Merge branch 'develop' into pr/gmatheu/4746
This commit is contained in:
@@ -4,79 +4,6 @@ This page explains some advanced Hyperopt topics that may require higher
|
||||
coding skills and Python knowledge than creation of an ordinal hyperoptimization
|
||||
class.
|
||||
|
||||
## Derived hyperopt classes
|
||||
|
||||
Custom hyperopt classes can be derived in the same way [it can be done for strategies](strategy-customization.md#derived-strategies).
|
||||
|
||||
Applying to hyperoptimization, as an example, you may override how dimensions are defined in your optimization hyperspace:
|
||||
|
||||
```python
|
||||
class MyAwesomeHyperOpt(IHyperOpt):
|
||||
...
|
||||
# Uses default stoploss dimension
|
||||
|
||||
class MyAwesomeHyperOpt2(MyAwesomeHyperOpt):
|
||||
@staticmethod
|
||||
def stoploss_space() -> List[Dimension]:
|
||||
# Override boundaries for stoploss
|
||||
return [
|
||||
Real(-0.33, -0.01, name='stoploss'),
|
||||
]
|
||||
```
|
||||
|
||||
and then quickly switch between hyperopt classes, running optimization process with hyperopt class you need in each particular case:
|
||||
|
||||
```
|
||||
$ freqtrade hyperopt --hyperopt MyAwesomeHyperOpt --hyperopt-loss SharpeHyperOptLossDaily --strategy MyAwesomeStrategy ...
|
||||
or
|
||||
$ freqtrade hyperopt --hyperopt MyAwesomeHyperOpt2 --hyperopt-loss SharpeHyperOptLossDaily --strategy MyAwesomeStrategy ...
|
||||
```
|
||||
|
||||
## Sharing methods with your strategy
|
||||
|
||||
Hyperopt classes provide access to the Strategy via the `strategy` class attribute.
|
||||
This can be a great way to reduce code duplication if used correctly, but will also complicate usage for inexperienced users.
|
||||
|
||||
``` python
|
||||
from pandas import DataFrame
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
|
||||
buy_params = {
|
||||
'rsi-value': 30,
|
||||
'adx-value': 35,
|
||||
}
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
return self.buy_strategy_generator(self.buy_params, dataframe, metadata)
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe.loc[
|
||||
(
|
||||
qtpylib.crossed_above(dataframe['rsi'], params['rsi-value']) &
|
||||
dataframe['adx'] > params['adx-value']) &
|
||||
dataframe['volume'] > 0
|
||||
)
|
||||
, 'buy'] = 1
|
||||
return dataframe
|
||||
|
||||
class MyAwesomeHyperOpt(IHyperOpt):
|
||||
...
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# Call strategy's buy strategy generator
|
||||
return self.StrategyClass.buy_strategy_generator(params, dataframe, metadata)
|
||||
|
||||
return populate_buy_trend
|
||||
```
|
||||
|
||||
## Creating and using a custom loss function
|
||||
|
||||
To use a custom loss function class, make sure that the function `hyperopt_loss_function` is defined in your custom hyperopt loss class.
|
||||
@@ -142,3 +69,315 @@ This function needs to return a floating point number (`float`). Smaller numbers
|
||||
|
||||
!!! Note
|
||||
Please keep the arguments `*args` and `**kwargs` in the interface to allow us to extend this interface later.
|
||||
|
||||
## Overriding pre-defined spaces
|
||||
|
||||
To override a pre-defined space (`roi_space`, `generate_roi_table`, `stoploss_space`, `trailing_space`), define a nested class called Hyperopt and define the required spaces as follows:
|
||||
|
||||
```python
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
class HyperOpt:
|
||||
# Define a custom stoploss space.
|
||||
def stoploss_space(self):
|
||||
return [SKDecimal(-0.05, -0.01, decimals=3, name='stoploss')]
|
||||
```
|
||||
|
||||
## Space options
|
||||
|
||||
For the additional spaces, scikit-optimize (in combination with Freqtrade) provides the following space types:
|
||||
|
||||
* `Categorical` - Pick from a list of categories (e.g. `Categorical(['a', 'b', 'c'], name="cat")`)
|
||||
* `Integer` - Pick from a range of whole numbers (e.g. `Integer(1, 10, name='rsi')`)
|
||||
* `SKDecimal` - Pick from a range of decimal numbers with limited precision (e.g. `SKDecimal(0.1, 0.5, decimals=3, name='adx')`). *Available only with freqtrade*.
|
||||
* `Real` - Pick from a range of decimal numbers with full precision (e.g. `Real(0.1, 0.5, name='adx')`
|
||||
|
||||
You can import all of these from `freqtrade.optimize.space`, although `Categorical`, `Integer` and `Real` are only aliases for their corresponding scikit-optimize Spaces. `SKDecimal` is provided by freqtrade for faster optimizations.
|
||||
|
||||
``` python
|
||||
from freqtrade.optimize.space import Categorical, Dimension, Integer, SKDecimal, Real # noqa
|
||||
```
|
||||
|
||||
!!! Hint "SKDecimal vs. Real"
|
||||
We recommend to use `SKDecimal` instead of the `Real` space in almost all cases. While the Real space provides full accuracy (up to ~16 decimal places) - this precision is rarely needed, and leads to unnecessary long hyperopt times.
|
||||
|
||||
Assuming the definition of a rather small space (`SKDecimal(0.10, 0.15, decimals=2, name='xxx')`) - SKDecimal will have 5 possibilities (`[0.10, 0.11, 0.12, 0.13, 0.14, 0.15]`).
|
||||
|
||||
A corresponding real space `Real(0.10, 0.15 name='xxx')` on the other hand has an almost unlimited number of possibilities (`[0.10, 0.010000000001, 0.010000000002, ... 0.014999999999, 0.01500000000]`).
|
||||
|
||||
---
|
||||
|
||||
## Legacy Hyperopt
|
||||
|
||||
This Section explains the configuration of an explicit Hyperopt file (separate to the strategy).
|
||||
|
||||
!!! Warning "Deprecated / legacy mode"
|
||||
Since the 2021.4 release you no longer have to write a separate hyperopt class, but all strategies can be hyperopted.
|
||||
Please read the [main hyperopt page](hyperopt.md) for more details.
|
||||
|
||||
### Prepare hyperopt file
|
||||
|
||||
Configuring an explicit hyperopt file is similar to writing your own strategy, and many tasks will be similar.
|
||||
|
||||
!!! Tip "About this page"
|
||||
For this page, we will be using a fictional strategy called `AwesomeStrategy` - which will be optimized using the `AwesomeHyperopt` class.
|
||||
|
||||
#### Create a Custom Hyperopt File
|
||||
|
||||
The simplest way to get started is to use the following command, which will create a new hyperopt file from a template, which will be located under `user_data/hyperopts/AwesomeHyperopt.py`.
|
||||
|
||||
Let assume you want a hyperopt file `AwesomeHyperopt.py`:
|
||||
|
||||
``` bash
|
||||
freqtrade new-hyperopt --hyperopt AwesomeHyperopt
|
||||
```
|
||||
|
||||
#### Legacy Hyperopt checklist
|
||||
|
||||
Checklist on all tasks / possibilities in hyperopt
|
||||
|
||||
Depending on the space you want to optimize, only some of the below are required:
|
||||
|
||||
* fill `buy_strategy_generator` - for buy signal optimization
|
||||
* fill `indicator_space` - for buy signal optimization
|
||||
* fill `sell_strategy_generator` - for sell signal optimization
|
||||
* fill `sell_indicator_space` - for sell signal optimization
|
||||
|
||||
!!! Note
|
||||
`populate_indicators` needs to create all indicators any of thee spaces may use, otherwise hyperopt will not work.
|
||||
|
||||
Optional in hyperopt - can also be loaded from a strategy (recommended):
|
||||
|
||||
* `populate_indicators` - fallback to create indicators
|
||||
* `populate_buy_trend` - fallback if not optimizing for buy space. should come from strategy
|
||||
* `populate_sell_trend` - fallback if not optimizing for sell space. should come from strategy
|
||||
|
||||
!!! Note
|
||||
You always have to provide a strategy to Hyperopt, even if your custom Hyperopt class contains all methods.
|
||||
Assuming the optional methods are not in your hyperopt file, please use `--strategy AweSomeStrategy` which contains these methods so hyperopt can use these methods instead.
|
||||
|
||||
Rarely you may also need to override:
|
||||
|
||||
* `roi_space` - for custom ROI optimization (if you need the ranges for the ROI parameters in the optimization hyperspace that differ from default)
|
||||
* `generate_roi_table` - for custom ROI optimization (if you need the ranges for the values in the ROI table that differ from default or the number of entries (steps) in the ROI table which differs from the default 4 steps)
|
||||
* `stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default)
|
||||
* `trailing_space` - for custom trailing stop optimization (if you need the ranges for the trailing stop parameters in the optimization hyperspace that differ from default)
|
||||
|
||||
#### Defining a buy signal optimization
|
||||
|
||||
Let's say you are curious: should you use MACD crossings or lower Bollinger
|
||||
Bands to trigger your buys. And you also wonder should you use RSI or ADX to
|
||||
help with those buy decisions. If you decide to use RSI or ADX, which values
|
||||
should I use for them? So let's use hyperparameter optimization to solve this
|
||||
mystery.
|
||||
|
||||
We will start by defining a search space:
|
||||
|
||||
```python
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching strategy parameters
|
||||
"""
|
||||
return [
|
||||
Integer(20, 40, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal'], name='trigger')
|
||||
]
|
||||
```
|
||||
|
||||
Above definition says: I have five parameters I want you to randomly combine
|
||||
to find the best combination. Two of them are integer values (`adx-value` and `rsi-value`) and I want you test in the range of values 20 to 40.
|
||||
Then we have three category variables. First two are either `True` or `False`.
|
||||
We use these to either enable or disable the ADX and RSI guards.
|
||||
The last one we call `trigger` and use it to decide which buy trigger we want to use.
|
||||
|
||||
So let's write the buy strategy generator using these values:
|
||||
|
||||
```python
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if 'trigger' in params:
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
|
||||
# Check that volume is not 0
|
||||
conditions.append(dataframe['volume'] > 0)
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
```
|
||||
|
||||
Hyperopt will now call `populate_buy_trend()` many times (`epochs`) with different value combinations.
|
||||
It will use the given historical data and make buys based on the buy signals generated with the above function.
|
||||
Based on the results, hyperopt will tell you which parameter combination produced the best results (based on the configured [loss function](#loss-functions)).
|
||||
|
||||
!!! Note
|
||||
The above setup expects to find ADX, RSI and Bollinger Bands in the populated indicators.
|
||||
When you want to test an indicator that isn't used by the bot currently, remember to
|
||||
add it to the `populate_indicators()` method in your strategy or hyperopt file.
|
||||
|
||||
#### Sell optimization
|
||||
|
||||
Similar to the buy-signal above, sell-signals can also be optimized.
|
||||
Place the corresponding settings into the following methods
|
||||
|
||||
* Inside `sell_indicator_space()` - the parameters hyperopt shall be optimizing.
|
||||
* Within `sell_strategy_generator()` - populate the nested method `populate_sell_trend()` to apply the parameters.
|
||||
|
||||
The configuration and rules are the same than for buy signals.
|
||||
To avoid naming collisions in the search-space, please prefix all sell-spaces with `sell-`.
|
||||
|
||||
### Execute Hyperopt
|
||||
|
||||
Once you have updated your hyperopt configuration you can run it.
|
||||
Because hyperopt tries a lot of combinations to find the best parameters it will take time to get a good result. More time usually results in better results.
|
||||
|
||||
We strongly recommend to use `screen` or `tmux` to prevent any connection loss.
|
||||
|
||||
```bash
|
||||
freqtrade hyperopt --config config.json --hyperopt <hyperoptname> --hyperopt-loss <hyperoptlossname> --strategy <strategyname> -e 500 --spaces all
|
||||
```
|
||||
|
||||
Use `<hyperoptname>` as the name of the custom hyperopt used.
|
||||
|
||||
The `-e` option will set how many evaluations hyperopt will do. Since hyperopt uses Bayesian search, running too many epochs at once may not produce greater results. Experience has shown that best results are usually not improving much after 500-1000 epochs.
|
||||
Doing multiple runs (executions) with a few 1000 epochs and different random state will most likely produce different results.
|
||||
|
||||
The `--spaces all` option determines that all possible parameters should be optimized. Possibilities are listed below.
|
||||
|
||||
!!! Note
|
||||
Hyperopt will store hyperopt results with the timestamp of the hyperopt start time.
|
||||
Reading commands (`hyperopt-list`, `hyperopt-show`) can use `--hyperopt-filename <filename>` to read and display older hyperopt results.
|
||||
You can find a list of filenames with `ls -l user_data/hyperopt_results/`.
|
||||
|
||||
#### Running Hyperopt using methods from a strategy
|
||||
|
||||
Hyperopt can reuse `populate_indicators`, `populate_buy_trend`, `populate_sell_trend` from your strategy, assuming these methods are **not** in your custom hyperopt file, and a strategy is provided.
|
||||
|
||||
```bash
|
||||
freqtrade hyperopt --hyperopt AwesomeHyperopt --hyperopt-loss SharpeHyperOptLossDaily --strategy AwesomeStrategy
|
||||
```
|
||||
|
||||
### Understand the Hyperopt Result
|
||||
|
||||
Once Hyperopt is completed you can use the result to create a new strategy.
|
||||
Given the following result from hyperopt:
|
||||
|
||||
```
|
||||
Best result:
|
||||
|
||||
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
|
||||
|
||||
Buy hyperspace params:
|
||||
{ 'adx-value': 44,
|
||||
'rsi-value': 29,
|
||||
'adx-enabled': False,
|
||||
'rsi-enabled': True,
|
||||
'trigger': 'bb_lower'}
|
||||
```
|
||||
|
||||
You should understand this result like:
|
||||
|
||||
* The buy trigger that worked best was `bb_lower`.
|
||||
* You should not use ADX because `adx-enabled: False`)
|
||||
* You should **consider** using the RSI indicator (`rsi-enabled: True` and the best value is `29.0` (`rsi-value: 29.0`)
|
||||
|
||||
You have to look inside your strategy file into `buy_strategy_generator()`
|
||||
method, what those values match to.
|
||||
|
||||
So for example you had `rsi-value: 29.0` so we would look at `rsi`-block, that translates to the following code block:
|
||||
|
||||
```python
|
||||
(dataframe['rsi'] < 29.0)
|
||||
```
|
||||
|
||||
Translating your whole hyperopt result as the new buy-signal would then look like:
|
||||
|
||||
```python
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['rsi'] < 29.0) & # rsi-value
|
||||
dataframe['close'] < dataframe['bb_lowerband'] # trigger
|
||||
),
|
||||
'buy'] = 1
|
||||
return dataframe
|
||||
```
|
||||
|
||||
### Validate backtesting results
|
||||
|
||||
Once the optimized parameters and conditions have been implemented into your strategy, you should backtest the strategy to make sure everything is working as expected.
|
||||
|
||||
To achieve same results (number of trades, their durations, profit, etc.) than during Hyperopt, please use same configuration and parameters (timerange, timeframe, ...) used for hyperopt `--dmmp`/`--disable-max-market-positions` and `--eps`/`--enable-position-stacking` for Backtesting.
|
||||
|
||||
Should results don't match, please double-check to make sure you transferred all conditions correctly.
|
||||
Pay special care to the stoploss (and trailing stoploss) parameters, as these are often set in configuration files, which override changes to the strategy.
|
||||
You should also carefully review the log of your backtest to ensure that there were no parameters inadvertently set by the configuration (like `stoploss` or `trailing_stop`).
|
||||
|
||||
### Sharing methods with your strategy
|
||||
|
||||
Hyperopt classes provide access to the Strategy via the `strategy` class attribute.
|
||||
This can be a great way to reduce code duplication if used correctly, but will also complicate usage for inexperienced users.
|
||||
|
||||
``` python
|
||||
from pandas import DataFrame
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
|
||||
buy_params = {
|
||||
'rsi-value': 30,
|
||||
'adx-value': 35,
|
||||
}
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
return self.buy_strategy_generator(self.buy_params, dataframe, metadata)
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe.loc[
|
||||
(
|
||||
qtpylib.crossed_above(dataframe['rsi'], params['rsi-value']) &
|
||||
dataframe['adx'] > params['adx-value']) &
|
||||
dataframe['volume'] > 0
|
||||
)
|
||||
, 'buy'] = 1
|
||||
return dataframe
|
||||
|
||||
class MyAwesomeHyperOpt(IHyperOpt):
|
||||
...
