Merge branch 'develop' into cleaner-tests
This commit is contained in:
235
freqtrade/tests/strategy/legacy_strategy.py
Normal file
235
freqtrade/tests/strategy/legacy_strategy.py
Normal file
@@ -0,0 +1,235 @@
|
||||
|
||||
# --- Do not remove these libs ---
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from pandas import DataFrame
|
||||
# --------------------------------
|
||||
|
||||
# Add your lib to import here
|
||||
import talib.abstract as ta
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
import numpy # noqa
|
||||
|
||||
|
||||
# This class is a sample. Feel free to customize it.
|
||||
class TestStrategyLegacy(IStrategy):
|
||||
"""
|
||||
This is a test strategy using the legacy function headers, which will be
|
||||
removed in a future update.
|
||||
Please do not use this as a template, but refer to user_data/strategy/TestStrategy.py
|
||||
for a uptodate version of this template.
|
||||
|
||||
"""
|
||||
|
||||
# Minimal ROI designed for the strategy.
|
||||
# This attribute will be overridden if the config file contains "minimal_roi"
|
||||
minimal_roi = {
|
||||
"40": 0.0,
|
||||
"30": 0.01,
|
||||
"20": 0.02,
|
||||
"0": 0.04
|
||||
}
|
||||
|
||||
# Optimal stoploss designed for the strategy
|
||||
# This attribute will be overridden if the config file contains "stoploss"
|
||||
stoploss = -0.10
|
||||
|
||||
# Optimal ticker interval for the strategy
|
||||
ticker_interval = '5m'
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
"""
|
||||
|
||||
# Momentum Indicator
|
||||
# ------------------------------------
|
||||
|
||||
# ADX
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
|
||||
"""
|
||||
# Awesome oscillator
|
||||
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
||||
|
||||
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
|
||||
dataframe['cci'] = ta.CCI(dataframe)
|
||||
|
||||
# MACD
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['macdhist'] = macd['macdhist']
|
||||
|
||||
# MFI
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
|
||||
# Minus Directional Indicator / Movement
|
||||
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
|
||||
# Plus Directional Indicator / Movement
|
||||
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
|
||||
# ROC
|
||||
dataframe['roc'] = ta.ROC(dataframe)
|
||||
|
||||
# RSI
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
|
||||
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||
rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
||||
|
||||
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||||
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||||
|
||||
# Stoch
|
||||
stoch = ta.STOCH(dataframe)
|
||||
dataframe['slowd'] = stoch['slowd']
|
||||
dataframe['slowk'] = stoch['slowk']
|
||||
|
||||
# Stoch fast
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['fastk'] = stoch_fast['fastk']
|
||||
|
||||
# Stoch RSI
|
||||
stoch_rsi = ta.STOCHRSI(dataframe)
|
||||
dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
||||
dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
||||
"""
|
||||
|
||||
# Overlap Studies
|
||||
# ------------------------------------
|
||||
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['bb_middleband'] = bollinger['mid']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
|
||||
"""
|
||||
# EMA - Exponential Moving Average
|
||||
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
||||
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
||||
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
||||
|
||||
# SAR Parabol
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
# SMA - Simple Moving Average
|
||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||||
"""
|
||||
|
||||
# TEMA - Triple Exponential Moving Average
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||
|
||||
# Cycle Indicator
|
||||
# ------------------------------------
|
||||
# Hilbert Transform Indicator - SineWave
|
||||
hilbert = ta.HT_SINE(dataframe)
|
||||
dataframe['htsine'] = hilbert['sine']
|
||||
dataframe['htleadsine'] = hilbert['leadsine']
|
||||
|
||||
# Pattern Recognition - Bullish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Hammer: values [0, 100]
|
||||
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
||||
# Inverted Hammer: values [0, 100]
|
||||
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
|
||||
# Dragonfly Doji: values [0, 100]
|
||||
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
|
||||
# Piercing Line: values [0, 100]
|
