persist a single training environment.
This commit is contained in:
parent
5d4e5e69fe
commit
f95602f6bd
@ -61,7 +61,7 @@
|
||||
"train_period_days": 10,
|
||||
"backtest_period_days": 2,
|
||||
"identifier": "unique-id",
|
||||
"data_kitchen_thread_count": 4,
|
||||
"data_kitchen_thread_count": 2,
|
||||
"feature_parameters": {
|
||||
"include_corr_pairlist": [
|
||||
"BTC/USDT",
|
||||
|
@ -7,7 +7,7 @@ import numpy as np
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
from pandas import DataFrame
|
||||
|
||||
import pandas as pd
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -47,6 +47,9 @@ class Base5ActionRLEnv(gym.Env):
|
||||
|
||||
self.id = id
|
||||
self.seed(seed)
|
||||
self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
|
||||
|
||||
def reset_env(self, df, prices, window_size, reward_kwargs, starting_point=True):
|
||||
self.df = df
|
||||
self.signal_features = self.df
|
||||
self.prices = prices
|
||||
@ -178,10 +181,15 @@ class Base5ActionRLEnv(gym.Env):
|
||||
return observation, step_reward, self._done, info
|
||||
|
||||
def _get_observation(self):
|
||||
features_and_state = self.signal_features[(
|
||||
features_window = self.signal_features[(
|
||||
self._current_tick - self.window_size):self._current_tick]
|
||||
features_and_state = DataFrame(np.zeros((len(features_window), 2)),
|
||||
columns=['current_profit_pct', 'position'],
|
||||
index=features_window.index)
|
||||
|
||||
features_and_state['current_profit_pct'] = self.get_unrealized_profit()
|
||||
features_and_state['position'] = self._position.value
|
||||
features_and_state = pd.concat([features_window, features_and_state], axis=1)
|
||||
return features_and_state
|
||||
|
||||
def get_unrealized_profit(self):
|
||||
|
@ -8,9 +8,10 @@ from pandas import DataFrame
|
||||
from abc import abstractmethod
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
|
||||
from freqtrade.freqai.RL.Base5ActionRLEnv import Base5ActionRLEnv, Actions, Positions
|
||||
from freqtrade.persistence import Trade
|
||||
import torch.multiprocessing
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
import torch as th
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -26,6 +27,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
super().__init__(config=kwargs['config'])
|
||||
th.set_num_threads(self.freqai_info.get('data_kitchen_thread_count', 4))
|
||||
self.reward_params = self.freqai_info['rl_config']['model_reward_parameters']
|
||||
self.train_env: Base5ActionRLEnv = None
|
||||
|
||||
def train(
|
||||
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
||||
@ -65,15 +67,37 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit_rl(data_dictionary, pair, dk, prices_train, prices_test)
|
||||
self.set_train_and_eval_environments(data_dictionary, prices_train, prices_test)
|
||||
|
||||
model = self.fit_rl(data_dictionary, dk)
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
||||
return model
|
||||
|
||||
def set_train_and_eval_environments(self, data_dictionary, prices_train, prices_test):
|
||||
"""
|
||||
User overrides this in their prediction model if they are custom a MyRLEnv. Othwerwise
|
||||
leaving this will default to Base5ActEnv
|
||||
"""
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
|
||||
# environments
|
||||
if not self.train_env:
|
||||
self.train_env = MyRLEnv(df=train_df, prices=prices_train, window_size=self.CONV_WIDTH,
|
||||
reward_kwargs=self.reward_params)
|
||||
self.eval_env = Monitor(MyRLEnv(df=test_df, prices=prices_test,
|
||||
window_size=self.CONV_WIDTH,
|
||||
reward_kwargs=self.reward_params), ".")
|
||||
else:
|
||||
self.train_env.reset_env(train_df, prices_train, self.CONV_WIDTH, self.reward_params)
|
||||
self.eval_env.reset_env(train_df, prices_train, self.CONV_WIDTH, self.reward_params)
|
||||
self.train_env.reset()
|
||||
self.eval_env.reset()
|
||||
|
||||
@abstractmethod
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen,
|
||||
prices_train: DataFrame, prices_test: DataFrame):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
|
||||
"""
|
||||
Agent customizations and abstract Reinforcement Learning customizations
|
||||
go in here. Abstract method, so this function must be overridden by
|
||||
@ -193,66 +217,39 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
return
|
||||
|
||||
|
||||
class MyRLEnv(Base3ActionRLEnv):
|
||||
|
||||
def step(self, action):
|
||||
self._done = False
|
||||
self._current_tick += 1
|
||||
|
||||
if self._current_tick == self._end_tick:
|
||||
self._done = True
|
||||
|
||||
self.update_portfolio_log_returns(action)
|
||||
|
||||
self._update_profit(action)
|
||||
step_reward = self._calculate_reward(action)
|
||||
self.total_reward += step_reward
|
||||
|
||||
trade_type = None
|
||||
if self.is_tradesignal(action): # exclude 3 case not trade
|
||||
# Update position
|
||||
class MyRLEnv(Base5ActionRLEnv):
|
||||
"""
|
||||
Action: Neutral, position: Long -> Close Long
|
||||
Action: Neutral, position: Short -> Close Short
|
||||
|
||||
Action: Long, position: Neutral -> Open Long
|
||||
Action: Long, position: Short -> Close Short and Open Long
|
||||
|
||||
Action: Short, position: Neutral -> Open Short
|
||||
Action: Short, position: Long -> Close Long and Open Short
|
||||
User can override any function in BaseRLEnv and gym.Env. Here the user
|
||||
Adds 5 actions.