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# Call strategy's buy strategy generator
|
||||
return self.StrategyClass.buy_strategy_generator(params, dataframe, metadata)
|
||||
|
||||
return populate_buy_trend
|
||||
```
|
||||
|
3
docs/assets/ccxt-logo.svg
Normal file
3
docs/assets/ccxt-logo.svg
Normal file
@@ -0,0 +1,3 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" preserveAspectRatio="xMidYMid meet" viewBox="0 0 90 90" width="100" height="100"><defs><path d="M0 90L0 0L90 0L90 90L0 90ZM50 60L60 60L60 80L70 80L70 60L80 60L80 50L50 50L50 60ZM30 80L40 80L40 70L30 70L30 80ZM30 60L20 60L20 70L10 70L10 80L20 80L20 70L30 70L30 60L40 60L40 50L30 50L30 60ZM10 60L20 60L20 50L10 50L10 60ZM10 40L40 40L40 30L20 30L20 20L40 20L40 10L10 10L10 40ZM50 40L80 40L80 30L60 30L60 20L80 20L80 10L50 10L50 40Z" id="c6g67PWSoP"></path></defs><g><g><g><use xlink:href="#c6g67PWSoP" opacity="1" fill="#000000" fill-opacity="1"></use></g></g></g></svg>
|
After Width: | Height: | Size: 818 B |
44
docs/assets/freqtrade_poweredby.svg
Normal file
44
docs/assets/freqtrade_poweredby.svg
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 18 KiB |
@@ -15,7 +15,8 @@ usage: freqtrade backtesting [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[--data-format-ohlcv {json,jsongz,hdf5}]
|
||||
[--max-open-trades INT]
|
||||
[--stake-amount STAKE_AMOUNT] [--fee FLOAT]
|
||||
[--eps] [--dmmp] [--enable-protections]
|
||||
[-p PAIRS [PAIRS ...]] [--eps] [--dmmp]
|
||||
[--enable-protections]
|
||||
[--dry-run-wallet DRY_RUN_WALLET]
|
||||
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
|
||||
[--export EXPORT] [--export-filename PATH]
|
||||
@@ -23,8 +24,7 @@ usage: freqtrade backtesting [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME, --ticker-interval TIMEFRAME
|
||||
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
|
||||
`1d`).
|
||||
Specify timeframe (`1m`, `5m`, `30m`, `1h`, `1d`).
|
||||
--timerange TIMERANGE
|
||||
Specify what timerange of data to use.
|
||||
--data-format-ohlcv {json,jsongz,hdf5}
|
||||
@@ -38,6 +38,9 @@ optional arguments:
|
||||
setting.
|
||||
--fee FLOAT Specify fee ratio. Will be applied twice (on trade
|
||||
entry and exit).
|
||||
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
|
||||
Limit command to these pairs. Pairs are space-
|
||||
separated.
|
||||
--eps, --enable-position-stacking
|
||||
Allow buying the same pair multiple times (position
|
||||
stacking).
|
||||
@@ -234,29 +237,29 @@ The most important in the backtesting is to understand the result.
|
||||
A backtesting result will look like that:
|
||||
|
||||
```
|
||||
========================================================= BACKTESTING REPORT ========================================================
|
||||
| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|
||||
|:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|--------:|
|
||||
| ADA/BTC | 35 | -0.11 | -3.88 | -0.00019428 | -1.94 | 4:35:00 | 14 | 0 | 21 |
|
||||
| ARK/BTC | 11 | -0.41 | -4.52 | -0.00022647 | -2.26 | 2:03:00 | 3 | 0 | 8 |
|
||||
| BTS/BTC | 32 | 0.31 | 9.78 | 0.00048938 | 4.89 | 5:05:00 | 18 | 0 | 14 |
|
||||
| DASH/BTC | 13 | -0.08 | -1.07 | -0.00005343 | -0.53 | 4:39:00 | 6 | 0 | 7 |
|
||||
| ENG/BTC | 18 | 1.36 | 24.54 | 0.00122807 | 12.27 | 2:50:00 | 8 | 0 | 10 |
|
||||
| EOS/BTC | 36 | 0.08 | 3.06 | 0.00015304 | 1.53 | 3:34:00 | 16 | 0 | 20 |
|
||||
| ETC/BTC | 26 | 0.37 | 9.51 | 0.00047576 | 4.75 | 6:14:00 | 11 | 0 | 15 |
|
||||
| ETH/BTC | 33 | 0.30 | 9.96 | 0.00049856 | 4.98 | 7:31:00 | 16 | 0 | 17 |
|
||||
| IOTA/BTC | 32 | 0.03 | 1.09 | 0.00005444 | 0.54 | 3:12:00 | 14 | 0 | 18 |
|
||||
| LSK/BTC | 15 | 1.75 | 26.26 | 0.00131413 | 13.13 | 2:58:00 | 6 | 0 | 9 |
|
||||
| LTC/BTC | 32 | -0.04 | -1.38 | -0.00006886 | -0.69 | 4:49:00 | 11 | 0 | 21 |
|
||||
| NANO/BTC | 17 | 1.26 | 21.39 | 0.00107058 | 10.70 | 1:55:00 | 10 | 0 | 7 |
|
||||
| NEO/BTC | 23 | 0.82 | 18.97 | 0.00094936 | 9.48 | 2:59:00 | 10 | 0 | 13 |
|
||||
| REQ/BTC | 9 | 1.17 | 10.54 | 0.00052734 | 5.27 | 3:47:00 | 4 | 0 | 5 |
|
||||
| XLM/BTC | 16 | 1.22 | 19.54 | 0.00097800 | 9.77 | 3:15:00 | 7 | 0 | 9 |
|
||||
| XMR/BTC | 23 | -0.18 | -4.13 | -0.00020696 | -2.07 | 5:30:00 | 12 | 0 | 11 |
|
||||
| XRP/BTC | 35 | 0.66 | 22.96 | 0.00114897 | 11.48 | 3:49:00 | 12 | 0 | 23 |
|
||||
| ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 | 0 | 15 |
|
||||
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 |
|
||||
========================================================= SELL REASON STATS =========================================================
|
||||
========================================================= BACKTESTING REPORT ==========================================================
|
||||
| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins Draws Loss Win% |
|
||||
|:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:-------------|-------------------------:|
|
||||
| ADA/BTC | 35 | -0.11 | -3.88 | -0.00019428 | -1.94 | 4:35:00 | 14 0 21 40.0 |
|
||||
| ARK/BTC | 11 | -0.41 | -4.52 | -0.00022647 | -2.26 | 2:03:00 | 3 0 8 27.3 |
|
||||
| BTS/BTC | 32 | 0.31 | 9.78 | 0.00048938 | 4.89 | 5:05:00 | 18 0 14 56.2 |
|
||||
| DASH/BTC | 13 | -0.08 | -1.07 | -0.00005343 | -0.53 | 4:39:00 | 6 0 7 46.2 |
|
||||
| ENG/BTC | 18 | 1.36 | 24.54 | 0.00122807 | 12.27 | 2:50:00 | 8 0 10 44.4 |
|
||||
| EOS/BTC | 36 | 0.08 | 3.06 | 0.00015304 | 1.53 | 3:34:00 | 16 0 20 44.4 |
|
||||
| ETC/BTC | 26 | 0.37 | 9.51 | 0.00047576 | 4.75 | 6:14:00 | 11 0 15 42.3 |
|
||||
| ETH/BTC | 33 | 0.30 | 9.96 | 0.00049856 | 4.98 | 7:31:00 | 16 0 17 48.5 |
|
||||
| IOTA/BTC | 32 | 0.03 | 1.09 | 0.00005444 | 0.54 | 3:12:00 | 14 0 18 43.8 |
|
||||
| LSK/BTC | 15 | 1.75 | 26.26 | 0.00131413 | 13.13 | 2:58:00 | 6 0 9 40.0 |
|
||||
| LTC/BTC | 32 | -0.04 | -1.38 | -0.00006886 | -0.69 | 4:49:00 | 11 0 21 34.4 |
|
||||
| NANO/BTC | 17 | 1.26 | 21.39 | 0.00107058 | 10.70 | 1:55:00 | 10 0 7 58.5 |
|
||||
| NEO/BTC | 23 | 0.82 | 18.97 | 0.00094936 | 9.48 | 2:59:00 | 10 0 13 43.5 |
|
||||
| REQ/BTC | 9 | 1.17 | 10.54 | 0.00052734 | 5.27 | 3:47:00 | 4 0 5 44.4 |
|
||||
| XLM/BTC | 16 | 1.22 | 19.54 | 0.00097800 | 9.77 | 3:15:00 | 7 0 9 43.8 |
|
||||
| XMR/BTC | 23 | -0.18 | -4.13 | -0.00020696 | -2.07 | 5:30:00 | 12 0 11 52.2 |
|
||||
| XRP/BTC | 35 | 0.66 | 22.96 | 0.00114897 | 11.48 | 3:49:00 | 12 0 23 34.3 |
|
||||
| ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 0 15 31.8 |
|
||||
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 0 243 43.4 |
|
||||
========================================================= SELL REASON STATS ==========================================================
|
||||
| Sell Reason | Sells | Wins | Draws | Losses |
|
||||
|:-------------------|--------:|------:|-------:|--------:|
|
||||
| trailing_stop_loss | 205 | 150 | 0 | 55 |
|
||||
@@ -264,11 +267,11 @@ A backtesting result will look like that:
|
||||
| sell_signal | 56 | 36 | 0 | 20 |
|
||||
| force_sell | 2 | 0 | 0 | 2 |
|
||||
====================================================== LEFT OPEN TRADES REPORT ======================================================
|
||||
| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|
||||
|:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|--------:|
|
||||
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 | 0 | 0 |
|
||||
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 | 0 | 0 |
|
||||
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 | 0 | 0 |
|
||||
| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Win Draw Loss Win% |
|
||||
|:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|--------------------:|
|
||||
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 0 0 100 |
|
||||
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 0 0 100 |
|
||||
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 0 0 100 |
|
||||
=============== SUMMARY METRICS ===============
|
||||
| Metric | Value |
|
||||
|-----------------------+---------------------|
|
||||
@@ -294,6 +297,8 @@ A backtesting result will look like that:
|
||||
| Days win/draw/lose | 12 / 82 / 25 |
|
||||
| Avg. Duration Winners | 4:23:00 |
|
||||
| Avg. Duration Loser | 6:55:00 |
|
||||
| Zero Duration Trades | 4.6% (20) |
|
||||
| Rejected Buy signals | 3089 |
|
||||
| | |
|
||||
| Min balance | 0.00945123 BTC |
|
||||
| Max balance | 0.01846651 BTC |
|
||||
@@ -315,7 +320,7 @@ The last line will give you the overall performance of your strategy,
|
||||
here:
|
||||
|
||||
```
|
||||
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 243 |
|
||||
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 0 243 43.4 |
|
||||
```
|
||||
|
||||
The bot has made `429` trades for an average duration of `4:12:00`, with a performance of `76.20%` (profit), that means it has
|
||||
@@ -381,6 +386,8 @@ It contains some useful key metrics about performance of your strategy on backte
|
||||
| Days win/draw/lose | 12 / 82 / 25 |
|
||||
| Avg. Duration Winners | 4:23:00 |
|
||||
| Avg. Duration Loser | 6:55:00 |
|
||||
| Zero Duration Trades | 4.6% (20) |
|
||||
| Rejected Buy signals | 3089 |
|
||||
| | |
|
||||
| Min balance | 0.00945123 BTC |
|
||||
| Max balance | 0.01846651 BTC |
|
||||
@@ -410,6 +417,8 @@ It contains some useful key metrics about performance of your strategy on backte
|
||||
- `Best day` / `Worst day`: Best and worst day based on daily profit.
|
||||
- `Days win/draw/lose`: Winning / Losing days (draws are usually days without closed trade).
|
||||
- `Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades.
|
||||
- `Zero Duration Trades`: A number of trades that completed within same candle as they opened and had `trailing_stop_loss` sell reason. A significant amount of such trades may indicate that strategy is exploiting trailing stoploss behavior in backtesting and produces unrealistic results.
|
||||
- `Rejected Buy signals`: Buy signals that could not be acted upon due to max_open_trades being reached.
|
||||
- `Min balance` / `Max balance`: Lowest and Highest Wallet balance during the backtest period.
|
||||
- `Drawdown`: Maximum drawdown experienced. For example, the value of 50% means that from highest to subsequent lowest point, a 50% drop was experienced).
|
||||
- `Drawdown high` / `Drawdown low`: Profit at the beginning and end of the largest drawdown period. A negative low value means initial capital lost.
|
||||
@@ -421,6 +430,7 @@ It contains some useful key metrics about performance of your strategy on backte
|
||||
Since backtesting lacks some detailed information about what happens within a candle, it needs to take a few assumptions:
|
||||
|
||||
- Buys happen at open-price
|
||||
- All orders are filled at the requested price (no slippage, no unfilled orders)
|
||||
- Sell-signal sells happen at open-price of the consecutive candle
|
||||
- Sell-signal is favored over Stoploss, because sell-signals are assumed to trigger on candle's open
|
||||
- ROI
|
||||
@@ -468,11 +478,11 @@ There will be an additional table comparing win/losses of the different strategi
|
||||
Detailed output for all strategies one after the other will be available, so make sure to scroll up to see the details per strategy.
|
||||
|
||||
```
|
||||
=========================================================== STRATEGY SUMMARY ===========================================================
|
||||
| Strategy | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|
||||
|:------------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|-------:|
|
||||
| Strategy1 | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 |
|
||||
| Strategy2 | 1487 | -0.13 | -197.58 | -0.00988917 | -98.79 | 4:43:00 | 662 | 0 | 825 |
|
||||
=========================================================== STRATEGY SUMMARY =========================================================================
|
||||
| Strategy | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses | Drawdown % |
|
||||
|:------------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|-------:|-----------:|
|
||||
| Strategy1 | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 | 45.2 |
|
||||
| Strategy2 | 1487 | -0.13 | -197.58 | -0.00988917 | -98.79 | 4:43:00 | 662 | 0 | 825 | 241.68 |
|
||||
```
|
||||
|
||||
## Next step
|
||||
|
@@ -11,7 +11,16 @@ Per default, the bot loads the configuration from the `config.json` file, locate
|
||||
|
||||
You can specify a different configuration file used by the bot with the `-c/--config` command line option.
|
||||
|
||||
In some advanced use cases, multiple configuration files can be specified and used by the bot or the bot can read its configuration parameters from the process standard input stream.
|
||||
Multiple configuration files can be specified and used by the bot or the bot can read its configuration parameters from the process standard input stream.
|
||||
|
||||
!!! Tip "Use multiple configuration files to keep secrets secret"
|
||||
You can use a 2nd configuration file containing your secrets. That way you can share your "primary" configuration file, while still keeping your API keys for yourself.
|
||||
|
||||
``` bash
|
||||
freqtrade trade --config user_data/config.json --config user_data/config-private.json <...>
|
||||
```
|
||||
The 2nd file should only specify what you intend to override.
|
||||
If a key is in more than one of the configurations, then the "last specified configuration" wins (in the above example, `config-private.json`).
|
||||
|
||||
If you used the [Quick start](installation.md/#quick-start) method for installing
|
||||
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
|
||||
@@ -59,8 +68,9 @@ Mandatory parameters are marked as **Required**, which means that they are requi
|
||||
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-only-once-the-trade-has-reached-a-certain-offset). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
|
||||
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
|
||||
| `fee` | Fee used during backtesting / dry-runs. Should normally not be configured, which has freqtrade fall back to the exchange default fee. Set as ratio (e.g. 0.001 = 0.1%). Fee is applied twice for each trade, once when buying, once when selling. <br> **Datatype:** Float (as ratio)
|
||||
| `unfilledtimeout.buy` | **Required.** How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
|
||||
| `unfilledtimeout.sell` | **Required.** How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
|
||||
| `unfilledtimeout.buy` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
|
||||
| `unfilledtimeout.sell` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
|
||||
| `unfilledtimeout.unit` | Unit to use in unfilledtimeout setting. Note: If you set unfilledtimeout.unit to "seconds", "internals.process_throttle_secs" must be inferior or equal to timeout [Strategy Override](#parameters-in-the-strategy). <br> *Defaults to `minutes`.* <br> **Datatype:** String
|
||||
| `bid_strategy.price_side` | Select the side of the spread the bot should look at to get the buy rate. [More information below](#buy-price-side).<br> *Defaults to `bid`.* <br> **Datatype:** String (either `ask` or `bid`).
|
||||
| `bid_strategy.ask_last_balance` | **Required.** Interpolate the bidding price. More information [below](#buy-price-without-orderbook-enabled).
