add freqao backend machinery, user interface, documentation

This commit is contained in:
robcaulk
2022-05-03 10:14:17 +02:00
parent ebab02fce3
commit fc837c4daa
19 changed files with 1405 additions and 3 deletions

View File

@@ -0,0 +1,179 @@
import logging
import talib.abstract as ta
from pandas import DataFrame
import pandas as pd
from technical import qtpylib
import numpy as np
from freqtrade.strategy import (merge_informative_pair)
from freqtrade.strategy.interface import IStrategy
from freqtrade.freqai.strategy_bridge import CustomModel
from functools import reduce
logger = logging.getLogger(__name__)
class FreqaiExampleStrategy(IStrategy):
"""
Example strategy showing how the user connects their own
IFreqaiModel to the strategy. Namely, the user uses:
self.model = CustomModel(self.config)
self.model.bridge.start(dataframe, metadata)
to make predictions on their data. populate_any_indicators() automatically
generates the variety of features indicated by the user in the
canonical freqtrade configuration file under config['freqai'].
"""
minimal_roi = {
"0": 0.01,
"240": -1
}
plot_config = {
'main_plot': {
},
'subplots': {
"prediction":{
'prediction':{'color':'blue'}
},
"target_roi":{
'target_roi':{'color':'brown'},
},
"do_predict":{
'do_predict':{'color':'brown'},
},
}
}
stoploss = -0.05
use_sell_signal = True
startup_candle_count: int = 1000
def informative_pairs(self):
pairs = self.freqai_info['corr_pairlist']
informative_pairs = []
for tf in self.timeframes:
informative_pairs.append([(pair, tf) for pair in pairs])
return informative_pairs
def populate_any_indicators(self, pair, df, tf, informative=None,coin=''):
"""
Function designed to automatically generate, name and merge features
from user indicated timeframes in the configuration file. User can add
additional features here, but must follow the naming convention.
:params:
:pair: pair to be used as informative
:df: strategy dataframe which will receive merges from informatives
:tf: timeframe of the dataframe which will modify the feature names
:informative: the dataframe associated with the informative pair
:coin: the name of the coin which will modify the feature names.
"""
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
informative[coin+'rsi'] = ta.RSI(informative, timeperiod=14)
informative[coin+'mfi'] = ta.MFI(informative, timeperiod=25)
informative[coin+'adx'] = ta.ADX(informative, window=20)
informative[coin+'20sma'] = ta.SMA(informative,timeperiod=20)
informative[coin+'21ema'] = ta.EMA(informative,timeperiod=21)
informative[coin+'bmsb'] = np.where(informative[coin+'20sma'].lt(informative[coin+'21ema']),1,0)
informative[coin+'close_over_20sma'] = informative['close']/informative[coin+'20sma']
informative[coin+'mfi'] = ta.MFI(informative, timeperiod=25)
informative[coin+'ema21'] = ta.EMA(informative, timeperiod=21)
informative[coin+'sma20'] = ta.SMA(informative, timeperiod=20)
stoch = ta.STOCHRSI(informative, 15, 20, 2, 2)
informative[coin+'srsi-fk'] = stoch['fastk']
informative[coin+'srsi-fd'] = stoch['fastd']
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(informative), window=14, stds=2.2)
informative[coin+'bb_lowerband'] = bollinger['lower']
informative[coin+'bb_middleband'] = bollinger['mid']
informative[coin+'bb_upperband'] = bollinger['upper']
informative[coin+'bb_width'] = ((informative[coin+"bb_upperband"] - informative[coin+"bb_lowerband"]) / informative[coin+"bb_middleband"])
informative[coin+'close-bb_lower'] = informative['close'] / informative[coin+'bb_lowerband']
informative[coin+'roc'] = ta.ROC(informative, timeperiod=3)
informative[coin+'adx'] = ta.ADX(informative, window=14)
macd = ta.MACD(informative)
informative[coin+'macd'] = macd['macd']
informative[coin+'pct-change'] = informative['close'].pct_change()
informative[coin+'relative_volume'] = informative['volume'] / informative['volume'].rolling(10).mean()
informative[coin+'pct-change'] = informative['close'].pct_change()
indicators = [col for col in informative if col.startswith(coin)]
for n in range(self.freqai_info['feature_parameters']['shift']+1):
if n==0: continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix('_shift-'+str(n))
informative = pd.concat((informative,informative_shift),axis=1)
df = merge_informative_pair(df, informative, self.config['timeframe'], tf, ffill=True)
skip_columns = [(s + '_'+tf) for s in
['date', 'open', 'high', 'low', 'close', 'volume']]
df = df.drop(columns=skip_columns)
return df
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# the configuration file parameters are stored here
self.freqai_info = self.config['freqai']
# the model is instantiated here
self.model = CustomModel(self.config)
print('Populating indicators...')
# the following loops are necessary for building the features
# indicated by the user in the configuration file.
for tf in self.freqai_info['timeframes']:
dataframe = self.populate_any_indicators(metadata['pair'],
dataframe.copy(), tf)
for i in self.freqai_info['corr_pairlist']:
dataframe = self.populate_any_indicators(i,
dataframe.copy(), tf, coin=i.split("/")[0]+'-')
# the model will return 4 values, its prediction, an indication of whether or not the prediction
# should be accepted, the target mean/std values from the labels used during each training period.
(dataframe['prediction'], dataframe['do_predict'],
dataframe['target_mean'], dataframe['target_std']) = self.model.bridge.start(dataframe, metadata)
dataframe['target_roi'] = dataframe['target_mean']+dataframe['target_std']*0.5
dataframe['sell_roi'] = dataframe['target_mean']-dataframe['target_std']*1.5
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
buy_conditions = [
(dataframe['prediction'] > dataframe['target_roi'])
&
(dataframe['do_predict'] == 1)
]
if buy_conditions:
dataframe.loc[reduce(lambda x, y: x | y, buy_conditions), 'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# sell_goal = eval('self.'+metadata['pair'].split("/")[0]+'_sell_goal.value')
sell_conditions = [
(dataframe['prediction'] < dataframe['sell_roi'])
&
(dataframe['do_predict'] == 1)
]
if sell_conditions:
dataframe.loc[reduce(lambda x, y: x | y, sell_conditions), 'sell'] = 1
return dataframe
def get_ticker_indicator(self):
return int(self.config['timeframe'][:-1])