Add position_adjustment_enable config keyword to enable it.
This commit is contained in:
parent
b7bf3247b8
commit
f97662e816
@ -173,6 +173,9 @@ class Configuration:
|
||||
if 'sd_notify' in self.args and self.args['sd_notify']:
|
||||
config['internals'].update({'sd_notify': True})
|
||||
|
||||
if config.get('position_adjustment_enable', False):
|
||||
logger.warning('`position_adjustment` has been enabled for strategy.')
|
||||
|
||||
def _process_datadir_options(self, config: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Extract information for sys.argv and load directory configurations
|
||||
|
@ -179,7 +179,8 @@ class FreqtradeBot(LoggingMixin):
|
||||
self.exit_positions(trades)
|
||||
|
||||
# Check if we need to adjust our current positions before attempting to buy new trades.
|
||||
self.process_open_trade_positions()
|
||||
if self.config.get('position_adjustment_enable', False):
|
||||
self.process_open_trade_positions()
|
||||
|
||||
# Then looking for buy opportunities
|
||||
if self.get_free_open_trades():
|
||||
|
@ -404,7 +404,9 @@ class Backtesting:
|
||||
def _get_sell_trade_entry_for_candle(self, trade: LocalTrade,
|
||||
sell_row: Tuple) -> Optional[LocalTrade]:
|
||||
|
||||
trade = self._get_adjust_trade_entry_for_candle(trade, sell_row)
|
||||
# Check if we need to adjust our current positions
|
||||
if self.config.get('position_adjustment_enable', False):
|
||||
trade = self._get_adjust_trade_entry_for_candle(trade, sell_row)
|
||||
|
||||
sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
|
||||
sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], # type: ignore
|
||||
|
95
tests/optimize/test_backtesting_adjust_position.py
Normal file
95
tests/optimize/test_backtesting_adjust_position.py
Normal file
@ -0,0 +1,95 @@
|
||||
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
||||
|
||||
import random
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock, PropertyMock
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
from arrow import Arrow
|
||||
|
||||
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_backtesting
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data import history
|
||||
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, evaluate_result_multi
|
||||
from freqtrade.data.converter import clean_ohlcv_dataframe
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.data.history import get_timerange
|
||||
from freqtrade.enums import RunMode, SellType
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
from freqtrade.persistence import LocalTrade
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
|
||||
patched_configuration_load_config_file)
|
||||
|
||||
def test_backtest_position_adjustment(default_conf, fee, mocker, testdatadir) -> None:
|
||||
default_conf['use_sell_signal'] = False
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
|
||||
patch_exchange(mocker)
|
||||
default_conf.update({
|
||||
"position_adjustment_enable": True,
|
||||
"stake_amount": 100.0,
|
||||
"dry_run_wallet": 1000.0,
|
||||
"strategy": "StrategyTestPositionAdjust"
|
||||
})
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
pair = 'UNITTEST/BTC'
|
||||
timerange = TimeRange('date', None, 1517227800, 0)
|
||||
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['UNITTEST/BTC'],
|
||||
timerange=timerange)
|
||||
processed = backtesting.strategy.advise_all_indicators(data)
|
||||
min_date, max_date = get_timerange(processed)
|
||||
result = backtesting.backtest(
|
||||
processed=processed,
|
||||
start_date=min_date,
|
||||
end_date=max_date,
|
||||
max_open_trades=10,
|
||||
position_stacking=False,
|
||||
)
|
||||
results = result['results']
|
||||
assert not results.empty
|
||||
assert len(results) == 2
|
||||
|
||||
expected = pd.DataFrame(
|
||||
{'pair': [pair, pair],
|
||||
'stake_amount': [500.0, 100.0],
|
||||
'amount': [4806.87657523, 970.63960782],
|
||||
'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
|
||||
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True
|
||||
),
|
||||
'close_date': pd.to_datetime([Arrow(2018, 1, 29, 22, 00, 0).datetime,
|
||||
Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True),
|
||||
'open_rate': [0.10401764894444211, 0.10302485],
|
||||
'close_rate': [0.10453904066847439, 0.103541],
|
||||
'fee_open': [0.0025, 0.0025],
|
||||
'fee_close': [0.0025, 0.0025],
|
||||
'trade_duration': [200, 40],
|
||||
'profit_ratio': [0.0, 0.0],
|
||||
'profit_abs': [0.0, 0.0],
|
||||
'sell_reason': [SellType.ROI.value, SellType.ROI.value],
|
||||
'initial_stop_loss_abs': [0.0940005, 0.09272236],
|
||||
'initial_stop_loss_ratio': [-0.1, -0.1],
|
||||
'stop_loss_abs': [0.0940005, 0.09272236],
|
||||
'stop_loss_ratio': [-0.1, -0.1],
|
||||
'min_rate': [0.10370188, 0.10300000000000001],
|
||||
'max_rate': [0.10481985, 0.1038888],
|
||||
'is_open': [False, False],
|
||||
'buy_tag': [None, None],
|
||||
})
|
||||
pd.testing.assert_frame_equal(results, expected)
|
||||
data_pair = processed[pair]
|
||||
for _, t in results.iterrows():
|
||||
ln = data_pair.loc[data_pair["date"] == t["open_date"]]
|
||||
# Check open trade rate alignes to open rate
|
||||
assert ln is not None
|
||||
# check close trade rate alignes to close rate or is between high and low
|
||||
ln = data_pair.loc[data_pair["date"] == t["close_date"]]
|
||||
assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or
|
||||
round(ln.iloc[0]["low"], 6) < round(
|
||||
t["close_rate"], 6) < round(ln.iloc[0]["high"], 6))
|
165
tests/strategy/strats/strategy_test_position_adjust.py
Normal file
165
tests/strategy/strats/strategy_test_position_adjust.py
Normal file
@ -0,0 +1,165 @@
|
||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.persistence import Trade
|
||||
from datetime import datetime
|
||||
|
||||
class StrategyTestPositionAdjust(IStrategy):
|
||||
"""
|
||||
Strategy used by tests freqtrade bot.