|
||||
| `bid_strategy.use_order_book` | Enable buying using the rates in [Order Book Bids](#buy-price-with-orderbook-enabled). <br> **Datatype:** Boolean
|
||||
@@ -167,7 +177,7 @@ This exchange has also a limit on USD - where all orders must be > 10$ - which h
|
||||
|
||||
To guarantee safe execution, freqtrade will not allow buying with a stake-amount of 10.1$, instead, it'll make sure that there's enough space to place a stoploss below the pair (+ an offset, defined by `amount_reserve_percent`, which defaults to 5%).
|
||||
|
||||
With a stoploss of 10% - we'd therefore end up with a value of ~13.8$ (`12 * (1 + 0.05 + 0.1)`).
|
||||
With a reserve of 5%, the minimum stake amount would be ~12.6$ (`12 * (1 + 0.05)`). If we take in account a stoploss of 10% on top of that - we'd end up with a value of ~14$ (`12.6 / (1 - 0.1)`).
|
||||
|
||||
To limit this calculation in case of large stoploss values, the calculated minimum stake-limit will never be more than 50% above the real limit.
|
||||
|
||||
@@ -518,16 +528,27 @@ API Keys are usually only required for live trading (trading for real money, bot
|
||||
**Insert your Exchange API key (change them by fake api keys):**
|
||||
|
||||
```json
|
||||
"exchange": {
|
||||
{
|
||||
"exchange": {
|
||||
"name": "bittrex",
|
||||
"key": "af8ddd35195e9dc500b9a6f799f6f5c93d89193b",
|
||||
"secret": "08a9dc6db3d7b53e1acebd9275677f4b0a04f1a5",
|
||||
...
|
||||
//"password": "", // Optional, not needed by all exchanges)
|
||||
// ...
|
||||
}
|
||||
//...
|
||||
}
|
||||
```
|
||||
|
||||
You should also make sure to read the [Exchanges](exchanges.md) section of the documentation to be aware of potential configuration details specific to your exchange.
|
||||
|
||||
!!! Hint "Keep your secrets secret"
|
||||
To keep your secrets secret, we recommend to use a 2nd configuration for your API keys.
|
||||
Simply use the above snippet in a new configuration file (e.g. `config-private.json`) and keep your settings in this file.
|
||||
You can then start the bot with `freqtrade trade --config user_data/config.json --config user_data/config-private.json <...>` to have your keys loaded.
|
||||
|
||||
**NEVER** share your private configuration file or your exchange keys with anyone!
|
||||
|
||||
### Using proxy with Freqtrade
|
||||
|
||||
To use a proxy with freqtrade, add the kwarg `"aiohttp_trust_env"=true` to the `"ccxt_async_kwargs"` dict in the exchange section of the configuration.
|
||||
|
@@ -11,8 +11,9 @@ Otherwise `--exchange` becomes mandatory.
|
||||
You can use a relative timerange (`--days 20`) or an absolute starting point (`--timerange 20200101-`). For incremental downloads, the relative approach should be used.
|
||||
|
||||
!!! Tip "Tip: Updating existing data"
|
||||
If you already have backtesting data available in your data-directory and would like to refresh this data up to today, use `--days xx` with a number slightly higher than the missing number of days. Freqtrade will keep the available data and only download the missing data.
|
||||
Be careful though: If the number is too small (which would result in a few missing days), the whole dataset will be removed and only xx days will be downloaded.
|
||||
If you already have backtesting data available in your data-directory and would like to refresh this data up to today, do not use `--days` or `--timerange` parameters. Freqtrade will keep the available data and only download the missing data.
|
||||
If you are updating existing data after inserting new pairs that you have no data for, use `--new-pairs-days xx` parameter. Specified number of days will be downloaded for new pairs while old pairs will be updated with missing data only.
|
||||
If you use `--days xx` parameter alone - data for specified number of days will be downloaded for _all_ pairs. Be careful, if specified number of days is smaller than gap between now and last downloaded candle - freqtrade will delete all existing data to avoid gaps in candle data.
|
||||
|
||||
### Usage
|
||||
|
||||
@@ -20,8 +21,9 @@ You can use a relative timerange (`--days 20`) or an absolute starting point (`-
|
||||
usage: freqtrade download-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[-d PATH] [--userdir PATH]
|
||||
[-p PAIRS [PAIRS ...]] [--pairs-file FILE]
|
||||
[--days INT] [--timerange TIMERANGE]
|
||||
[--dl-trades] [--exchange EXCHANGE]
|
||||
[--days INT] [--new-pairs-days INT]
|
||||
[--timerange TIMERANGE] [--dl-trades]
|
||||
[--exchange EXCHANGE]
|
||||
[-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w,2w,1M,1y} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w,2w,1M,1y} ...]]
|
||||
[--erase]
|
||||
[--data-format-ohlcv {json,jsongz,hdf5}]
|
||||
@@ -30,10 +32,12 @@ usage: freqtrade download-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
|
||||
Show profits for only these pairs. Pairs are space-
|
||||
Limit command to these pairs. Pairs are space-
|
||||
separated.
|
||||
--pairs-file FILE File containing a list of pairs to download.
|
||||
--days INT Download data for given number of days.
|
||||
--new-pairs-days INT Download data of new pairs for given number of days.
|
||||
Default: `None`.
|
||||
--timerange TIMERANGE
|
||||
Specify what timerange of data to use.
|
||||
--dl-trades Download trades instead of OHLCV data. The bot will
|
||||
@@ -48,10 +52,10 @@ optional arguments:
|
||||
exchange/pairs/timeframes.
|
||||
--data-format-ohlcv {json,jsongz,hdf5}
|
||||
Storage format for downloaded candle (OHLCV) data.
|
||||
(default: `json`).
|
||||
(default: `None`).
|
||||
--data-format-trades {json,jsongz,hdf5}
|
||||
Storage format for downloaded trades data. (default:
|
||||
`jsongz`).
|
||||
`None`).
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
|
@@ -10,11 +10,11 @@ Start by downloading and installing Docker CE for your platform:
|
||||
* [Windows](https://docs.docker.com/docker-for-windows/install/)
|
||||
* [Linux](https://docs.docker.com/install/)
|
||||
|
||||
To simplify running freqtrade, please install [`docker-compose`](https://docs.docker.com/compose/install/) should be installed and available to follow the below [docker quick start guide](#docker-quick-start).
|
||||
To simplify running freqtrade, [`docker-compose`](https://docs.docker.com/compose/install/) should be installed and available to follow the below [docker quick start guide](#docker-quick-start).
|
||||
|
||||
## Freqtrade with docker-compose
|
||||
|
||||
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker-compose file](https://github.com/freqtrade/freqtrade/blob/develop/docker-compose.yml) ready for usage.
|
||||
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker-compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
|
||||
|
||||
!!! Note
|
||||
- The following section assumes that `docker` and `docker-compose` are installed and available to the logged in user.
|
||||
@@ -22,7 +22,7 @@ Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.co
|
||||
|
||||
### Docker quick start
|
||||
|
||||
Create a new directory and place the [docker-compose file](https://github.com/freqtrade/freqtrade/blob/develop/docker-compose.yml) in this directory.
|
||||
Create a new directory and place the [docker-compose file](https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml) in this directory.
|
||||
|
||||
=== "PC/MAC/Linux"
|
||||
``` bash
|
||||
@@ -48,6 +48,8 @@ Create a new directory and place the [docker-compose file](https://github.com/fr
|
||||
# Download the docker-compose file from the repository
|
||||
curl https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml -o docker-compose.yml
|
||||
|
||||
# Edit the compose file to use an image named `*_pi` (stable_pi or develop_pi)
|
||||
|
||||
# Pull the freqtrade image
|
||||
docker-compose pull
|
||||
|
||||
@@ -65,6 +67,40 @@ Create a new directory and place the [docker-compose file](https://github.com/fr
|
||||
# image: freqtradeorg/freqtrade:develop_pi
|
||||
```
|
||||
|
||||
=== "ARM 64 Systenms (Mac M1, Raspberry Pi 4, Jetson Nano)"
|
||||
In case of a Mac M1, make sure that your docker installation is running in native mode
|
||||
Arm64 images are not yet provided via Docker Hub and need to be build locally first.
|
||||
Depending on the device, this may take a few minutes (Apple M1) or multiple hours (Raspberry Pi)
|
||||
|
||||
``` bash
|
||||
# Clone Freqtrade repository
|
||||
git clone https://github.com/freqtrade/freqtrade.git
|
||||
cd freqtrade
|
||||
# Optionally switch to the stable version
|
||||
git checkout stable
|
||||
|
||||
# Modify your docker-compose file to enable building and change the image name
|
||||
# (see the Note Box below for necessary changes)
|
||||
|
||||
# Build image
|
||||
docker-compose build
|
||||
|
||||
# Create user directory structure
|
||||
docker-compose run --rm freqtrade create-userdir --userdir user_data
|
||||
|
||||
# Create configuration - Requires answering interactive questions
|
||||
docker-compose run --rm freqtrade new-config --config user_data/config.json
|
||||
```
|
||||
|
||||
!!! Note "Change your docker Image"
|
||||
You have to change the docker image in the docker-compose file for your arm64 build to work properly.
|
||||
``` yml
|
||||
image: freqtradeorg/freqtrade:custom_arm64
|
||||
build:
|
||||
context: .
|
||||
dockerfile: "./docker/Dockerfile.aarch64"
|
||||
```
|
||||
|
||||
The above snippet creates a new directory called `ft_userdata`, downloads the latest compose file and pulls the freqtrade image.
|
||||
The last 2 steps in the snippet create the directory with `user_data`, as well as (interactively) the default configuration based on your selections.
|
||||
|
||||
@@ -156,8 +192,8 @@ Head over to the [Backtesting Documentation](backtesting.md) to learn more.
|
||||
|
||||
### Additional dependencies with docker-compose
|
||||
|
||||
If your strategy requires dependencies not included in the default image (like [technical](https://github.com/freqtrade/technical)) - it will be necessary to build the image on your host.
|
||||
For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [docker/Dockerfile.technical](https://github.com/freqtrade/freqtrade/blob/develop/docker/Dockerfile.technical) for an example).
|
||||
If your strategy requires dependencies not included in the default image - it will be necessary to build the image on your host.
|
||||
For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [docker/Dockerfile.custom](https://github.com/freqtrade/freqtrade/blob/develop/docker/Dockerfile.custom) for an example).
|
||||
|
||||
You'll then also need to modify the `docker-compose.yml` file and uncomment the build step, as well as rename the image to avoid naming collisions.
|
||||
|
||||
|
19
docs/edge.md
19
docs/edge.md
@@ -1,9 +1,9 @@
|
||||
# Edge positioning
|
||||
|
||||
The `Edge Positioning` module uses probability to calculate your win rate and risk reward ratio. It will use these statistics to control your strategy trade entry points, position size and, stoploss.
|
||||
The `Edge Positioning` module uses probability to calculate your win rate and risk reward ratio. It will use these statistics to control your strategy trade entry points, position size and, stoploss.
|
||||
|
||||
!!! Warning
|
||||
`Edge positioning` is not compatible with dynamic (volume-based) whitelist.
|
||||
WHen using `Edge positioning` with a dynamic whitelist (VolumePairList), make sure to also use `AgeFilter` and set it to at least `calculate_since_number_of_days` to avoid problems with missing data.
|
||||
|
||||
!!! Note
|
||||
`Edge Positioning` only considers *its own* buy/sell/stoploss signals. It ignores the stoploss, trailing stoploss, and ROI settings in the strategy configuration file.
|
||||
@@ -14,7 +14,7 @@ The `Edge Positioning` module uses probability to calculate your win rate and ri
|
||||
|
||||
Trading strategies are not perfect. They are frameworks that are susceptible to the market and its indicators. Because the market is not at all predictable, sometimes a strategy will win and sometimes the same strategy will lose.
|
||||
|
||||
To obtain an edge in the market, a strategy has to make more money than it loses. Making money in trading is not only about *how often* the strategy makes or loses money.
|
||||
To obtain an edge in the market, a strategy has to make more money than it loses. Making money in trading is not only about *how often* the strategy makes or loses money.
|
||||
|
||||
!!! tip "It doesn't matter how often, but how much!"
|
||||
A bad strategy might make 1 penny in *ten* transactions but lose 1 dollar in *one* transaction. If one only checks the number of winning trades, it would be misleading to think that the strategy is actually making a profit.
|
||||
@@ -215,16 +215,20 @@ Let's say the stake currency is **ETH** and there is $10$ **ETH** on the wallet.
|
||||
usage: freqtrade edge [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--userdir PATH] [-s NAME] [--strategy-path PATH]
|
||||
[-i TIMEFRAME] [--timerange TIMERANGE]
|
||||
[--data-format-ohlcv {json,jsongz,hdf5}]
|
||||
[--max-open-trades INT] [--stake-amount STAKE_AMOUNT]
|
||||
[--fee FLOAT] [--stoplosses STOPLOSS_RANGE]
|
||||
[--fee FLOAT] [-p PAIRS [PAIRS ...]]
|
||||
[--stoplosses STOPLOSS_RANGE]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME, --ticker-interval TIMEFRAME
|
||||
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
|
||||
`1d`).
|
||||
Specify timeframe (`1m`, `5m`, `30m`, `1h`, `1d`).
|
||||
--timerange TIMERANGE
|
||||
Specify what timerange of data to use.
|
||||
--data-format-ohlcv {json,jsongz,hdf5}
|
||||
Storage format for downloaded candle (OHLCV) data.
|
||||
(default: `None`).
|
||||
--max-open-trades INT
|
||||
Override the value of the `max_open_trades`
|
||||
configuration setting.
|
||||
@@ -233,6 +237,9 @@ optional arguments:
|
||||
setting.
|
||||
--fee FLOAT Specify fee ratio. Will be applied twice (on trade
|
||||
entry and exit).
|
||||
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
|
||||
Limit command to these pairs. Pairs are space-
|
||||
separated.
|
||||
--stoplosses STOPLOSS_RANGE
|
||||
Defines a range of stoploss values against which edge
|
||||
will assess the strategy. The format is "min,max,step"
|
||||
|
@@ -7,10 +7,10 @@ This page combines common gotchas and informations which are exchange-specific a
|
||||
!!! Tip "Stoploss on Exchange"
|
||||
Binance supports `stoploss_on_exchange` and uses stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
|
||||
|
||||
### Blacklists
|
||||
### Binance Blacklist
|
||||
|
||||
For Binance, please add `"BNB/<STAKE>"` to your blacklist to avoid issues.
|
||||
Accounts having BNB accounts use this to pay for fees - if your first trade happens to be on `BNB`, further trades will consume this position and make the initial BNB order unsellable as the expected amount is not there anymore.
|
||||
Accounts having BNB accounts use this to pay for fees - if your first trade happens to be on `BNB`, further trades will consume this position and make the initial BNB trade unsellable as the expected amount is not there anymore.
|
||||
|
||||
### Binance sites
|
||||
|
||||
@@ -44,6 +44,10 @@ Due to the heavy rate-limiting applied by Kraken, the following configuration se
|
||||
Downloading kraken data will require significantly more memory (RAM) than any other exchange, as the trades-data needs to be converted into candles on your machine.
|
||||
It will also take a long time, as freqtrade will need to download every single trade that happened on the exchange for the pair / timerange combination, therefore please be patient.
|
||||
|
||||
!!! Warning "rateLimit tuning"
|
||||
Please pay attention that rateLimit configuration entry holds delay in milliseconds between requests, NOT requests\sec rate.
|
||||
So, in order to mitigate Kraken API "Rate limit exceeded" exception, this configuration should be increased, NOT decreased.
|
||||
|
||||
## Bittrex
|
||||
|
||||
### Order types
|
||||
@@ -96,6 +100,23 @@ To use subaccounts with FTX, you need to edit the configuration and add the foll
|
||||
}
|
||||
```
|
||||
|
||||
## Kucoin
|
||||
|
||||
Kucoin requries a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows:
|
||||
|
||||
```json
|
||||
"exchange": {
|
||||
"name": "kucoin",
|
||||
"key": "your_exchange_key",
|
||||
"secret": "your_exchange_secret",
|
||||
"password": "your_exchange_api_key_password",
|
||||
```
|
||||
|
||||
### Kucoin Blacklists
|
||||
|
||||
For Kucoin, please add `"KCS/<STAKE>"` to your blacklist to avoid issues.
|
||||
Accounts having KCS accounts use this to pay for fees - if your first trade happens to be on `KCS`, further trades will consume this position and make the initial KCS trade unsellable as the expected amount is not there anymore.