||||
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
|
||||
# Morningstar: values [0, 100]
|
||||
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
|
||||
# Three White Soldiers: values [0, 100]
|
||||
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
|
||||
"""
|
||||
|
||||
# Pattern Recognition - Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Hanging Man: values [0, 100]
|
||||
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
|
||||
# Shooting Star: values [0, 100]
|
||||
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
|
||||
# Gravestone Doji: values [0, 100]
|
||||
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
|
||||
# Dark Cloud Cover: values [0, 100]
|
||||
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
|
||||
# Evening Doji Star: values [0, 100]
|
||||
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
|
||||
# Evening Star: values [0, 100]
|
||||
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
|
||||
"""
|
||||
|
||||
# Pattern Recognition - Bullish/Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Three Line Strike: values [0, -100, 100]
|
||||
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
|
||||
# Spinning Top: values [0, -100, 100]
|
||||
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
|
||||
# Engulfing: values [0, -100, 100]
|
||||
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
|
||||
# Harami: values [0, -100, 100]
|
||||
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
|
||||
# Three Outside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
|
||||
# Three Inside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
|
||||
"""
|
||||
|
||||
# Chart type
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Heikinashi stategy
|
||||
heikinashi = qtpylib.heikinashi(dataframe)
|
||||
dataframe['ha_open'] = heikinashi['open']
|
||||
dataframe['ha_close'] = heikinashi['close']
|
||||
dataframe['ha_high'] = heikinashi['high']
|
||||
dataframe['ha_low'] = heikinashi['low']
|
||||
"""
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 30) &
|
||||
(dataframe['tema'] <= dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] > dataframe['tema'].shift(1))
|
||||
),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['adx'] > 70) &
|
||||
(dataframe['tema'] > dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] < dataframe['tema'].shift(1))
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
@@ -25,10 +25,11 @@ def test_default_strategy_structure():
|
||||
def test_default_strategy(result):
|
||||
strategy = DefaultStrategy({})
|
||||
|
||||
metadata = {'pair': 'ETH/BTC'}
|
||||
assert type(strategy.minimal_roi) is dict
|
||||
assert type(strategy.stoploss) is float
|
||||
assert type(strategy.ticker_interval) is str
|
||||
indicators = strategy.populate_indicators(result)
|
||||
indicators = strategy.populate_indicators(result, metadata)
|
||||
assert type(indicators) is DataFrame
|
||||
assert type(strategy.populate_buy_trend(indicators)) is DataFrame
|
||||
assert type(strategy.populate_sell_trend(indicators)) is DataFrame
|
||||
assert type(strategy.populate_buy_trend(indicators, metadata)) is DataFrame
|
||||
assert type(strategy.populate_sell_trend(indicators, metadata)) is DataFrame
|
||||
|
@@ -1,8 +1,10 @@
|
||||
# pragma pylint: disable=missing-docstring, protected-access, C0103
|
||||
import logging
|
||||
import os
|
||||
from os import path
|
||||
import warnings
|
||||
|
||||
import pytest
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.strategy import import_strategy
|
||||
from freqtrade.strategy.default_strategy import DefaultStrategy
|
||||
@@ -37,8 +39,8 @@ def test_import_strategy(caplog):
|
||||
|
||||
def test_search_strategy():
|
||||
default_config = {}
|
||||
default_location = os.path.join(os.path.dirname(
|
||||
os.path.realpath(__file__)), '..', '..', 'strategy'
|
||||
default_location = path.join(path.dirname(
|
||||
path.realpath(__file__)), '..', '..', 'strategy'
|
||||
)
|
||||
assert isinstance(
|
||||
StrategyResolver._search_strategy(
|
||||
@@ -57,12 +59,13 @@ def test_search_strategy():
|
||||
|
||||
def test_load_strategy(result):
|
||||
resolver = StrategyResolver({'strategy': 'TestStrategy'})
|
||||
assert 'adx' in resolver.strategy.populate_indicators(result)
|
||||
metadata = {'pair': 'ETH/BTC'}
|
||||
assert 'adx' in resolver.strategy.advise_indicators(result, metadata=metadata)
|
||||
|
||||
|
||||
def test_load_strategy_invalid_directory(result, caplog):
|
||||