|
||||
"""
|
||||
|
||||
if action == Actions.Neutral.value:
|
||||
self._position = Positions.Neutral
|
||||
trade_type = "neutral"
|
||||
elif action == Actions.Long.value:
|
||||
self._position = Positions.Long
|
||||
trade_type = "long"
|
||||
elif action == Actions.Short.value:
|
||||
self._position = Positions.Short
|
||||
trade_type = "short"
|
||||
else:
|
||||
print("case not defined")
|
||||
def calculate_reward(self, action):
|
||||
|
||||
# Update last trade tick
|
||||
self._last_trade_tick = self._current_tick
|
||||
if self._last_trade_tick is None:
|
||||
return 0.
|
||||
|
||||
if trade_type is not None:
|
||||
self.trade_history.append(
|
||||
{'price': self.current_price(), 'index': self._current_tick,
|
||||
'type': trade_type})
|
||||
# close long
|
||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(current_price) - np.log(last_trade_price))
|
||||
|
||||
if self._total_profit < 0.2:
|
||||
self._done = True
|
||||
if action == Actions.Long_sell.value and self._position == Positions.Long:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(current_price) - np.log(last_trade_price)) * 2)
|
||||
|
||||
self._position_history.append(self._position)
|
||||
observation = self._get_observation()
|
||||
info = dict(
|
||||
tick=self._current_tick,
|
||||
total_reward=self.total_reward,
|
||||
total_profit=self._total_profit,
|
||||
position=self._position.value
|
||||
)
|
||||
self._update_history(info)
|
||||
# close short
|
||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float(np.log(last_trade_price) - np.log(current_price))
|
||||
|
||||
return observation, step_reward, self._done, info
|
||||
if action == Actions.Short_buy.value and self._position == Positions.Short:
|
||||
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
||||
return float((np.log(last_trade_price) - np.log(current_price)) * 2)
|
||||
|
||||
return 0.
|
||||
|
@ -3,9 +3,7 @@ from typing import Any, Dict # , Tuple
|
||||
|
||||
import numpy as np
|
||||
# import numpy.typing as npt
|
||||
# import pandas as pd
|
||||
import torch as th
|
||||
# from pandas import DataFrame
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
from typing import Callable
|
||||
from stable_baselines3 import PPO
|
||||
@ -16,7 +14,6 @@ from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Posi
|
||||
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
import gym
|
||||
from pandas import DataFrame
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -48,26 +45,15 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen,
|
||||
prices_train: DataFrame, prices_test: DataFrame):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
|
||||
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
|
||||
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
|
||||
|
||||
env_id = "train_env"
|
||||
num_cpu = int(dk.thread_count / 2)
|
||||
train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, prices_train,
|
||||
self.reward_params, self.CONV_WIDTH) for i in range(num_cpu)])
|
||||
|
||||
eval_env_id = 'eval_env'
|
||||
eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, prices_test,
|
||||
self.reward_params, self.CONV_WIDTH, monitor=True) for i in
|
||||
range(num_cpu)])
|
||||
|
||||
path = dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
eval_callback = EvalCallback(self.eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
|
||||
@ -75,7 +61,7 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
||||
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
||||
net_arch=[512, 512, 512])
|
||||
|
||||
model = PPO('MlpPolicy', train_env, policy_kwargs=policy_kwargs,
|
||||
model = PPO('MlpPolicy', self.train_env, policy_kwargs=policy_kwargs,
|
||||
tensorboard_log=f"{path}/ppo/tensorboard/",
|
||||
**self.freqai_info['model_training_parameters']
|
||||
)
|
||||
@ -87,10 +73,37 @@ class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
|
||||
|
||||
best_model = PPO.load(dk.data_path / "best_model")
|
||||
print('Training finished!')