|
||||
|
||||
## All exchanges
|
||||
|
||||
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.
|
||||
|
16
docs/faq.md
16
docs/faq.md
@@ -1,5 +1,19 @@
|
||||
# Freqtrade FAQ
|
||||
|
||||
## Supported Markets
|
||||
|
||||
Freqtrade supports spot trading only.
|
||||
|
||||
### Can I open short positions?
|
||||
|
||||
No, Freqtrade does not support trading with margin / leverage, and cannot open short positions.
|
||||
|
||||
In some cases, your exchange may provide leveraged spot tokens which can be traded with Freqtrade eg. BTCUP/USD, BTCDOWN/USD, ETHBULL/USD, ETHBEAR/USD, etc...
|
||||
|
||||
### Can I trade options or futures?
|
||||
|
||||
No, options and futures trading are not supported.
|
||||
|
||||
## Beginner Tips & Tricks
|
||||
|
||||
* When you work with your strategy & hyperopt file you should use a proper code editor like VSCode or PyCharm. A good code editor will provide syntax highlighting as well as line numbers, making it easy to find syntax errors (most likely pointed out by Freqtrade during startup).
|
||||
@@ -142,7 +156,7 @@ freqtrade hyperopt --hyperopt SampleHyperopt --hyperopt-loss SharpeHyperOptLossD
|
||||
|
||||
### Why does it take a long time to run hyperopt?
|
||||
|
||||
* Discovering a great strategy with Hyperopt takes time. Study www.freqtrade.io, the Freqtrade Documentation page, join the Freqtrade [Slack community](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw) - or the Freqtrade [discord community](https://discord.gg/X89cVG). While you patiently wait for the most advanced, free crypto bot in the world, to hand you a possible golden strategy specially designed just for you.
|
||||
* Discovering a great strategy with Hyperopt takes time. Study www.freqtrade.io, the Freqtrade Documentation page, join the Freqtrade [Slack community](https://join.slack.com/t/highfrequencybot/shared_invite/zt-mm786y93-Fxo37glxMY9g8OQC5AoOIw) - or the Freqtrade [discord community](https://discord.gg/MA9v74M). While you patiently wait for the most advanced, free crypto bot in the world, to hand you a possible golden strategy specially designed just for you.
|
||||
|
||||
* If you wonder why it can take from 20 minutes to days to do 1000 epochs here are some answers:
|
||||
|
||||
|
554
docs/hyperopt.md
554
docs/hyperopt.md
@@ -1,19 +1,22 @@
|
||||
# Hyperopt
|
||||
|
||||
This page explains how to tune your strategy by finding the optimal
|
||||
parameters, a process called hyperparameter optimization. The bot uses several
|
||||
algorithms included in the `scikit-optimize` package to accomplish this. The
|
||||
search will burn all your CPU cores, make your laptop sound like a fighter jet
|
||||
and still take a long time.
|
||||
parameters, a process called hyperparameter optimization. The bot uses algorithms included in the `scikit-optimize` package to accomplish this.
|
||||
The search will burn all your CPU cores, make your laptop sound like a fighter jet and still take a long time.
|
||||
|
||||
In general, the search for best parameters starts with a few random combinations (see [below](#reproducible-results) for more details) and then uses Bayesian search with a ML regressor algorithm (currently ExtraTreesRegressor) to quickly find a combination of parameters in the search hyperspace that minimizes the value of the [loss function](#loss-functions).
|
||||
|
||||
Hyperopt requires historic data to be available, just as backtesting does.
|
||||
Hyperopt requires historic data to be available, just as backtesting does (hyperopt runs backtesting many times with different parameters).
|
||||
To learn how to get data for the pairs and exchange you're interested in, head over to the [Data Downloading](data-download.md) section of the documentation.
|
||||
|
||||
!!! Bug
|
||||
Hyperopt can crash when used with only 1 CPU Core as found out in [Issue #1133](https://github.com/freqtrade/freqtrade/issues/1133)
|
||||
|
||||
!!! Note
|
||||
Since 2021.4 release you no longer have to write a separate hyperopt class, but can configure the parameters directly in the strategy.
|
||||
The legacy method is still supported, but it is no longer the recommended way of setting up hyperopt.
|
||||
The legacy documentation is available at [Legacy Hyperopt](advanced-hyperopt.md#legacy-hyperopt).
|
||||
|
||||
## Install hyperopt dependencies
|
||||
|
||||
Since Hyperopt dependencies are not needed to run the bot itself, are heavy, can not be easily built on some platforms (like Raspberry PI), they are not installed by default. Before you run Hyperopt, you need to install the corresponding dependencies, as described in this section below.
|
||||
@@ -34,7 +37,6 @@ pip install -r requirements-hyperopt.txt
|
||||
|
||||
## Hyperopt command reference
|
||||
|
||||
|
||||
```
|
||||
usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--userdir PATH] [-s NAME] [--strategy-path PATH]
|
||||
@@ -42,8 +44,9 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--data-format-ohlcv {json,jsongz,hdf5}]
|
||||
[--max-open-trades INT]
|
||||
[--stake-amount STAKE_AMOUNT] [--fee FLOAT]
|
||||
[--hyperopt NAME] [--hyperopt-path PATH] [--eps]
|
||||
[--dmmp] [--enable-protections]
|
||||
[-p PAIRS [PAIRS ...]] [--hyperopt NAME]
|
||||
[--hyperopt-path PATH] [--eps] [--dmmp]
|
||||
[--enable-protections]
|
||||
[--dry-run-wallet DRY_RUN_WALLET] [-e INT]
|
||||
[--spaces {all,buy,sell,roi,stoploss,trailing,default} [{all,buy,sell,roi,stoploss,trailing,default} ...]]
|
||||
[--print-all] [--no-color] [--print-json] [-j JOBS]
|
||||
@@ -53,8 +56,7 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME, --ticker-interval TIMEFRAME
|
||||
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
|
||||
`1d`).
|
||||
Specify timeframe (`1m`, `5m`, `30m`, `1h`, `1d`).
|
||||
--timerange TIMERANGE
|
||||
Specify what timerange of data to use.
|
||||
--data-format-ohlcv {json,jsongz,hdf5}
|
||||
@@ -68,6 +70,9 @@ optional arguments:
|
||||
setting.
|
||||
--fee FLOAT Specify fee ratio. Will be applied twice (on trade
|
||||
entry and exit).
|
||||
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
|
||||
Limit command to these pairs. Pairs are space-
|
||||
separated.
|
||||
--hyperopt NAME Specify hyperopt class name which will be used by the
|
||||
bot.
|
||||
--hyperopt-path PATH Specify additional lookup path for Hyperopt and
|
||||
@@ -104,7 +109,8 @@ optional arguments:
|
||||
reproducible hyperopt results.
|
||||
--min-trades INT Set minimal desired number of trades for evaluations
|
||||
in the hyperopt optimization path (default: 1).
|
||||
--hyperopt-loss NAME Specify the class name of the hyperopt loss function
|
||||
--hyperopt-loss NAME, --hyperoptloss NAME
|
||||
Specify the class name of the hyperopt loss function
|
||||
class (IHyperOptLoss). Different functions can
|
||||
generate completely different results, since the
|
||||
target for optimization is different. Built-in
|
||||
@@ -137,47 +143,19 @@ Strategy arguments:
|
||||
|
||||
```
|
||||
|
||||
## Prepare Hyperopting
|
||||
|
||||
Before we start digging into Hyperopt, we recommend you to take a look at
|
||||
the sample hyperopt file located in [user_data/hyperopts/](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt.py).
|
||||
|
||||
Configuring hyperopt is similar to writing your own strategy, and many tasks will be similar.
|
||||
|
||||
!!! Tip "About this page"
|
||||
For this page, we will be using a fictional strategy called `AwesomeStrategy` - which will be optimized using the `AwesomeHyperopt` class.
|
||||
|
||||
The simplest way to get started is to use the following, command, which will create a new hyperopt file from a template, which will be located under `user_data/hyperopts/AwesomeHyperopt.py`.
|
||||
|
||||
``` bash
|
||||
freqtrade new-hyperopt --hyperopt AwesomeHyperopt
|
||||
```
|
||||
|
||||
### Hyperopt checklist
|
||||
|
||||
Checklist on all tasks / possibilities in hyperopt
|
||||
|
||||
Depending on the space you want to optimize, only some of the below are required:
|
||||
|
||||
* fill `buy_strategy_generator` - for buy signal optimization
|
||||
* fill `indicator_space` - for buy signal optimization
|
||||
* fill `sell_strategy_generator` - for sell signal optimization
|
||||
* fill `sell_indicator_space` - for sell signal optimization
|
||||
* define parameters with `space='buy'` - for buy signal optimization
|
||||
* define parameters with `space='sell'` - for sell signal optimization
|
||||
|
||||
!!! Note
|
||||
`populate_indicators` needs to create all indicators any of the spaces may use, otherwise hyperopt will not work.
|
||||
|
||||
Optional in hyperopt - can also be loaded from a strategy (recommended):
|
||||
|
||||
* `populate_indicators` - fallback to create indicators
|
||||
* `populate_buy_trend` - fallback if not optimizing for buy space. should come from strategy
|
||||
* `populate_sell_trend` - fallback if not optimizing for sell space. should come from strategy
|
||||
|
||||
!!! Note
|
||||
You always have to provide a strategy to Hyperopt, even if your custom Hyperopt class contains all methods.
|
||||
Assuming the optional methods are not in your hyperopt file, please use `--strategy AweSomeStrategy` which contains these methods so hyperopt can use these methods instead.
|
||||
|
||||
Rarely you may also need to override:
|
||||
Rarely you may also need to create a [nested class](advanced-hyperopt.md#overriding-pre-defined-spaces) named `HyperOpt` and implement
|
||||
|
||||
* `roi_space` - for custom ROI optimization (if you need the ranges for the ROI parameters in the optimization hyperspace that differ from default)
|
||||
* `generate_roi_table` - for custom ROI optimization (if you need the ranges for the values in the ROI table that differ from default or the number of entries (steps) in the ROI table which differs from the default 4 steps)
|
||||
@@ -185,31 +163,30 @@ Rarely you may also need to override:
|
||||
* `trailing_space` - for custom trailing stop optimization (if you need the ranges for the trailing stop parameters in the optimization hyperspace that differ from default)
|
||||
|
||||
!!! Tip "Quickly optimize ROI, stoploss and trailing stoploss"
|
||||
You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything (i.e. without creation of a "complete" Hyperopt class with dimensions, parameters, triggers and guards, as described in this document) from the default hyperopt template by relying on your strategy to do most of the calculations.
|
||||
You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything in your strategy.
|
||||
|
||||
```python
|
||||
``` bash
|
||||
# Have a working strategy at hand.
|
||||
freqtrade new-hyperopt --hyperopt EmptyHyperopt
|
||||
|
||||
freqtrade hyperopt --hyperopt EmptyHyperopt --hyperopt-loss SharpeHyperOptLossDaily --spaces roi stoploss trailing --strategy MyWorkingStrategy --config config.json -e 100
|
||||
freqtrade hyperopt --hyperopt-loss SharpeHyperOptLossDaily --spaces roi stoploss trailing --strategy MyWorkingStrategy --config config.json -e 100
|
||||
```
|
||||
|
||||
### Create a Custom Hyperopt File
|
||||
### Hyperopt execution logic
|
||||
|
||||
Let assume you want a hyperopt file `AwesomeHyperopt.py`:
|
||||
Hyperopt will first load your data into memory and will then run `populate_indicators()` once per Pair to generate all indicators.
|
||||
|
||||
``` bash
|
||||
freqtrade new-hyperopt --hyperopt AwesomeHyperopt
|
||||
```
|
||||
Hyperopt will then spawn into different processes (number of processors, or `-j <n>`), and run backtesting over and over again, changing the parameters that are part of the `--spaces` defined.
|
||||
|
||||
This command will create a new hyperopt file from a template, allowing you to get started quickly.
|
||||
For every new set of parameters, freqtrade will run first `populate_buy_trend()` followed by `populate_sell_trend()`, and then run the regular backtesting process to simulate trades.
|
||||
|
||||
After backtesting, the results are passed into the [loss function](#loss-functions), which will evaluate if this result was better or worse than previous results.
|
||||
Based on the loss function result, hyperopt will determine the next set of parameters to try in the next round of backtesting.
|
||||
|
||||
### Configure your Guards and Triggers
|
||||
|
||||
There are two places you need to change in your hyperopt file to add a new buy hyperopt for testing:
|
||||
There are two places you need to change in your strategy file to add a new buy hyperopt for testing:
|
||||
|
||||
* Inside `indicator_space()` - the parameters hyperopt shall be optimizing.
|
||||
* Within `buy_strategy_generator()` - populate the nested `populate_buy_trend()` to apply the parameters.
|
||||
* Define the parameters at the class level hyperopt shall be optimizing.
|
||||
* Within `populate_buy_trend()` - use defined parameter values instead of raw constants.
|
||||
|
||||
There you have two different types of indicators: 1. `guards` and 2. `triggers`.
|
||||
|
||||
@@ -221,100 +198,106 @@ There you have two different types of indicators: 1. `guards` and 2. `triggers`.
|
||||
However, this guide will make this distinction to make it clear that signals should not be "sticking".
|
||||
Sticking signals are signals that are active for multiple candles. This can lead into buying a signal late (right before the signal disappears - which means that the chance of success is a lot lower than right at the beginning).
|
||||
|
||||
Hyper-optimization will, for each epoch round, pick one trigger and possibly
|
||||
multiple guards. The constructed strategy will be something like "*buy exactly when close price touches lower Bollinger band, BUT only if
|
||||
ADX > 10*".
|
||||
|
||||
If you have updated the buy strategy, i.e. changed the contents of `populate_buy_trend()` method, you have to update the `guards` and `triggers` your hyperopt must use correspondingly.
|
||||
Hyper-optimization will, for each epoch round, pick one trigger and possibly multiple guards.
|
||||
|
||||
#### Sell optimization
|
||||
|
||||
Similar to the buy-signal above, sell-signals can also be optimized.
|
||||
Place the corresponding settings into the following methods
|
||||
|
||||
* Inside `sell_indicator_space()` - the parameters hyperopt shall be optimizing.
|
||||
* Within `sell_strategy_generator()` - populate the nested method `populate_sell_trend()` to apply the parameters.
|
||||
* Define the parameters at the class level hyperopt shall be optimizing, either naming them `sell_*`, or by explicitly defining `space='sell'`.
|
||||
* Within `populate_sell_trend()` - use defined parameter values instead of raw constants.
|
||||
|
||||
The configuration and rules are the same than for buy signals.
|
||||
To avoid naming collisions in the search-space, please prefix all sell-spaces with `sell-`.
|
||||
|
||||
#### Using timeframe as a part of the Strategy
|
||||
|
||||
The Strategy class exposes the timeframe value as the `self.timeframe` attribute.
|
||||
The same value is available as class-attribute `HyperoptName.timeframe`.
|
||||
In the case of the linked sample-value this would be `AwesomeHyperopt.timeframe`.
|
||||
|
||||
## Solving a Mystery
|
||||
|
||||
Let's say you are curious: should you use MACD crossings or lower Bollinger
|
||||
Bands to trigger your buys. And you also wonder should you use RSI or ADX to
|
||||
help with those buy decisions. If you decide to use RSI or ADX, which values
|
||||
should I use for them? So let's use hyperparameter optimization to solve this
|
||||
mystery.
|
||||
Let's say you are curious: should you use MACD crossings or lower Bollinger Bands to trigger your buys.
|
||||
And you also wonder should you use RSI or ADX to help with those buy decisions.
|
||||
If you decide to use RSI or ADX, which values should I use for them?
|
||||
|
||||
We will start by defining a search space:
|
||||
So let's use hyperparameter optimization to solve this mystery.
|
||||
|
||||
```python
|
||||
def indicator_space() -> List[Dimension]:
|
||||
### Defining indicators to be used
|
||||
|
||||
We start by calculating the indicators our strategy is going to use.
|
||||
|
||||
``` python
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Define your Hyperopt space for searching strategy parameters
|
||||
Generate all indicators used by the strategy
|
||||
"""
|
||||
return [
|
||||
Integer(20, 40, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal'], name='trigger')
|
||||
]
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['macdhist'] = macd['macdhist']
|
||||
|
||||
bollinger = ta.BBANDS(dataframe, timeperiod=20, nbdevup=2.0, nbdevdn=2.0)
|
||||
dataframe['bb_lowerband'] = boll['lowerband']
|
||||
dataframe['bb_middleband'] = boll['middleband']
|
||||
dataframe['bb_upperband'] = boll['upperband']
|
||||
return dataframe
|
||||
```
|
||||
|
||||
Above definition says: I have five parameters I want you to randomly combine
|
||||
to find the best combination. Two of them are integer values (`adx-value`
|
||||
and `rsi-value`) and I want you test in the range of values 20 to 40.
