Merge branch 'develop' into cleaner-tests

This commit is contained in:
Janne Sinivirta
2018-07-30 21:08:55 +03:00
committed by GitHub
17 changed files with 537 additions and 75 deletions

View File

@@ -0,0 +1,235 @@
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from pandas import DataFrame
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy # noqa
# This class is a sample. Feel free to customize it.
class TestStrategyLegacy(IStrategy):
"""
This is a test strategy using the legacy function headers, which will be
removed in a future update.
Please do not use this as a template, but refer to user_data/strategy/TestStrategy.py
for a uptodate version of this template.
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.10
# Optimal ticker interval for the strategy
ticker_interval = '5m'
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
"""
# Momentum Indicator
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
"""
# Awesome oscillator
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
dataframe['cci'] = ta.CCI(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# Minus Directional Indicator / Movement
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# ROC
dataframe['roc'] = ta.ROC(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
# Stoch
stoch = ta.STOCH(dataframe)
dataframe['slowd'] = stoch['slowd']
dataframe['slowk'] = stoch['slowk']
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Stoch RSI
stoch_rsi = ta.STOCHRSI(dataframe)
dataframe['fastd_rsi'] = stoch_rsi['fastd']
dataframe['fastk_rsi'] = stoch_rsi['fastk']
"""
# Overlap Studies
# ------------------------------------
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
"""
# EMA - Exponential Moving Average
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# SAR Parabol
dataframe['sar'] = ta.SAR(dataframe)
# SMA - Simple Moving Average
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
"""
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
# Cycle Indicator
# ------------------------------------
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
"""
# Hammer: values [0, 100]
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# Inverted Hammer: values [0, 100]
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# Dragonfly Doji: values [0, 100]
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# Piercing Line: values [0, 100]
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# Morningstar: values [0, 100]
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# Three White Soldiers: values [0, 100]
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
"""
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
"""
# Hanging Man: values [0, 100]
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# Shooting Star: values [0, 100]
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# Gravestone Doji: values [0, 100]
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# Dark Cloud Cover: values [0, 100]
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# Evening Doji Star: values [0, 100]
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# Evening Star: values [0, 100]
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
"""
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
"""
# Three Line Strike: values [0, -100, 100]
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# Spinning Top: values [0, -100, 100]
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# Engulfing: values [0, -100, 100]
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# Harami: values [0, -100, 100]
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# Three Outside Up/Down: values [0, -100, 100]
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# Three Inside Up/Down: values [0, -100, 100]
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
"""
# Chart type
# ------------------------------------
"""
# Heikinashi stategy
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
"""
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 30) &
(dataframe['tema'] <= dataframe['bb_middleband']) &
(dataframe['tema'] > dataframe['tema'].shift(1))
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['adx'] > 70) &
(dataframe['tema'] > dataframe['bb_middleband']) &
(dataframe['tema'] < dataframe['tema'].shift(1))
),
'sell'] = 1
return dataframe

View File

@@ -25,10 +25,11 @@ def test_default_strategy_structure():
def test_default_strategy(result):
strategy = DefaultStrategy({})
metadata = {'pair': 'ETH/BTC'}
assert type(strategy.minimal_roi) is dict
assert type(strategy.stoploss) is float
assert type(strategy.ticker_interval) is str
indicators = strategy.populate_indicators(result)
indicators = strategy.populate_indicators(result, metadata)
assert type(indicators) is DataFrame
assert type(strategy.populate_buy_trend(indicators)) is DataFrame
assert type(strategy.populate_sell_trend(indicators)) is DataFrame
assert type(strategy.populate_buy_trend(indicators, metadata)) is DataFrame
assert type(strategy.populate_sell_trend(indicators, metadata)) is DataFrame