|
||||
Please do not modify this strategy, it's intended for internal use only.
|
||||
Please look at the SampleStrategy in the user_data/strategy directory
|
||||
or strategy repository https://github.com/freqtrade/freqtrade-strategies
|
||||
for samples and inspiration.
|
||||
"""
|
||||
INTERFACE_VERSION = 2
|
||||
|
||||
# Minimal ROI designed for the strategy
|
||||
minimal_roi = {
|
||||
"40": 0.0,
|
||||
"30": 0.01,
|
||||
"20": 0.02,
|
||||
"0": 0.04
|
||||
}
|
||||
|
||||
# Optimal stoploss designed for the strategy
|
||||
stoploss = -0.10
|
||||
|
||||
# Optimal timeframe for the strategy
|
||||
timeframe = '5m'
|
||||
|
||||
# Optional order type mapping
|
||||
order_types = {
|
||||
'buy': 'limit',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'limit',
|
||||
'stoploss_on_exchange': False
|
||||
}
|
||||
|
||||
# Number of candles the strategy requires before producing valid signals
|
||||
startup_candle_count: int = 20
|
||||
|
||||
# Optional time in force for orders
|
||||
order_time_in_force = {
|
||||
'buy': 'gtc',
|
||||
'sell': 'gtc',
|
||||
}
|
||||
|
||||
def informative_pairs(self):
|
||||
"""
|
||||
Define additional, informative pair/interval combinations to be cached from the exchange.
|
||||
These pair/interval combinations are non-tradeable, unless they are part
|
||||
of the whitelist as well.
|
||||
For more information, please consult the documentation
|
||||
:return: List of tuples in the format (pair, interval)
|
||||
Sample: return [("ETH/USDT", "5m"),
|
||||
("BTC/USDT", "15m"),
|
||||
]
|
||||
"""
|
||||
return []
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
:param dataframe: Dataframe with data from the exchange
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
|
||||
# Momentum Indicator
|
||||
# ------------------------------------
|
||||
|
||||
# ADX
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
|
||||
# MACD
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['macdhist'] = macd['macdhist']
|
||||
|
||||
# Minus Directional Indicator / Movement
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
|
||||
# Plus Directional Indicator / Movement
|
||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||
|
||||
# RSI
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
|
||||
# Stoch fast
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['fastk'] = stoch_fast['fastk']
|
||||
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['bb_middleband'] = bollinger['mid']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
|
||||
# EMA - Exponential Moving Average
|
||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['rsi'] < 35) &
|
||||
(dataframe['fastd'] < 35) &
|
||||
(dataframe['adx'] > 30) &
|
||||
(dataframe['plus_di'] > 0.5)
|
||||
) |
|
||||
(
|
||||
(dataframe['adx'] > 65) &
|
||||
(dataframe['plus_di'] > 0.5)
|
||||
),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(
|
||||
(qtpylib.crossed_above(dataframe['rsi'], 70)) |
|
||||
(qtpylib.crossed_above(dataframe['fastd'], 70))
|
||||
) &
|
||||
(dataframe['adx'] > 10) &
|
||||
(dataframe['minus_di'] > 0)
|
||||
) |
|
||||
(
|
||||
(dataframe['adx'] > 70) &
|
||||
(dataframe['minus_di'] > 0.5)
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
|
||||
def adjust_trade_position(self, pair: str, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs):
|
||||
|
||||
if current_profit < -0.0075:
|
||||
return self.wallets.get_trade_stake_amount(pair, None)
|
||||
|
||||
return None
|
Loading…
Reference in New Issue
Block a user