|
||||
### Hyperoptable parameters
|
||||
|
||||
We continue to define hyperoptable parameters:
|
||||
|
||||
```python
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
buy_adx = IntParameter(20, 40, default=30, space="buy")
|
||||
buy_rsi = IntParameter(20, 40, default=30, space="buy")
|
||||
buy_adx_enabled = CategoricalParameter([True, False], space="buy")
|
||||
buy_rsi_enabled = CategoricalParameter([True, False], space="buy")
|
||||
buy_trigger = CategoricalParameter(['bb_lower', 'macd_cross_signal'], space="buy")
|
||||
```
|
||||
|
||||
Above definition says: I have five parameters I want to randomly combine to find the best combination.
|
||||
Two of them are integer values (`buy_adx` and `buy_rsi`) and I want you test in the range of values 20 to 40.
|
||||
Then we have three category variables. First two are either `True` or `False`.
|
||||
We use these to either enable or disable the ADX and RSI guards. The last
|
||||
one we call `trigger` and use it to decide which buy trigger we want to use.
|
||||
We use these to either enable or disable the ADX and RSI guards.
|
||||
The last one we call `trigger` and use it to decide which buy trigger we want to use.
|
||||
|
||||
!!! Note "Parameter space assignment"
|
||||
Parameters must either be assigned to a variable named `buy_*` or `sell_*` - or contain `space='buy'` | `space='sell'` to be assigned to a space correctly.
|
||||
If no parameter is available for a space, you'll receive the error that no space was found when running hyperopt.
|
||||
|
||||
So let's write the buy strategy using these values:
|
||||
|
||||
```python
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if self.buy_adx_enabled.value:
|
||||
conditions.append(dataframe['adx'] > self.buy_adx.value)
|
||||
if self.buy_rsi_enabled.value:
|
||||
conditions.append(dataframe['rsi'] < self.buy_rsi.value)
|
||||
|
||||
# TRIGGERS
|
||||
if 'trigger' in params:
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
# TRIGGERS
|
||||
if self.buy_trigger.value == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if self.buy_trigger.value == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
|
||||
# Check that volume is not 0
|
||||
conditions.append(dataframe['volume'] > 0)
|
||||
# Check that volume is not 0
|
||||
conditions.append(dataframe['volume'] > 0)
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
return dataframe
|
||||
```
|
||||
|
||||
Hyperopt will now call `populate_buy_trend()` many times (`epochs`) with different value combinations.
|
||||
It will use the given historical data and make buys based on the buy signals generated with the above function.
|
||||
It will use the given historical data and simulate buys based on the buy signals generated with the above function.
|
||||
Based on the results, hyperopt will tell you which parameter combination produced the best results (based on the configured [loss function](#loss-functions)).
|
||||
|
||||
!!! Note
|
||||
@@ -322,6 +305,108 @@ Based on the results, hyperopt will tell you which parameter combination produce
|
||||
When you want to test an indicator that isn't used by the bot currently, remember to
|
||||
add it to the `populate_indicators()` method in your strategy or hyperopt file.
|
||||
|
||||
## Parameter types
|
||||
|
||||
There are four parameter types each suited for different purposes.
|
||||
|
||||
* `IntParameter` - defines an integral parameter with upper and lower boundaries of search space.
|
||||
* `DecimalParameter` - defines a floating point parameter with a limited number of decimals (default 3). Should be preferred instead of `RealParameter` in most cases.
|
||||
* `RealParameter` - defines a floating point parameter with upper and lower boundaries and no precision limit. Rarely used as it creates a space with a near infinite number of possibilities.
|
||||
* `CategoricalParameter` - defines a parameter with a predetermined number of choices.
|
||||
|
||||
!!! Tip "Disabling parameter optimization"
|
||||
Each parameter takes two boolean parameters:
|
||||
* `load` - when set to `False` it will not load values configured in `buy_params` and `sell_params`.
|
||||
* `optimize` - when set to `False` parameter will not be included in optimization process.
|
||||
Use these parameters to quickly prototype various ideas.
|
||||
|
||||
!!! Warning
|
||||
Hyperoptable parameters cannot be used in `populate_indicators` - as hyperopt does not recalculate indicators for each epoch, so the starting value would be used in this case.
|
||||
|
||||
### Optimizing an indicator parameter
|
||||
|
||||
Assuming you have a simple strategy in mind - a EMA cross strategy (2 Moving averages crossing) - and you'd like to find the ideal parameters for this strategy.
|
||||
|
||||
``` python
|
||||
from pandas import DataFrame
|
||||
from functools import reduce
|
||||
|
||||
import talib.abstract as ta
|
||||
|
||||
from freqtrade.strategy import IStrategy
|
||||
from freqtrade.strategy import CategoricalParameter, DecimalParameter, IntParameter
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
stoploss = -0.05
|
||||
timeframe = '15m'
|
||||
# Define the parameter spaces
|
||||
buy_ema_short = IntParameter(3, 50, default=5)
|
||||
buy_ema_long = IntParameter(15, 200, default=50)
|
||||
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""Generate all indicators used by the strategy"""
|
||||
|
||||
# Calculate all ema_short values
|
||||
for val in self.buy_ema_short.range:
|
||||
dataframe[f'ema_short_{val}'] = ta.EMA(dataframe, timeperiod=val)
|
||||
|
||||
# Calculate all ema_long values
|
||||
for val in self.buy_ema_long.range:
|
||||
dataframe[f'ema_long_{val}'] = ta.EMA(dataframe, timeperiod=val)
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
conditions = []
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe[f'ema_short_{self.buy_ema_short.value}'], dataframe[f'ema_long_{self.buy_ema_long.value}']
|
||||
))
|
||||
|
||||
# Check that volume is not 0
|
||||
conditions.append(dataframe['volume'] > 0)
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
conditions = []
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe[f'ema_long_{self.buy_ema_long.value}'], dataframe[f'ema_short_{self.buy_ema_short.value}']
|
||||
))
|
||||
|
||||
# Check that volume is not 0
|
||||
conditions.append(dataframe['volume'] > 0)
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
```
|
||||
|
||||
Breaking it down:
|
||||
|
||||
Using `self.buy_ema_short.range` will return a range object containing all entries between the Parameters low and high value.
|
||||
In this case (`IntParameter(3, 50, default=5)`), the loop would run for all numbers between 3 and 50 (`[3, 4, 5, ... 49, 50]`).
|
||||
By using this in a loop, hyperopt will generate 48 new columns (`['buy_ema_3', 'buy_ema_4', ... , 'buy_ema_50']`).
|
||||
|
||||
Hyperopt itself will then use the selected value to create the buy and sell signals
|
||||
|
||||
While this strategy is most likely too simple to provide consistent profit, it should serve as an example how optimize indicator parameters.
|
||||
|
||||
!!! Note
|
||||
`self.buy_ema_short.range` will act differently between hyperopt and other modes. For hyperopt, the above example may generate 48 new columns, however for all other modes (backtesting, dry/live), it will only generate the column for the selected value. You should therefore avoid using the resulting column with explicit values (values other than `self.buy_ema_short.value`).
|
||||
|
||||
??? Hint "Performance tip"
|
||||
By doing the calculation of all possible indicators in `populate_indicators()`, the calculation of the indicator happens only once for every parameter.
|
||||
While this may slow down the hyperopt startup speed, the overall performance will increase as the Hyperopt execution itself may pick the same value for multiple epochs (changing other values).
|
||||
You should however try to use space ranges as small as possible. Every new column will require more memory, and every possibility hyperopt can try will increase the search space.
|
||||
|
||||
## Loss-functions
|
||||
|
||||
Each hyperparameter tuning requires a target. This is usually defined as a loss function (sometimes also called objective function), which should decrease for more desirable results, and increase for bad results.
|
||||
@@ -343,16 +428,14 @@ Creation of a custom loss function is covered in the [Advanced Hyperopt](advance
|
||||
## Execute Hyperopt
|
||||
|
||||
Once you have updated your hyperopt configuration you can run it.
|
||||
Because hyperopt tries a lot of combinations to find the best parameters it will take time to get a good result. More time usually results in better results.
|
||||
Because hyperopt tries a lot of combinations to find the best parameters it will take time to get a good result.
|
||||
|
||||
We strongly recommend to use `screen` or `tmux` to prevent any connection loss.
|
||||
|
||||
```bash
|
||||
freqtrade hyperopt --config config.json --hyperopt <hyperoptname> --hyperopt-loss <hyperoptlossname> --strategy <strategyname> -e 500 --spaces all
|
||||
freqtrade hyperopt --config config.json --hyperopt-loss <hyperoptlossname> --strategy <strategyname> -e 500 --spaces all
|
||||
```
|
||||
|
||||
Use `<hyperoptname>` as the name of the custom hyperopt used.
|
||||
|
||||
The `-e` option will set how many evaluations hyperopt will do. Since hyperopt uses Bayesian search, running too many epochs at once may not produce greater results. Experience has shown that best results are usually not improving much after 500-1000 epochs.
|
||||
Doing multiple runs (executions) with a few 1000 epochs and different random state will most likely produce different results.
|
||||
|
||||
@@ -366,30 +449,23 @@ The `--spaces all` option determines that all possible parameters should be opti
|
||||
### Execute Hyperopt with different historical data source
|
||||
|
||||
If you would like to hyperopt parameters using an alternate historical data set that
|
||||
you have on-disk, use the `--datadir PATH` option. By default, hyperopt
|
||||
uses data from directory `user_data/data`.
|
||||
you have on-disk, use the `--datadir PATH` option. By default, hyperopt uses data from directory `user_data/data`.
|
||||
|
||||
### Running Hyperopt with a smaller test-set
|
||||
|
||||
Use the `--timerange` argument to change how much of the test-set you want to use.
|
||||
For example, to use one month of data, pass the following parameter to the hyperopt call:
|
||||
For example, to use one month of data, pass `--timerange 20210101-20210201` (from january 2021 - february 2021) to the hyperopt call.
|
||||
|
||||
Full command:
|
||||
|
||||
```bash
|
||||
freqtrade hyperopt --hyperopt <hyperoptname> --strategy <strategyname> --timerange 20180401-20180501
|
||||
```
|
||||
|
||||
### Running Hyperopt using methods from a strategy
|
||||
|
||||
Hyperopt can reuse `populate_indicators`, `populate_buy_trend`, `populate_sell_trend` from your strategy, assuming these methods are **not** in your custom hyperopt file, and a strategy is provided.
|
||||
|
||||
```bash
|
||||
freqtrade hyperopt --hyperopt AwesomeHyperopt --hyperopt-loss SharpeHyperOptLossDaily --strategy AwesomeStrategy
|
||||
freqtrade hyperopt --hyperopt <hyperoptname> --strategy <strategyname> --timerange 20210101-20210201
|
||||
```
|
||||
|
||||
### Running Hyperopt with Smaller Search Space
|
||||
|
||||
Use the `--spaces` option to limit the search space used by hyperopt.
|
||||
Letting Hyperopt optimize everything is a huuuuge search space.
|
||||
Letting Hyperopt optimize everything is a huuuuge search space.
|
||||
Often it might make more sense to start by just searching for initial buy algorithm.
|
||||
Or maybe you just want to optimize your stoploss or roi table for that awesome new buy strategy you have.
|
||||
|
||||
@@ -406,40 +482,9 @@ Legal values are:
|
||||
|
||||
The default Hyperopt Search Space, used when no `--space` command line option is specified, does not include the `trailing` hyperspace. We recommend you to run optimization for the `trailing` hyperspace separately, when the best parameters for other hyperspaces were found, validated and pasted into your custom strategy.
|
||||
|
||||
### Position stacking and disabling max market positions
|
||||
|
||||
In some situations, you may need to run Hyperopt (and Backtesting) with the
|
||||
`--eps`/`--enable-position-staking` and `--dmmp`/`--disable-max-market-positions` arguments.
|
||||
|
||||
By default, hyperopt emulates the behavior of the Freqtrade Live Run/Dry Run, where only one
|
||||
open trade is allowed for every traded pair. The total number of trades open for all pairs
|
||||
is also limited by the `max_open_trades` setting. During Hyperopt/Backtesting this may lead to
|
||||
some potential trades to be hidden (or masked) by previously open trades.
|
||||
|
||||
The `--eps`/`--enable-position-stacking` argument allows emulation of buying the same pair multiple times,
|
||||
while `--dmmp`/`--disable-max-market-positions` disables applying `max_open_trades`
|
||||
during Hyperopt/Backtesting (which is equal to setting `max_open_trades` to a very high
|
||||
number).
|
||||
|
||||
!!! Note
|
||||
Dry/live runs will **NOT** use position stacking - therefore it does make sense to also validate the strategy without this as it's closer to reality.
|
||||
|
||||
You can also enable position stacking in the configuration file by explicitly setting
|
||||
`"position_stacking"=true`.
|
||||
|
||||
### Reproducible results
|
||||
|
||||
The search for optimal parameters starts with a few (currently 30) random combinations in the hyperspace of parameters, random Hyperopt epochs. These random epochs are marked with an asterisk character (`*`) in the first column in the Hyperopt output.
|
||||
|
||||
The initial state for generation of these random values (random state) is controlled by the value of the `--random-state` command line option. You can set it to some arbitrary value of your choice to obtain reproducible results.
|
||||
|
||||
If you have not set this value explicitly in the command line options, Hyperopt seeds the random state with some random value for you. The random state value for each Hyperopt run is shown in the log, so you can copy and paste it into the `--random-state` command line option to repeat the set of the initial random epochs used.
|
||||
|
||||
If you have not changed anything in the command line options, configuration, timerange, Strategy and Hyperopt classes, historical data and the Loss Function -- you should obtain same hyper-optimization results with same random state value used.
|
||||
|
||||
## Understand the Hyperopt Result
|
||||
|
||||
Once Hyperopt is completed you can use the result to create a new strategy.
|
||||
Once Hyperopt is completed you can use the result to update your strategy.
|
||||
Given the following result from hyperopt:
|
||||
|
||||
```
|
||||
@@ -447,49 +492,38 @@ Best result:
|
||||
|
||||
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
|
||||
|
||||
Buy hyperspace params:
|
||||
{ 'adx-value': 44,
|
||||
'rsi-value': 29,
|
||||
'adx-enabled': False,
|
||||
'rsi-enabled': True,
|
||||
'trigger': 'bb_lower'}
|
||||
# Buy hyperspace params:
|
||||
buy_params = {
|
||||
'buy_adx': 44,
|
||||
'buy_rsi': 29,
|
||||
'buy_adx_enabled': False,
|
||||
'buy_rsi_enabled': True,
|
||||
'buy_trigger': 'bb_lower'
|
||||
}
|
||||
```
|
||||
|
||||
You should understand this result like:
|
||||
|
||||
- The buy trigger that worked best was `bb_lower`.
|
||||
- You should not use ADX because `adx-enabled: False`)
|
||||
- You should **consider** using the RSI indicator (`rsi-enabled: True` and the best value is `29.0` (`rsi-value: 29.0`)
|
||||
* The buy trigger that worked best was `bb_lower`.
|
||||
* You should not use ADX because `'buy_adx_enabled': False`.
|
||||
* You should **consider** using the RSI indicator (`'buy_rsi_enabled': True`) and the best value is `29.0` (`'buy_rsi': 29.0`)
|
||||
|
||||
You have to look inside your strategy file into `buy_strategy_generator()`
|
||||
method, what those values match to.
|
||||
Your strategy class can immediately take advantage of these results. Simply copy hyperopt results block and paste them at class level, replacing old parameters (if any). New parameters will automatically be loaded next time strategy is executed.
|
||||
|
||||
So for example you had `rsi-value: 29.0` so we would look at `rsi`-block, that translates to the following code block:
|
||||
Transferring your whole hyperopt result to your strategy would then look like:
|
||||
|
||||
```python
|
||||
(dataframe['rsi'] < 29.0)
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
# Buy hyperspace params:
|
||||
buy_params = {
|
||||
'buy_adx': 44,
|
||||
'buy_rsi': 29,
|
||||
'buy_adx_enabled': False,
|
||||
'buy_rsi_enabled': True,
|
||||
'buy_trigger': 'bb_lower'
|
||||
}
|
||||
```
|
||||
|
||||
Translating your whole hyperopt result as the new buy-signal would then look like:
|
||||
|
||||
```python
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['rsi'] < 29.0) & # rsi-value
|
||||
dataframe['close'] < dataframe['bb_lowerband'] # trigger
|
||||
),
|
||||
'buy'] = 1
|
||||
return dataframe
|
||||
```
|
||||
|
||||
By default, hyperopt prints colorized results -- epochs with positive profit are printed in the green color. This highlighting helps you find epochs that can be interesting for later analysis. Epochs with zero total profit or with negative profits (losses) are printed in the normal color. If you do not need colorization of results (for instance, when you are redirecting hyperopt output to a file) you can switch colorization off by specifying the `--no-color` option in the command line.
