction_dataframe.copy()
|
||||
for tf in tfs:
|
||||
base_dataframes[tf] = None
|
||||
for p in pairs:
|
||||
if p not in corr_dataframes:
|
||||
corr_dataframes[p] = {}
|
||||
corr_dataframes[p][tf] = None
|
||||
else:
|
||||
dataframe = base_dataframes[self.config["timeframe"]].copy()
|
||||
|
||||
sgi = False
|
||||
for tf in tfs:
|
||||
if tf == tfs[-1]:
|
||||
sgi = True # doing this last allows user to use all tf raw prices in labels
|
||||
dataframe = strategy.populate_any_indicators(
|
||||
pair,
|
||||
dataframe.copy(),
|
||||
tf,
|
||||
informative=base_dataframes[tf],
|
||||
set_generalized_indicators=sgi
|
||||
)
|
||||
|
||||
corr_pairs: List[str] = self.freqai_config["feature_parameters"].get(
|
||||
"include_corr_pairlist", [])
|
||||
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
|
||||
corr_dataframes, base_dataframes)
|
||||
metadata = {"pair": pair}
|
||||
dataframe = strategy.feature_engineering_standard(dataframe.copy(), metadata=metadata)
|
||||
# ensure corr pairs are always last
|
||||
for corr_pair in pairs:
|
||||
for corr_pair in corr_pairs:
|
||||
if pair == corr_pair:
|
||||
continue # dont repeat anything from whitelist
|
||||
for tf in tfs:
|
||||
if pairs and do_corr_pairs:
|
||||
dataframe = strategy.populate_any_indicators(
|
||||
corr_pair,
|
||||
dataframe.copy(),
|
||||
tf,
|
||||
informative=corr_dataframes[corr_pair][tf]
|
||||
)
|
||||
if corr_pairs and do_corr_pairs:
|
||||
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
|
||||
corr_dataframes, base_dataframes, True)
|
||||
|
||||
dataframe = strategy.set_freqai_targets(dataframe.copy(), metadata=metadata)
|
||||
|
||||
self.get_unique_classes_from_labels(dataframe)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user