View File

@@ -1,8 +1,10 @@
# pragma pylint: disable=missing-docstring, protected-access, C0103
import logging
import os
from os import path
import warnings
import pytest
from pandas import DataFrame
from freqtrade.strategy import import_strategy
from freqtrade.strategy.default_strategy import DefaultStrategy
@@ -37,8 +39,8 @@ def test_import_strategy(caplog):
def test_search_strategy():
default_config = {}
default_location = os.path.join(os.path.dirname(
os.path.realpath(__file__)), '..', '..', 'strategy'
default_location = path.join(path.dirname(
path.realpath(__file__)), '..', '..', 'strategy'
)
assert isinstance(
StrategyResolver._search_strategy(
@@ -57,12 +59,13 @@ def test_search_strategy():
def test_load_strategy(result):
resolver = StrategyResolver({'strategy': 'TestStrategy'})
assert 'adx' in resolver.strategy.populate_indicators(result)
metadata = {'pair': 'ETH/BTC'}
assert 'adx' in resolver.strategy.advise_indicators(result, metadata=metadata)
def test_load_strategy_invalid_directory(result, caplog):
resolver = StrategyResolver()
extra_dir = os.path.join('some', 'path')
extra_dir = path.join('some', 'path')
resolver._load_strategy('TestStrategy', config={}, extra_dir=extra_dir)
assert (
@@ -70,7 +73,8 @@ def test_load_strategy_invalid_directory(result, caplog):
logging.WARNING,
'Path "{}" does not exist'.format(extra_dir),
) in caplog.record_tuples
assert 'adx' in resolver.strategy.populate_indicators(result)
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
def test_load_not_found_strategy():
@@ -85,7 +89,7 @@ def test_strategy(result):
config = {'strategy': 'DefaultStrategy'}
resolver = StrategyResolver(config)
metadata = {'pair': 'ETH/BTC'}
assert resolver.strategy.minimal_roi[0] == 0.04
assert config["minimal_roi"]['0'] == 0.04
@@ -95,12 +99,13 @@ def test_strategy(result):
assert resolver.strategy.ticker_interval == '5m'
assert config['ticker_interval'] == '5m'
assert 'adx' in resolver.strategy.populate_indicators(result)
df_indicators = resolver.strategy.advise_indicators(result, metadata=metadata)
assert 'adx' in df_indicators
dataframe = resolver.strategy.populate_buy_trend(resolver.strategy.populate_indicators(result))
dataframe = resolver.strategy.advise_buy(df_indicators, metadata=metadata)
assert 'buy' in dataframe.columns
dataframe = resolver.strategy.populate_sell_trend(resolver.strategy.populate_indicators(result))
dataframe = resolver.strategy.advise_sell(df_indicators, metadata=metadata)
assert 'sell' in dataframe.columns
@@ -150,3 +155,59 @@ def test_strategy_override_ticker_interval(caplog):
logging.INFO,
'Override strategy \'ticker_interval\' with value in config file: 60.'
) in caplog.record_tuples
def test_deprecate_populate_indicators(result):
default_location = path.join(path.dirname(path.realpath(__file__)))
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
'strategy_path': default_location})
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
indicators = resolver.strategy.advise_indicators(result, 'ETH/BTC')
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \
in str(w[-1].message)
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
resolver.strategy.advise_buy(indicators, 'ETH/BTC')
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \
in str(w[-1].message)
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
resolver.strategy.advise_sell(indicators, 'ETH_BTC')
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated - check out the Sample strategy to see the current function headers!" \
in str(w[-1].message)
def test_call_deprecated_function(result, monkeypatch):
default_location = path.join(path.dirname(path.realpath(__file__)))
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
'strategy_path': default_location})
metadata = {'pair': 'ETH/BTC'}
# Make sure we are using a legacy function
assert resolver.strategy._populate_fun_len == 2
assert resolver.strategy._buy_fun_len == 2
assert resolver.strategy._sell_fun_len == 2
indicator_df = resolver.strategy.advise_indicators(result, metadata=metadata)
assert type(indicator_df) is DataFrame
assert 'adx' in indicator_df.columns
buydf = resolver.strategy.advise_buy(result, metadata=metadata)
assert type(buydf) is DataFrame
assert 'buy' in buydf.columns
selldf = resolver.strategy.advise_sell(result, metadata=metadata)
assert type(selldf) is DataFrame
assert 'sell' in selldf