|
||||
|
||||
You can use the `--print-all` command line option if you would like to see all results in the hyperopt output, not only the best ones. When `--print-all` is used, current best results are also colorized by default -- they are printed in bold (bright) style. This can also be switched off with the `--no-color` command line option.
|
||||
|
||||
!!! Note "Windows and color output"
|
||||
Windows does not support color-output natively, therefore it is automatically disabled. To have color-output for hyperopt running under windows, please consider using WSL.
|
||||
|
||||
### Understand Hyperopt ROI results
|
||||
|
||||
If you are optimizing ROI (i.e. if optimization search-space contains 'all', 'default' or 'roi'), your result will look as follows and include a ROI table:
|
||||
@@ -499,11 +533,13 @@ Best result:
|
||||
|
||||
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
|
||||
|
||||
ROI table:
|
||||
{ 0: 0.10674,
|
||||
21: 0.09158,
|
||||
78: 0.03634,
|
||||
118: 0}
|
||||
# ROI table:
|
||||
minimal_roi = {
|
||||
0: 0.10674,
|
||||
21: 0.09158,
|
||||
78: 0.03634,
|
||||
118: 0
|
||||
}
|
||||
```
|
||||
|
||||
In order to use this best ROI table found by Hyperopt in backtesting and for live trades/dry-run, copy-paste it as the value of the `minimal_roi` attribute of your custom strategy:
|
||||
@@ -523,23 +559,26 @@ As stated in the comment, you can also use it as the value of the `minimal_roi`
|
||||
|
||||
#### Default ROI Search Space
|
||||
|
||||
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the timeframe used. By default the values vary in the following ranges (for some of the most used timeframes, values are rounded to 5 digits after the decimal point):
|
||||
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the timeframe used. By default the values vary in the following ranges (for some of the most used timeframes, values are rounded to 3 digits after the decimal point):
|
||||
|
||||
| # step | 1m | | 5m | | 1h | | 1d | |
|
||||
| ------ | ------ | ----------------- | -------- | ----------- | ---------- | ----------------- | ------------ | ----------------- |
|
||||
| 1 | 0 | 0.01161...0.11992 | 0 | 0.03...0.31 | 0 | 0.06883...0.71124 | 0 | 0.12178...1.25835 |
|
||||
| 2 | 2...8 | 0.00774...0.04255 | 10...40 | 0.02...0.11 | 120...480 | 0.04589...0.25238 | 2880...11520 | 0.08118...0.44651 |
|
||||
| 3 | 4...20 | 0.00387...0.01547 | 20...100 | 0.01...0.04 | 240...1200 | 0.02294...0.09177 | 5760...28800 | 0.04059...0.16237 |
|
||||
| 4 | 6...44 | 0.0 | 30...220 | 0.0 | 360...2640 | 0.0 | 8640...63360 | 0.0 |
|
||||
| # step | 1m | | 5m | | 1h | | 1d | |
|
||||
| ------ | ------ | ------------- | -------- | ----------- | ---------- | ------------- | ------------ | ------------- |
|
||||
| 1 | 0 | 0.011...0.119 | 0 | 0.03...0.31 | 0 | 0.068...0.711 | 0 | 0.121...1.258 |
|
||||
| 2 | 2...8 | 0.007...0.042 | 10...40 | 0.02...0.11 | 120...480 | 0.045...0.252 | 2880...11520 | 0.081...0.446 |
|
||||
| 3 | 4...20 | 0.003...0.015 | 20...100 | 0.01...0.04 | 240...1200 | 0.022...0.091 | 5760...28800 | 0.040...0.162 |
|
||||
| 4 | 6...44 | 0.0 | 30...220 | 0.0 | 360...2640 | 0.0 | 8640...63360 | 0.0 |
|
||||
|
||||
These ranges should be sufficient in most cases. The minutes in the steps (ROI dict keys) are scaled linearly depending on the timeframe used. The ROI values in the steps (ROI dict values) are scaled logarithmically depending on the timeframe used.
|
||||
|
||||
If you have the `generate_roi_table()` and `roi_space()` methods in your custom hyperopt file, remove them in order to utilize these adaptive ROI tables and the ROI hyperoptimization space generated by Freqtrade by default.
|
||||
|
||||
Override the `roi_space()` method if you need components of the ROI tables to vary in other ranges. Override the `generate_roi_table()` and `roi_space()` methods and implement your own custom approach for generation of the ROI tables during hyperoptimization if you need a different structure of the ROI tables or other amount of rows (steps).
|
||||
Override the `roi_space()` method if you need components of the ROI tables to vary in other ranges. Override the `generate_roi_table()` and `roi_space()` methods and implement your own custom approach for generation of the ROI tables during hyperoptimization if you need a different structure of the ROI tables or other amount of rows (steps).
|
||||
|
||||
A sample for these methods can be found in [sample_hyperopt_advanced.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py).
|
||||
|
||||
!!! Note "Reduced search space"
|
||||
To limit the search space further, Decimals are limited to 3 decimal places (a precision of 0.001). This is usually sufficient, every value more precise than this will usually result in overfitted results. You can however [overriding pre-defined spaces](advanced-hyperopt.md#pverriding-pre-defined-spaces) to change this to your needs.
|
||||
|
||||
### Understand Hyperopt Stoploss results
|
||||
|
||||
If you are optimizing stoploss values (i.e. if optimization search-space contains 'all', 'default' or 'stoploss'), your result will look as follows and include stoploss:
|
||||
@@ -549,13 +588,16 @@ Best result:
|
||||
|
||||
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
|
||||
|
||||
Buy hyperspace params:
|
||||
{ 'adx-value': 44,
|
||||
'rsi-value': 29,
|
||||
'adx-enabled': False,
|
||||
'rsi-enabled': True,
|
||||
'trigger': 'bb_lower'}
|
||||
Stoploss: -0.27996
|
||||
# Buy hyperspace params:
|
||||
buy_params = {
|
||||
'buy_adx': 44,
|
||||
'buy_rsi': 29,
|
||||
'buy_adx_enabled': False,
|
||||
'buy_rsi_enabled': True,
|
||||
'buy_trigger': 'bb_lower'
|
||||
}
|
||||
|
||||
stoploss: -0.27996
|
||||
```
|
||||
|
||||
In order to use this best stoploss value found by Hyperopt in backtesting and for live trades/dry-run, copy-paste it as the value of the `stoploss` attribute of your custom strategy:
|
||||
@@ -576,6 +618,9 @@ If you have the `stoploss_space()` method in your custom hyperopt file, remove i
|
||||
|
||||
Override the `stoploss_space()` method and define the desired range in it if you need stoploss values to vary in other range during hyperoptimization. A sample for this method can be found in [user_data/hyperopts/sample_hyperopt_advanced.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py).
|
||||
|
||||
!!! Note "Reduced search space"
|
||||
To limit the search space further, Decimals are limited to 3 decimal places (a precision of 0.001). This is usually sufficient, every value more precise than this will usually result in overfitted results. You can however [overriding pre-defined spaces](advanced-hyperopt.md#pverriding-pre-defined-spaces) to change this to your needs.
|
||||
|
||||
### Understand Hyperopt Trailing Stop results
|
||||
|
||||
If you are optimizing trailing stop values (i.e. if optimization search-space contains 'all' or 'trailing'), your result will look as follows and include trailing stop parameters:
|
||||
@@ -585,11 +630,11 @@ Best result:
|
||||
|
||||
45/100: 606 trades. Avg profit 1.04%. Total profit 0.31555614 BTC ( 630.48Σ%). Avg duration 150.3 mins. Objective: -1.10161
|
||||
|
||||
Trailing stop:
|
||||
{ 'trailing_only_offset_is_reached': True,
|
||||
'trailing_stop': True,
|
||||
'trailing_stop_positive': 0.02001,
|
||||
'trailing_stop_positive_offset': 0.06038}
|
||||
# Trailing stop:
|
||||
trailing_stop = True
|
||||
trailing_stop_positive = 0.02001
|
||||
trailing_stop_positive_offset = 0.06038
|
||||
trailing_only_offset_is_reached = True
|
||||
```
|
||||
|
||||
In order to use these best trailing stop parameters found by Hyperopt in backtesting and for live trades/dry-run, copy-paste them as the values of the corresponding attributes of your custom strategy:
|
||||
@@ -611,6 +656,59 @@ If you are optimizing trailing stop values, Freqtrade creates the 'trailing' opt
|
||||
|
||||
Override the `trailing_space()` method and define the desired range in it if you need values of the trailing stop parameters to vary in other ranges during hyperoptimization. A sample for this method can be found in [user_data/hyperopts/sample_hyperopt_advanced.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py).
|
||||
|
||||
!!! Note "Reduced search space"
|
||||
To limit the search space further, Decimals are limited to 3 decimal places (a precision of 0.001). This is usually sufficient, every value more precise than this will usually result in overfitted results. You can however [overriding pre-defined spaces](advanced-hyperopt.md#pverriding-pre-defined-spaces) to change this to your needs.
|
||||
|
||||
### Reproducible results
|
||||
|
||||
The search for optimal parameters starts with a few (currently 30) random combinations in the hyperspace of parameters, random Hyperopt epochs. These random epochs are marked with an asterisk character (`*`) in the first column in the Hyperopt output.
|
||||
|
||||
The initial state for generation of these random values (random state) is controlled by the value of the `--random-state` command line option. You can set it to some arbitrary value of your choice to obtain reproducible results.
|
||||
|
||||
If you have not set this value explicitly in the command line options, Hyperopt seeds the random state with some random value for you. The random state value for each Hyperopt run is shown in the log, so you can copy and paste it into the `--random-state` command line option to repeat the set of the initial random epochs used.
|
||||
|
||||
If you have not changed anything in the command line options, configuration, timerange, Strategy and Hyperopt classes, historical data and the Loss Function -- you should obtain same hyper-optimization results with same random state value used.
|
||||
|
||||
## Output formatting
|
||||
|
||||
By default, hyperopt prints colorized results -- epochs with positive profit are printed in the green color. This highlighting helps you find epochs that can be interesting for later analysis. Epochs with zero total profit or with negative profits (losses) are printed in the normal color. If you do not need colorization of results (for instance, when you are redirecting hyperopt output to a file) you can switch colorization off by specifying the `--no-color` option in the command line.
|
||||
|
||||
You can use the `--print-all` command line option if you would like to see all results in the hyperopt output, not only the best ones. When `--print-all` is used, current best results are also colorized by default -- they are printed in bold (bright) style. This can also be switched off with the `--no-color` command line option.
|
||||
|
||||
!!! Note "Windows and color output"
|
||||
Windows does not support color-output natively, therefore it is automatically disabled. To have color-output for hyperopt running under windows, please consider using WSL.
|
||||
|
||||
## Position stacking and disabling max market positions
|
||||
|
||||
In some situations, you may need to run Hyperopt (and Backtesting) with the
|
||||
`--eps`/`--enable-position-staking` and `--dmmp`/`--disable-max-market-positions` arguments.
|
||||
|
||||
By default, hyperopt emulates the behavior of the Freqtrade Live Run/Dry Run, where only one
|
||||
open trade is allowed for every traded pair. The total number of trades open for all pairs
|
||||
is also limited by the `max_open_trades` setting. During Hyperopt/Backtesting this may lead to
|
||||
some potential trades to be hidden (or masked) by previously open trades.
|
||||
|
||||
The `--eps`/`--enable-position-stacking` argument allows emulation of buying the same pair multiple times,
|
||||
while `--dmmp`/`--disable-max-market-positions` disables applying `max_open_trades`
|
||||
during Hyperopt/Backtesting (which is equal to setting `max_open_trades` to a very high
|
||||
number).
|
||||
|
||||
!!! Note
|
||||
Dry/live runs will **NOT** use position stacking - therefore it does make sense to also validate the strategy without this as it's closer to reality.
|
||||
|
||||
You can also enable position stacking in the configuration file by explicitly setting
|
||||
`"position_stacking"=true`.
|
||||
|
||||
## Out of Memory errors
|
||||
|
||||
As hyperopt consumes a lot of memory (the complete data needs to be in memory once per parallel backtesting process), it's likely that you run into "out of memory" errors.
|
||||
To combat these, you have multiple options:
|
||||
|
||||
* reduce the amount of pairs
|
||||
* reduce the timerange used (`--timerange <timerange>`)
|
||||
* reduce the number of parallel processes (`-j <n>`)
|
||||
* Increase the memory of your machine
|
||||
|
||||
## Show details of Hyperopt results
|
||||
|
||||
After you run Hyperopt for the desired amount of epochs, you can later list all results for analysis, select only best or profitable once, and show the details for any of the epochs previously evaluated. This can be done with the `hyperopt-list` and `hyperopt-show` sub-commands. The usage of these sub-commands is described in the [Utils](utils.md#list-hyperopt-results) chapter.
|
||||
|
@@ -4,7 +4,7 @@ Pairlist Handlers define the list of pairs (pairlist) that the bot should trade.
|
||||
|
||||
In your configuration, you can use Static Pairlist (defined by the [`StaticPairList`](#static-pair-list) Pairlist Handler) and Dynamic Pairlist (defined by the [`VolumePairList`](#volume-pair-list) Pairlist Handler).
|
||||
|
||||
Additionally, [`AgeFilter`](#agefilter), [`PrecisionFilter`](#precisionfilter), [`PriceFilter`](#pricefilter), [`ShuffleFilter`](#shufflefilter) and [`SpreadFilter`](#spreadfilter) act as Pairlist Filters, removing certain pairs and/or moving their positions in the pairlist.
|
||||
Additionally, [`AgeFilter`](#agefilter), [`PrecisionFilter`](#precisionfilter), [`PriceFilter`](#pricefilter), [`ShuffleFilter`](#shufflefilter), [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) act as Pairlist Filters, removing certain pairs and/or moving their positions in the pairlist.
|
||||
|
||||
If multiple Pairlist Handlers are used, they are chained and a combination of all Pairlist Handlers forms the resulting pairlist the bot uses for trading and backtesting. Pairlist Handlers are executed in the sequence they are configured. You should always configure either `StaticPairList` or `VolumePairList` as the starting Pairlist Handler.
|
||||
|
||||
@@ -29,6 +29,7 @@ You may also use something like `.*DOWN/BTC` or `.*UP/BTC` to exclude leveraged
|
||||
* [`ShuffleFilter`](#shufflefilter)
|
||||
* [`SpreadFilter`](#spreadfilter)
|
||||
* [`RangeStabilityFilter`](#rangestabilityfilter)
|
||||
* [`VolatilityFilter`](#volatilityfilter)
|
||||
|
||||
!!! Tip "Testing pairlists"
|
||||
Pairlist configurations can be quite tricky to get right. Best use the [`test-pairlist`](utils.md#test-pairlist) utility sub-command to test your configuration quickly.
|
||||
@@ -59,6 +60,8 @@ When used in the chain of Pairlist Handlers in a non-leading position (after Sta
|
||||
When used on the leading position of the chain of Pairlist Handlers, it does not consider `pair_whitelist` configuration setting, but selects the top assets from all available markets (with matching stake-currency) on the exchange.
|
||||
|
||||
The `refresh_period` setting allows to define the period (in seconds), at which the pairlist will be refreshed. Defaults to 1800s (30 minutes).
|
||||
The pairlist cache (`refresh_period`) on `VolumePairList` is only applicable to generating pairlists.
|
||||
Filtering instances (not the first position in the list) will not apply any cache and will always use up-to-date data.
|
||||
|
||||
`VolumePairList` is based on the ticker data from exchange, as reported by the ccxt library:
|
||||
|
||||
@@ -89,6 +92,7 @@ This filter allows freqtrade to ignore pairs until they have been listed for at
|
||||
#### PerformanceFilter
|
||||
|
||||
Sorts pairs by past trade performance, as follows:
|
||||
|
||||
1. Positive performance.
|
||||
2. No closed trades yet.
|
||||
3. Negative performance.
|
||||
@@ -108,6 +112,7 @@ The `PriceFilter` allows filtering of pairs by price. Currently the following pr
|
||||
|
||||
* `min_price`
|
||||
* `max_price`
|
||||
* `max_value`
|
||||
* `low_price_ratio`
|
||||
|
||||
The `min_price` setting removes pairs where the price is below the specified price. This is useful if you wish to avoid trading very low-priced pairs.