resolver = StrategyResolver()
|
||||
extra_dir = os.path.join('some', 'path')
|
||||
extra_dir = path.join('some', 'path')
|
||||
resolver._load_strategy('TestStrategy', config={}, extra_dir=extra_dir)
|
||||
|
||||
assert (
|
||||
@@ -70,7 +73,8 @@ def test_load_strategy_invalid_directory(result, caplog):
|
||||
logging.WARNING,
|
||||
'Path "{}" does not exist'.format(extra_dir),
|
||||
) in caplog.record_tuples
|
||||
assert 'adx' in resolver.strategy.populate_indicators(result)
|
||||
|
||||
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
|
||||
|
||||
|
||||
def test_load_not_found_strategy():
|
||||
@@ -85,7 +89,7 @@ def test_strategy(result):
|
||||
config = {'strategy': 'DefaultStrategy'}
|
||||
|
||||
resolver = StrategyResolver(config)
|
||||
|
||||
metadata = {'pair': 'ETH/BTC'}
|
||||
assert resolver.strategy.minimal_roi[0] == 0.04
|
||||
assert config["minimal_roi"]['0'] == 0.04
|
||||
|
||||
@@ -95,12 +99,13 @@ def test_strategy(result):
|
||||
assert resolver.strategy.ticker_interval == '5m'
|
||||
assert config['ticker_interval'] == '5m'
|
||||
|
||||
assert 'adx' in resolver.strategy.populate_indicators(result)
|
||||
df_indicators = resolver.strategy.advise_indicators(result, metadata=metadata)
|
||||
assert 'adx' in df_indicators
|
||||
|
||||
dataframe = resolver.strategy.populate_buy_trend(resolver.strategy.populate_indicators(result))
|
||||
dataframe = resolver.strategy.advise_buy(df_indicators, metadata=metadata)
|
||||
assert 'buy' in dataframe.columns
|
||||
|
||||
dataframe = resolver.strategy.populate_sell_trend(resolver.strategy.populate_indicators(result))
|
||||
dataframe = resolver.strategy.advise_sell(df_indicators, metadata=metadata)
|
||||
assert 'sell' in dataframe.columns
|
||||
|
||||
|
||||
@@ -150,3 +155,59 @@ def test_strategy_override_ticker_interval(caplog):
|
||||
logging.INFO,
|
||||
'Override strategy \'ticker_interval\' with value in config file: 60.'
|
||||
) in caplog.record_tuples
|
||||
|
||||
|
||||
def test_deprecate_populate_indicators(result):
|
||||
default_location = path.join(path.dirname(path.realpath(__file__)))
|
||||
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
|
||||
'strategy_path': default_location})
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
# Cause all warnings to always be triggered.
|
||||
warnings.simplefilter("always")
|
||||
indicators = resolver.strategy.advise_indicators(result, 'ETH/BTC')
|
||||
assert len(w) == 1
|
||||
assert issubclass(w[-1].category, DeprecationWarning)
|
||||
assert "deprecated - check out the Sample strategy to see the current function headers!" \
|
||||
in str(w[-1].message)
|
||||
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
# Cause all warnings to always be triggered.
|
||||
warnings.simplefilter("always")
|
||||
resolver.strategy.advise_buy(indicators, 'ETH/BTC')
|
||||
assert len(w) == 1
|
||||
assert issubclass(w[-1].category, DeprecationWarning)
|
||||
assert "deprecated - check out the Sample strategy to see the current function headers!" \
|
||||
in str(w[-1].message)
|
||||
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
# Cause all warnings to always be triggered.
|
||||
warnings.simplefilter("always")
|
||||
resolver.strategy.advise_sell(indicators, 'ETH_BTC')
|
||||
assert len(w) == 1
|
||||
assert issubclass(w[-1].category, DeprecationWarning)
|
||||
assert "deprecated - check out the Sample strategy to see the current function headers!" \
|
||||
in str(w[-1].message)
|
||||
|
||||
|
||||
def test_call_deprecated_function(result, monkeypatch):
|
||||
default_location = path.join(path.dirname(path.realpath(__file__)))
|
||||
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
|
||||
'strategy_path': default_location})
|
||||
metadata = {'pair': 'ETH/BTC'}
|
||||
|
||||
# Make sure we are using a legacy function
|
||||
assert resolver.strategy._populate_fun_len == 2
|
||||
assert resolver.strategy._buy_fun_len == 2
|
||||
assert resolver.strategy._sell_fun_len == 2
|
||||
|
||||
indicator_df = resolver.strategy.advise_indicators(result, metadata=metadata)
|
||||
assert type(indicator_df) is DataFrame
|
||||
assert 'adx' in indicator_df.columns
|
||||
|
||||
buydf = resolver.strategy.advise_buy(result, metadata=metadata)
|
||||
assert type(buydf) is DataFrame
|
||||
assert 'buy' in buydf.columns
|
||||
|
||||
selldf = resolver.strategy.advise_sell(result, metadata=metadata)
|
||||
assert type(selldf) is DataFrame
|
||||
assert 'sell' in selldf
|
||||
|
Reference in New Issue
Block a user