|
||||
eval_env.close()
|
||||
|
||||
return best_model
|
||||
|
||||
def set_train_and_eval_environments(self, data_dictionary, prices_train, prices_test):
|
||||
"""
|
||||
User overrides this in their prediction model if they are custom a MyRLEnv. Othwerwise
|
||||
leaving this will default to Base5ActEnv
|
||||
"""
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
|
||||
# environments
|
||||
if not self.train_env:
|
||||
env_id = "train_env"
|
||||
num_cpu = int(self.freqai_info["data_kitchen_thread_count"] / 2)
|
||||
self.train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, prices_train,
|
||||
self.reward_params, self.CONV_WIDTH) for i
|
||||
in range(num_cpu)])
|
||||
|
||||
eval_env_id = 'eval_env'
|
||||
self.eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, prices_test,
|
||||
self.reward_params, self.CONV_WIDTH, monitor=True) for i
|
||||
in range(num_cpu)])
|
||||
else:
|
||||
self.train_env.env_method('reset_env', train_df, prices_train,
|
||||
self.CONV_WIDTH, self.reward_params)
|
||||
self.eval_env.env_method('reset_env', train_df, prices_train,
|
||||
self.CONV_WIDTH, self.reward_params)
|
||||
self.train_env.env_method('reset')
|
||||
self.eval_env.env_method('reset')
|
||||
|
||||
|
||||
class MyRLEnv(Base3ActionRLEnv):
|
||||
"""
|
||||
|
@ -9,8 +9,7 @@ from freqtrade.freqai.RL.TDQNagent import TDQN
|
||||
from stable_baselines3 import DQN
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
import numpy as np
|
||||
from pandas import DataFrame
|
||||
|
||||
import gc
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -21,24 +20,15 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen,
|
||||
prices_train: DataFrame, prices_test: DataFrame):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
|
||||
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
|
||||
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
|
||||
|
||||
# environments
|
||||
train_env = MyRLEnv(df=train_df, prices=prices_train, window_size=self.CONV_WIDTH,
|
||||
reward_kwargs=self.reward_params)
|
||||
eval = MyRLEnv(df=test_df, prices=prices_test,
|
||||
window_size=self.CONV_WIDTH, reward_kwargs=self.reward_params)
|
||||
eval_env = Monitor(eval, ".")
|
||||
eval_env.reset()
|
||||
|
||||
path = dk.data_path
|
||||
eval_callback = EvalCallback(eval_env, best_model_save_path=f"{path}/",
|
||||
eval_callback = EvalCallback(self.eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
|
||||
@ -46,7 +36,7 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
||||
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
||||
net_arch=[256, 256, 128])
|
||||
|
||||
model = TDQN('TMultiInputPolicy', train_env,
|
||||
model = TDQN('TMultiInputPolicy', self.train_env,
|
||||
tensorboard_log=f"{path}/tdqn/tensorboard/",
|
||||
policy_kwargs=policy_kwargs,
|
||||
replay_buffer_class=ReplayBuffer,
|
||||
@ -58,12 +48,33 @@ class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
|
||||
callback=eval_callback
|
||||
)
|
||||
|
||||
del model
|
||||
best_model = DQN.load(dk.data_path / "best_model")
|
||||
|
||||
print('Training finished!')
|
||||
|
||||
gc.collect()
|
||||
return best_model
|
||||
|
||||
def set_train_and_eval_environments(self, data_dictionary, prices_train, prices_test):
|
||||
"""
|
||||
User overrides this as shown here if they are using a custom MyRLEnv
|
||||
"""
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
|
||||
# environments
|
||||
if not self.train_env:
|
||||
self.train_env = MyRLEnv(df=train_df, prices=prices_train, window_size=self.CONV_WIDTH,
|
||||
reward_kwargs=self.reward_params)
|
||||
self.eval_env = Monitor(MyRLEnv(df=test_df, prices=prices_test,
|
||||
window_size=self.CONV_WIDTH,
|
||||
reward_kwargs=self.reward_params), ".")
|
||||
else:
|
||||
self.train_env.reset_env(train_df, prices_train, self.CONV_WIDTH, self.reward_params)
|
||||
self.eval_env.reset_env(train_df, prices_train, self.CONV_WIDTH, self.reward_params)
|
||||
self.train_env.reset()
|
||||
self.eval_env.reset()
|
||||
|
||||
|
||||
# User can inherit and customize 5 action environment
|
||||
class MyRLEnv(Base5ActionRLEnv):
|
||||
|
@ -4,8 +4,8 @@ import torch as th
|
||||
import numpy as np
|
||||
import gym
|
||||
from typing import Callable
|
||||
from stable_baselines3.common.callbacks import (
|
||||
EvalCallback, StopTrainingOnNoModelImprovement, StopTrainingOnRewardThreshold)
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
# EvalCallback , StopTrainingOnNoModelImprovement, StopTrainingOnRewardThreshold
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv
|
||||
from stable_baselines3.common.utils import set_random_seed
|
||||
@ -15,7 +15,6 @@ from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcement
|
||||
from freqtrade.freqai.RL.TDQNagent import TDQN
|
||||
from stable_baselines3.common.buffers import ReplayBuffer
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from pandas import DataFrame
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -47,46 +46,23 @@ class ReinforcementLearningTDQN_multiproc(BaseReinforcementLearningModel):
|
||||
User created Reinforcement Learning Model prediction model.