|
||||
@@ -116,6 +121,11 @@ This option is disabled by default, and will only apply if set to > 0.
|
||||
The `max_price` setting removes pairs where the price is above the specified price. This is useful if you wish to trade only low-priced pairs.
|
||||
This option is disabled by default, and will only apply if set to > 0.
|
||||
|
||||
The `max_value` setting removes pairs where the minimum value change is above a specified value.
|
||||
This is useful when an exchange has unbalanced limits. For example, if step-size = 1 (so you can only buy 1, or 2, or 3, but not 1.1 Coins) - and the price is pretty high (like 20$) as the coin has risen sharply since the last limit adaption.
|
||||
As a result of the above, you can only buy for 20$, or 40$ - but not for 25$.
|
||||
On exchanges that deduct fees from the receiving currency (e.g. FTX) - this can result in high value coins / amounts that are unsellable as the amount is slightly below the limit.
|
||||
|
||||
The `low_price_ratio` setting removes pairs where a raise of 1 price unit (pip) is above the `low_price_ratio` ratio.
|
||||
This option is disabled by default, and will only apply if set to > 0.
|
||||
|
||||
@@ -164,9 +174,32 @@ If the trading range over the last 10 days is <1%, remove the pair from the whit
|
||||
!!! Tip
|
||||
This Filter can be used to automatically remove stable coin pairs, which have a very low trading range, and are therefore extremely difficult to trade with profit.
|
||||
|
||||
#### VolatilityFilter
|
||||
|
||||
Volatility is the degree of historical variation of a pairs over time, is is measured by the standard deviation of logarithmic daily returns. Returns are assumed to be normally distributed, although actual distribution might be different. In a normal distribution, 68% of observations fall within one standard deviation and 95% of observations fall within two standard deviations. Assuming a volatility of 0.05 means that the expected returns for 20 out of 30 days is expected to be less than 5% (one standard deviation). Volatility is a positive ratio of the expected deviation of return and can be greater than 1.00. Please refer to the wikipedia definition of [`volatility`](https://en.wikipedia.org/wiki/Volatility_(finance)).
|
||||
|
||||
This filter removes pairs if the average volatility over a `lookback_days` days is below `min_volatility` or above `max_volatility`. Since this is a filter that requires additional data, the results are cached for `refresh_period`.
|
||||
|
||||
This filter can be used to narrow down your pairs to a certain volatility or avoid very volatile pairs.
|
||||
|
||||
In the below example:
|
||||
If the volatility over the last 10 days is not in the range of 0.05-0.50, remove the pair from the whitelist. The filter is applied every 24h.
|
||||
|
||||
```json
|
||||
"pairlists": [
|
||||
{
|
||||
"method": "VolatilityFilter",
|
||||
"lookback_days": 10,
|
||||
"min_volatility": 0.05,
|
||||
"max_volatility": 0.50,
|
||||
"refresh_period": 86400
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
### Full example of Pairlist Handlers
|
||||
|
||||
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting pairs by `quoteVolume` and applies both [`PrecisionFilter`](#precisionfilter) and [`PriceFilter`](#price-filter), filtering all assets where 1 price unit is > 1%. Then the `SpreadFilter` is applied and pairs are finally shuffled with the random seed set to some predefined value.
|
||||
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting pairs by `quoteVolume` and applies [`PrecisionFilter`](#precisionfilter) and [`PriceFilter`](#pricefilter), filtering all assets where 1 price unit is > 1%. Then the [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) is applied and pairs are finally shuffled with the random seed set to some predefined value.
|
||||
|
||||
```json
|
||||
"exchange": {
|
||||
@@ -177,7 +210,7 @@ The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets,
|
||||
{
|
||||
"method": "VolumePairList",
|
||||
"number_assets": 20,
|
||||
"sort_key": "quoteVolume",
|
||||
"sort_key": "quoteVolume"
|
||||
},
|
||||
{"method": "AgeFilter", "min_days_listed": 10},
|
||||
{"method": "PrecisionFilter"},
|
||||
@@ -189,6 +222,13 @@ The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets,
|
||||
"min_rate_of_change": 0.01,
|
||||
"refresh_period": 1440
|
||||
},
|
||||
{
|
||||
"method": "VolatilityFilter",
|
||||
"lookback_days": 10,
|
||||
"min_volatility": 0.05,
|
||||
"max_volatility": 0.50,
|
||||
"refresh_period": 86400
|
||||
},
|
||||
{"method": "ShuffleFilter", "seed": 42}
|
||||
],
|
||||
```
|
||||
|
@@ -1,4 +1,5 @@
|
||||
# Freqtrade
|
||||

|
||||
|
||||
[](https://github.com/freqtrade/freqtrade/actions/)
|
||||
[](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
|
||||
[](https://codeclimate.com/github/freqtrade/freqtrade/maintainability)
|
||||
@@ -39,7 +40,7 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
|
||||
- [X] [Bittrex](https://bittrex.com/)
|
||||
- [X] [FTX](https://ftx.com)
|
||||
- [X] [Kraken](https://kraken.com/)
|
||||
- [ ] [potentially many others](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
|
||||
- [ ] [potentially many others through <img alt="ccxt" width="30px" src="assets/ccxt-logo.svg" />](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
|
||||
|
||||
### Community tested
|
||||
|
||||
|
@@ -60,7 +60,7 @@ OS Specific steps are listed first, the [Common](#common) section below is neces
|
||||
sudo apt-get update
|
||||
|
||||
# install packages
|
||||
sudo apt install -y python3-pip python3-venv python3-pandas python3-pip git
|
||||
sudo apt install -y python3-pip python3-venv python3-pandas git
|
||||
```
|
||||
|
||||
=== "RaspberryPi/Raspbian"
|
||||
@@ -269,7 +269,7 @@ git clone https://github.com/freqtrade/freqtrade.git
|
||||
cd freqtrade
|
||||
```
|
||||
|
||||
#### Freqtrade instal: Conda Environment
|
||||
#### Freqtrade install: Conda Environment
|
||||
|
||||
Prepare conda-freqtrade environment, using file `environment.yml`, which exist in main freqtrade directory
|
||||
|
||||
|
@@ -37,7 +37,7 @@ usage: freqtrade plot-dataframe [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
|
||||
Show profits for only these pairs. Pairs are space-
|
||||
Limit command to these pairs. Pairs are space-
|
||||
separated.
|
||||
--indicators1 INDICATORS1 [INDICATORS1 ...]
|
||||
Set indicators from your strategy you want in the
|
||||
@@ -66,8 +66,7 @@ optional arguments:
|
||||
--timerange TIMERANGE
|
||||
Specify what timerange of data to use.
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME, --ticker-interval TIMEFRAME
|
||||
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
|
||||
`1d`).
|
||||
Specify timeframe (`1m`, `5m`, `30m`, `1h`, `1d`).
|
||||
--no-trades Skip using trades from backtesting file and DB.
|
||||
|
||||
Common arguments:
|
||||
@@ -91,6 +90,7 @@ Strategy arguments:
|
||||
Specify strategy class name which will be used by the
|
||||
bot.
|
||||
--strategy-path PATH Specify additional strategy lookup path.
|
||||
|
||||
```
|
||||
|
||||
Example:
|
||||
@@ -245,7 +245,7 @@ usage: freqtrade plot-profit [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
|
||||
Show profits for only these pairs. Pairs are space-
|
||||
Limit command to these pairs. Pairs are space-
|
||||
separated.
|
||||
--timerange TIMERANGE
|
||||
Specify what timerange of data to use.
|
||||
@@ -264,8 +264,7 @@ optional arguments:
|
||||
Specify the source for trades (Can be DB or file
|
||||
(backtest file)) Default: file
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME, --ticker-interval TIMEFRAME
|
||||
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
|
||||
`1d`).
|
||||
Specify timeframe (`1m`, `5m`, `30m`, `1h`, `1d`).
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
@@ -288,6 +287,7 @@ Strategy arguments:
|
||||
Specify strategy class name which will be used by the
|
||||
bot.
|
||||
--strategy-path PATH Specify additional strategy lookup path.
|
||||
|
||||
```
|
||||
|
||||
The `-p/--pairs` argument, can be used to limit the pairs that are considered for this calculation.
|
||||
|
@@ -1,3 +1,3 @@
|
||||
mkdocs-material==7.0.6
|
||||
mkdocs-material==7.1.4
|
||||
mdx_truly_sane_lists==1.2
|
||||
pymdown-extensions==8.1.1
|
||||
pymdown-extensions==8.2
|
||||
|
@@ -71,7 +71,10 @@ If you run your bot using docker, you'll need to have the bot listen to incoming
|
||||
"api_server": {
|
||||
"enabled": true,
|
||||
"listen_ip_address": "0.0.0.0",
|
||||
"listen_port": 8080
|
||||
"listen_port": 8080,
|
||||
"username": "Freqtrader",
|
||||
"password": "SuperSecret1!",
|
||||
//...
|
||||
},
|
||||
```
|
||||
|
||||
@@ -106,7 +109,10 @@ By default, the script assumes `127.0.0.1` (localhost) and port `8080` to be use
|
||||
"api_server": {
|
||||
"enabled": true,
|
||||
"listen_ip_address": "0.0.0.0",
|
||||
"listen_port": 8080
|
||||
"listen_port": 8080,
|
||||
"username": "Freqtrader",
|
||||
"password": "SuperSecret1!",
|
||||
//...
|
||||
}
|
||||
}
|
||||
```
|
||||
@@ -124,7 +130,8 @@ python3 scripts/rest_client.py --config rest_config.json <command> [optional par
|
||||
| `stop` | Stops the trader.
|
||||
| `stopbuy` | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
|
||||
| `reload_config` | Reloads the configuration file.
|
||||
| `trades` | List last trades.
|
||||
| `trades` | List last trades. Limited to 500 trades per call.
|
||||
| `trade/<tradeid>` | Get specific trade.
|
||||
| `delete_trade <trade_id>` | Remove trade from the database. Tries to close open orders. Requires manual handling of this trade on the exchange.
|
||||
| `show_config` | Shows part of the current configuration with relevant settings to operation.
|
||||
| `logs` | Shows last log messages.
|
||||
@@ -181,7 +188,7 @@ count
|
||||
Return the amount of open trades.
|
||||
|
||||
daily
|
||||
Return the amount of open trades.
|
||||
Return the profits for each day, and amount of trades.
|
||||
|
||||
delete_lock
|
||||
Delete (disable) lock from the database.
|
||||
@@ -214,7 +221,7 @@ locks
|
||||
logs
|
||||
Show latest logs.
|
||||
|
||||
:param limit: Limits log messages to the last <limit> logs. No limit to get all the trades.
|
||||
:param limit: Limits log messages to the last <limit> logs. No limit to get the entire log.
|
||||
|
||||
pair_candles
|
||||
Return live dataframe for <pair><timeframe>.
|
||||
@@ -234,6 +241,9 @@ pair_history
|
||||
performance
|
||||
Return the performance of the different coins.
|
||||
|
||||
ping
|
||||
simple ping
|
||||
|
||||
plot_config
|
||||
Return plot configuration if the strategy defines one.
|
||||
|
||||
@@ -270,17 +280,22 @@ strategy
|
||||
|
||||
:param strategy: Strategy class name
|
||||
|
||||
trades
|
||||
Return trades history.
|
||||
trade
|
||||
Return specific trade
|
||||
|
||||
:param limit: Limits trades to the X last trades. No limit to get all the trades.
|
||||
:param trade_id: Specify which trade to get.
|
||||
|
||||
trades
|
||||
Return trades history, sorted by id
|
||||
|
||||
:param limit: Limits trades to the X last trades. Max 500 trades.
|
||||
:param offset: Offset by this amount of trades.
|
||||
|
||||
version
|
||||
Return the version of the bot.
|
||||
|
||||
whitelist
|
||||
Show the current whitelist.
|
||||
|
||||
```
|
||||
|
||||
### OpenAPI interface
|
||||
|
@@ -19,7 +19,7 @@ The freqtrade docker image does contain sqlite3, so you can edit the database wi
|
||||
|
||||
``` bash
|
||||
docker-compose exec freqtrade /bin/bash
|
||||
sqlite3 <databasefile>.sqlite
|
||||
sqlite3 <database-file>.sqlite
|
||||
```
|
||||
|
||||
## Open the DB
|
||||
@@ -99,3 +99,32 @@ DELETE FROM trades WHERE id = 31;
|
||||
|
||||
!!! Warning
|
||||
This will remove this trade from the database. Please make sure you got the correct id and **NEVER** run this query without the `where` clause.
|
||||
|
||||
## Use a different database system
|
||||
|
||||
!!! Warning
|
||||
By using one of the below database systems, you acknowledge that you know how to manage such a system. Freqtrade will not provide any support with setup or maintenance (or backups) of the below database systems.
|
||||
|
||||
### PostgreSQL
|
||||
|
||||
Freqtrade supports PostgreSQL by using SQLAlchemy, which supports multiple different database systems.
|
||||
|
||||
Installation:
|
||||
`pip install psycopg2`
|
||||
|
||||
Usage:
|
||||
`... --db-url postgresql+psycopg2://<username>:<password>@localhost:5432/<database>`
|
||||
|
||||
Freqtrade will automatically create the tables necessary upon startup.
|
||||
|
||||
If you're running different instances of Freqtrade, you must either setup one database per Instance or use different users / schemas for your connections.
|
||||
|
||||
### MariaDB / MySQL
|
||||
|
||||
Freqtrade supports MariaDB by using SQLAlchemy, which supports multiple different database systems.
|
||||
|
||||
Installation:
|
||||
`pip install pymysql`
|
||||
|
||||
Usage:
|
||||
`... --db-url mysql+pymysql://<username>:<password>@localhost:3306/<database>`
|
||||
|
@@ -40,34 +40,79 @@ class AwesomeStrategy(IStrategy):
|
||||
!!! Note
|
||||
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
|
||||
|
||||
***
|
||||
## Dataframe access
|
||||
|
||||
### Storing custom information using DatetimeIndex from `dataframe`
|
||||
You may access dataframe in various strategy functions by querying it from dataprovider.
|
||||
|
||||
Imagine you need to store an indicator like `ATR` or `RSI` into `custom_info`. To use this in a meaningful way, you will not only need the raw data of the indicator, but probably also need to keep the right timestamps.
|
||||
``` python
|
||||
from freqtrade.exchange import timeframe_to_prev_date
|
||||
|
||||
```python
|
||||
import talib.abstract as ta
|
||||
class AwesomeStrategy(IStrategy):
|
||||
# Create custom dictionary
|
||||
custom_info = {}
|
||||
def confirm_trade_exit(self, pair: str, trade: 'Trade', order_type: str, amount: float,
|
||||
rate: float, time_in_force: str, sell_reason: str,
|
||||
current_time: 'datetime', **kwargs) -> bool:
|
||||
# Obtain pair dataframe.
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# using "ATR" here as example
|
||||
dataframe['atr'] = ta.ATR(dataframe)
|
||||
if self.dp.runmode.value in ('backtest', 'hyperopt'):
|
||||
# add indicator mapped to correct DatetimeIndex to custom_info
|
||||
self.custom_info[metadata['pair']] = dataframe[['date', 'atr']].copy().set_index('date')
|
||||
return dataframe
|
||||
# Obtain last available candle. Do not use current_time to look up latest candle, because
|
||||
# current_time points to curret incomplete candle whose data is not available.
|
||||
last_candle = dataframe.iloc[-1].squeeze()
|
||||
# <...>
|
||||
|
||||
# In dry/live runs trade open date will not match candle open date therefore it must be
|
||||
# rounded.
|
||||
trade_date = timeframe_to_prev_date(self.timeframe, trade.open_date_utc)
|
||||
# Look up trade candle.
|
||||
trade_candle = dataframe.loc[dataframe['date'] == trade_date]
|
||||
# trade_candle may be empty for trades that just opened as it is still incomplete.
|
||||
if not trade_candle.empty:
|
||||
trade_candle = trade_candle.squeeze()
|
||||
# <...>
|
||||
```
|
||||
|
||||
!!! Warning
|
||||
The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash.
|
||||
!!! Warning "Using .iloc[-1]"
|
||||
You can use `.iloc[-1]` here because `get_analyzed_dataframe()` only returns candles that backtesting is allowed to see.
|
||||
This will not work in `populate_*` methods, so make sure to not use `.iloc[]` in that area.
|
||||
Also, this will only work starting with version 2021.5.