|
||||
"""
|
||||
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], pair: str, dk: FreqaiDataKitchen,
|
||||
prices_train: DataFrame, prices_test: DataFrame):
|
||||
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
|
||||
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
|
||||
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
|
||||
|
||||
env_id = "train_env"
|
||||
num_cpu = int(dk.thread_count / 2)
|
||||
train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, prices_train,
|
||||
self.reward_params, self.CONV_WIDTH) for i in range(num_cpu)])
|
||||
|
||||
eval_env_id = 'eval_env'
|
||||
eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, prices_test,
|
||||
self.reward_params, self.CONV_WIDTH, monitor=True) for i in
|
||||
range(num_cpu)])
|
||||
|
||||
path = dk.data_path
|
||||
stop_train_callback = StopTrainingOnNoModelImprovement(
|
||||
max_no_improvement_evals=5,
|
||||
min_evals=10,
|
||||
verbose=2
|
||||
)
|
||||
callback_on_best = StopTrainingOnRewardThreshold(reward_threshold=-200, verbose=2)
|
||||
eval_callback = EvalCallback(
|
||||
eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/tdqn/logs/",
|
||||
eval_freq=int(eval_freq),
|
||||
deterministic=True,
|
||||
render=True,
|
||||
callback_after_eval=stop_train_callback,
|
||||
callback_on_new_best=callback_on_best,
|
||||
verbose=2
|
||||
)
|
||||
|
||||
eval_callback = EvalCallback(self.eval_env, best_model_save_path=f"{path}/",
|
||||
log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq),
|
||||
deterministic=True, render=False)
|
||||
# model arch
|
||||
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
||||
net_arch=[512, 512, 512])
|
||||
|
||||
model = TDQN('TMultiInputPolicy', train_env,
|
||||
model = TDQN('TMultiInputPolicy', self.train_env,
|
||||
policy_kwargs=policy_kwargs,
|
||||
tensorboard_log=f"{path}/tdqn/tensorboard/",
|
||||
replay_buffer_class=ReplayBuffer,
|
||||
@ -100,12 +76,40 @@ class ReinforcementLearningTDQN_multiproc(BaseReinforcementLearningModel):
|
||||
|
||||
best_model = DQN.load(dk.data_path / "best_model.zip")
|
||||
print('Training finished!')
|
||||
eval_env.close()
|
||||
|
||||
return best_model
|
||||
|
||||
def set_train_and_eval_environments(self, data_dictionary, prices_train, prices_test):
|
||||
"""
|
||||
User overrides this in their prediction model if they are custom a MyRLEnv. Othwerwise
|
||||
leaving this will default to Base5ActEnv
|
||||
"""
|
||||
train_df = data_dictionary["train_features"]
|
||||
test_df = data_dictionary["test_features"]
|
||||
|
||||
# environments
|
||||
if not self.train_env:
|
||||
env_id = "train_env"
|
||||
num_cpu = int(self.freqai_info["data_kitchen_thread_count"] / 2)
|
||||
self.train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, prices_train,
|
||||
self.reward_params, self.CONV_WIDTH) for i
|
||||
in range(num_cpu)])
|
||||
|
||||
eval_env_id = 'eval_env'
|
||||
self.eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, prices_test,
|
||||
self.reward_params, self.CONV_WIDTH, monitor=True) for i
|
||||
in range(num_cpu)])
|
||||
else:
|
||||
self.train_env.env_method('reset_env', train_df, prices_train,
|
||||
self.CONV_WIDTH, self.reward_params)
|
||||
self.eval_env.env_method('reset_env', train_df, prices_train,
|
||||
self.CONV_WIDTH, self.reward_params)
|
||||
self.train_env.env_method('reset')
|
||||
self.eval_env.env_method('reset')
|
||||
|
||||
# User can inherit and customize 5 action environment
|
||||
|
||||
|
||||
class MyRLEnv(Base5ActionRLEnv):
|
||||
"""
|
||||
User can override any function in BaseRLEnv and gym.Env. Here the user
|
||||
|
Loading…
Reference in New Issue
Block a user