|
||||
|
||||
***
|
||||
|
||||
## Custom sell signal
|
||||
|
||||
It is possible to define custom sell signals, indicating that specified position should be sold. This is very useful when we need to customize sell conditions for each individual trade, or if you need the trade profit to take the sell decision.
|
||||
|
||||
For example you could implement a 1:2 risk-reward ROI with `custom_sell()`.
|
||||
|
||||
Using custom_sell() signals in place of stoplosses though *is not recommended*. It is a inferior method to using `custom_stoploss()` in this regard - which also allows you to keep the stoploss on exchange.
|
||||
|
||||
!!! Note
|
||||
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
|
||||
Returning a `string` or `True` from this method is equal to setting sell signal on a candle at specified time. This method is not called when sell signal is set already, or if sell signals are disabled (`use_sell_signal=False` or `sell_profit_only=True` while profit is below `sell_profit_offset`). `string` max length is 64 characters. Exceeding this limit will cause the message to be truncated to 64 characters.
|
||||
|
||||
See `custom_stoploss` examples below on how to access the saved dataframe columns
|
||||
An example of how we can use different indicators depending on the current profit and also sell trades that were open longer than one day:
|
||||
|
||||
``` python
|
||||
class AwesomeStrategy(IStrategy):
|
||||
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
|
||||
current_profit: float, **kwargs):
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = dataframe.iloc[-1].squeeze()
|
||||
|
||||
# Above 20% profit, sell when rsi < 80
|
||||
if current_profit > 0.2:
|
||||
if last_candle['rsi'] < 80:
|
||||
return 'rsi_below_80'
|
||||
|
||||
# Between 2% and 10%, sell if EMA-long above EMA-short
|
||||
if 0.02 < current_profit < 0.1:
|
||||
if last_candle['emalong'] > last_candle['emashort']:
|
||||
return 'ema_long_below_80'
|
||||
|
||||
# Sell any positions at a loss if they are held for more than one day.
|
||||
if current_profit < 0.0 and (current_time - trade.open_date_utc).days >= 1:
|
||||
return 'unclog'
|
||||
```
|
||||
|
||||
See [Dataframe access](#dataframe-access) for more information about dataframe use in strategy callbacks.
|
||||
|
||||
## Custom stoploss
|
||||
|
||||
@@ -110,7 +155,7 @@ class AwesomeStrategy(IStrategy):
|
||||
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
|
||||
:param current_profit: Current profit (as ratio), calculated based on current_rate.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return float: New stoploss value, relative to the currentrate
|
||||
:return float: New stoploss value, relative to the current rate
|
||||
"""
|
||||
return -0.04
|
||||
```
|
||||
@@ -222,7 +267,6 @@ Instead of continuously trailing behind the current price, this example sets fix
|
||||
* Once profit is > 25% - set stoploss to 15% above open price.
|
||||
* Once profit is > 40% - set stoploss to 25% above open price.
|
||||
|
||||
|
||||
``` python
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
@@ -248,56 +292,39 @@ class AwesomeStrategy(IStrategy):
|
||||
# return maximum stoploss value, keeping current stoploss price unchanged
|
||||
return 1
|
||||
```
|
||||
|
||||
#### Custom stoploss using an indicator from dataframe example
|
||||
|
||||
Imagine you want to use `custom_stoploss()` to use a trailing indicator like e.g. "ATR"
|
||||
|
||||
See: "Storing custom information using DatetimeIndex from `dataframe`" example above) on how to store the indicator into `custom_info`
|
||||
|
||||
!!! Warning
|
||||
only use .iat[-1] in live mode, not in backtesting/hyperopt
|
||||
otherwise you will look into the future
|
||||
see [Common mistakes when developing strategies](strategy-customization.md#common-mistakes-when-developing-strategies) for more info.
|
||||
Absolute stoploss value may be derived from indicators stored in dataframe. Example uses parabolic SAR below the price as stoploss.
|
||||
|
||||
``` python
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# <...>
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
result = 1
|
||||
if self.custom_info and pair in self.custom_info and trade:
|
||||
# using current_time directly (like below) will only work in backtesting.
|
||||
# so check "runmode" to make sure that it's only used in backtesting/hyperopt
|
||||
if self.dp and self.dp.runmode.value in ('backtest', 'hyperopt'):
|
||||
relative_sl = self.custom_info[pair].loc[current_time]['atr']
|
||||
# in live / dry-run, it'll be really the current time
|
||||
else:
|
||||
# but we can just use the last entry from an already analyzed dataframe instead
|
||||
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
|
||||
timeframe=self.timeframe)
|
||||
# WARNING
|
||||
# only use .iat[-1] in live mode, not in backtesting/hyperopt
|
||||
# otherwise you will look into the future
|
||||
# see: https://www.freqtrade.io/en/latest/strategy-customization/#common-mistakes-when-developing-strategies
|
||||
relative_sl = dataframe['atr'].iat[-1]
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = dataframe.iloc[-1].squeeze()
|
||||
|
||||
if (relative_sl is not None):
|
||||
# new stoploss relative to current_rate
|
||||
new_stoploss = (current_rate-relative_sl)/current_rate
|
||||
# turn into relative negative offset required by `custom_stoploss` return implementation
|
||||
result = new_stoploss - 1
|
||||
# Use parabolic sar as absolute stoploss price
|
||||
stoploss_price = last_candle['sar']
|
||||
|
||||
return result
|
||||
# Convert absolute price to percentage relative to current_rate
|
||||
if stoploss_price < current_rate:
|
||||
return (stoploss_price / current_rate) - 1
|
||||
|
||||
# return maximum stoploss value, keeping current stoploss price unchanged
|
||||
return 1
|
||||
```
|
||||
|
||||
See [Dataframe access](#dataframe-access) for more information about dataframe use in strategy callbacks.
|
||||
|
||||
---
|
||||
|
||||
## Custom order timeout rules
|
||||
|
@@ -159,7 +159,7 @@ Edit the method `populate_buy_trend()` in your strategy file to update your buy
|
||||
|
||||
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
|
||||
|
||||
This will method will also define a new column, `"buy"`, which needs to contain 1 for buys, and 0 for "no action".
|
||||
This method will also define a new column, `"buy"`, which needs to contain 1 for buys, and 0 for "no action".
|
||||
|
||||
Sample from `user_data/strategies/sample_strategy.py`:
|
||||
|
||||
@@ -193,7 +193,7 @@ Please note that the sell-signal is only used if `use_sell_signal` is set to tru
|
||||
|
||||
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
|
||||
|
||||
This will method will also define a new column, `"sell"`, which needs to contain 1 for sells, and 0 for "no action".
|
||||
This method will also define a new column, `"sell"`, which needs to contain 1 for sells, and 0 for "no action".
|
||||
|
||||
Sample from `user_data/strategies/sample_strategy.py`:
|
||||
|
||||
@@ -422,10 +422,6 @@ if self.dp:
|
||||
Returns an empty dataframe if the requested pair was not cached.
|
||||
This should not happen when using whitelisted pairs.
|
||||
|
||||
|
||||
!!! Warning "Warning about backtesting"
|
||||
This method will return an empty dataframe during backtesting.
|
||||
|
||||
### *orderbook(pair, maximum)*
|
||||
|
||||
``` python
|
||||
@@ -633,7 +629,7 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
# once the profit has risin above 10%, keep the stoploss at 7% above the open price
|
||||
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
|
||||
if current_profit > 0.10:
|
||||
return stoploss_from_open(0.07, current_profit)
|
||||
|
||||
|
@@ -195,4 +195,18 @@ graph.show(renderer="browser")
|
||||
|
||||
```
|
||||
|
||||
## Plot average profit per trade as distribution graph
|
||||
|
||||
|
||||
```python
|
||||
import plotly.figure_factory as ff
|
||||
|
||||
hist_data = [trades.profit_ratio]
|
||||
group_labels = ['profit_ratio'] # name of the dataset
|
||||
|
||||
fig = ff.create_distplot(hist_data, group_labels,bin_size=0.01)
|
||||
fig.show()
|
||||
|
||||
```
|
||||
|
||||
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
|
||||
|
@@ -82,12 +82,19 @@ Example configuration showing the different settings:
|
||||
"buy": "silent",
|
||||
"sell": "on",
|
||||
"buy_cancel": "silent",
|
||||
"sell_cancel": "on"
|
||||
"sell_cancel": "on",
|
||||
"buy_fill": "off",
|
||||
"sell_fill": "off"
|
||||
},
|
||||
"balance_dust_level": 0.01
|
||||
},
|
||||
```
|
||||
|
||||
`buy` notifications are sent when the order is placed, while `buy_fill` notifications are sent when the order is filled on the exchange.
|
||||
`sell` notifications are sent when the order is placed, while `sell_fill` notifications are sent when the order is filled on the exchange.
|
||||
`*_fill` notifications are off by default and must be explicitly enabled.
|
||||
|
||||
|
||||
`balance_dust_level` will define what the `/balance` command takes as "dust" - Currencies with a balance below this will be shown.
|
||||
|
||||
## Create a custom keyboard (command shortcut buttons)
|
||||
@@ -258,13 +265,12 @@ Note that for this to work, `forcebuy_enable` needs to be set to true.
|
||||
### /performance
|
||||
|
||||
Return the performance of each crypto-currency the bot has sold.
|
||||
|
||||
> Performance:
|
||||
> 1. `RCN/BTC 57.77%`
|
||||
> 2. `PAY/BTC 56.91%`
|
||||
> 3. `VIB/BTC 47.07%`
|
||||
> 4. `SALT/BTC 30.24%`
|
||||
> 5. `STORJ/BTC 27.24%`
|
||||
> 1. `RCN/BTC 0.003 BTC (57.77%) (1)`
|
||||
> 2. `PAY/BTC 0.0012 BTC (56.91%) (1)`
|
||||
> 3. `VIB/BTC 0.0011 BTC (47.07%) (1)`
|
||||
> 4. `SALT/BTC 0.0010 BTC (30.24%) (1)`
|
||||
> 5. `STORJ/BTC 0.0009 BTC (27.24%) (1)`
|
||||
> ...
|
||||
|
||||
### /balance
|
||||
|
199
docs/utils.md
199
docs/utils.md
@@ -253,18 +253,211 @@ optional arguments:
|
||||
* Example: see exchanges available for the bot:
|
||||
```
|
||||
$ freqtrade list-exchanges
|
||||
Exchanges available for Freqtrade: _1btcxe, acx, allcoin, bequant, bibox, binance, binanceje, binanceus, bitbank, bitfinex, bitfinex2, bitkk, bitlish, bitmart, bittrex, bitz, bleutrade, btcalpha, btcmarkets, btcturk, buda, cex, cobinhood, coinbaseprime, coinbasepro, coinex, cointiger, coss, crex24, digifinex, dsx, dx, ethfinex, fcoin, fcoinjp, gateio, gdax, gemini, hitbtc2, huobipro, huobiru, idex, kkex, kraken, kucoin, kucoin2, kuna, lbank, mandala, mercado, oceanex, okcoincny, okcoinusd, okex, okex3, poloniex, rightbtc, theocean, tidebit, upbit, zb
|
||||
Exchanges available for Freqtrade:
|
||||
Exchange name Valid reason
|
||||
--------------- ------- --------------------------------------------
|
||||
aax True
|
||||
ascendex True missing opt: fetchMyTrades
|
||||
bequant True
|
||||
bibox True
|
||||
bigone True
|
||||
binance True
|
||||
binanceus True
|
||||
bitbank True missing opt: fetchTickers
|
||||
bitcoincom True
|
||||
bitfinex True
|
||||
bitforex True missing opt: fetchMyTrades, fetchTickers
|
||||
bitget True
|
||||
bithumb True missing opt: fetchMyTrades
|
||||
bitkk True missing opt: fetchMyTrades
|
||||
bitmart True
|
||||
bitmax True missing opt: fetchMyTrades
|
||||
bitpanda True
|
||||
bittrex True
|
||||
bitvavo True
|
||||
bitz True missing opt: fetchMyTrades
|
||||
btcalpha True missing opt: fetchTicker, fetchTickers
|
||||
btcmarkets True missing opt: fetchTickers
|
||||
buda True missing opt: fetchMyTrades, fetchTickers
|
||||
bw True missing opt: fetchMyTrades, fetchL2OrderBook
|
||||
bybit True
|
||||
bytetrade True
|
||||
cdax True
|
||||
cex True missing opt: fetchMyTrades
|
||||
coinbaseprime True missing opt: fetchTickers
|
||||
coinbasepro True missing opt: fetchTickers
|
||||
coinex True
|
||||
crex24 True
|
||||
deribit True
|
||||
digifinex True
|
||||
equos True missing opt: fetchTicker, fetchTickers
|
||||
eterbase True
|
||||
fcoin True missing opt: fetchMyTrades, fetchTickers
|
||||
fcoinjp True missing opt: fetchMyTrades, fetchTickers
|
||||
ftx True
|
||||
gateio True
|
||||
gemini True
|
||||
gopax True
|
||||
hbtc True
|
||||
hitbtc True
|
||||
huobijp True
|
||||
huobipro True
|
||||
idex True
|
||||
kraken True
|
||||
kucoin True
|
||||
lbank True missing opt: fetchMyTrades
|
||||
mercado True missing opt: fetchTickers
|
||||
ndax True missing opt: fetchTickers
|
||||
novadax True
|
||||
okcoin True
|
||||
okex True
|
||||
probit True
|
||||
qtrade True
|
||||
stex True
|
||||
timex True
|
||||
upbit True missing opt: fetchMyTrades
|
||||
vcc True
|
||||
zb True missing opt: fetchMyTrades
|
||||
|
||||
```
|
||||
|
||||
!!! Note "missing opt exchanges"
|
||||
Values with "missing opt:" might need special configuration (e.g. using orderbook if `fetchTickers` is missing) - but should in theory work (although we cannot guarantee they will).
|
||||
|
||||
* Example: see all exchanges supported by the ccxt library (including 'bad' ones, i.e. those that are known to not work with Freqtrade):
|
||||
```
|
||||
$ freqtrade list-exchanges -a
|
||||
All exchanges supported by the ccxt library: _1btcxe, acx, adara, allcoin, anxpro, bcex, bequant, bibox, bigone, binance, binanceje, binanceus, bit2c, bitbank, bitbay, bitfinex, bitfinex2, bitflyer, bitforex, bithumb, bitkk, bitlish, bitmart, bitmex, bitso, bitstamp, bitstamp1, bittrex, bitz, bl3p, bleutrade, braziliex, btcalpha, btcbox, btcchina, btcmarkets, btctradeim, btctradeua, btcturk, buda, bxinth, cex, chilebit, cobinhood, coinbase, coinbaseprime, coinbasepro, coincheck, coinegg, coinex, coinexchange, coinfalcon, coinfloor, coingi, coinmarketcap, coinmate, coinone, coinspot, cointiger, coolcoin, coss, crex24, crypton, deribit, digifinex, dsx, dx, ethfinex, exmo, exx, fcoin, fcoinjp, flowbtc, foxbit, fybse, gateio, gdax, gemini, hitbtc, hitbtc2, huobipro, huobiru, ice3x, idex, independentreserve, indodax, itbit, kkex, kraken, kucoin, kucoin2, kuna, lakebtc, latoken, lbank, liquid, livecoin, luno, lykke, mandala, mercado, mixcoins, negociecoins, nova, oceanex, okcoincny, okcoinusd, okex, okex3, paymium, poloniex, rightbtc, southxchange, stronghold, surbitcoin, theocean, therock, tidebit, tidex, upbit, vaultoro, vbtc, virwox, xbtce, yobit, zaif, zb
|
||||
All exchanges supported by the ccxt library:
|
||||
Exchange name Valid reason
|
||||
------------------ ------- ---------------------------------------------------------------------------------------
|
||||
aax True
|
||||
aofex False missing: fetchOrder
|
||||
ascendex True missing opt: fetchMyTrades
|
||||
bequant True
|
||||
bibox True
|
||||
bigone True
|
||||
binance True
|
||||
binanceus True
|
||||
bit2c False missing: fetchOrder, fetchOHLCV
|
||||
bitbank True missing opt: fetchTickers
|
||||
bitbay False missing: fetchOrder
|
||||
bitcoincom True
|
||||
bitfinex True
|
||||
bitfinex2 False missing: fetchOrder
|
||||
bitflyer False missing: fetchOrder, fetchOHLCV
|
||||
bitforex True missing opt: fetchMyTrades, fetchTickers
|
||||
bitget True
|
||||
bithumb True missing opt: fetchMyTrades
|
||||
bitkk True missing opt: fetchMyTrades
|
||||
bitmart True
|
||||
bitmax True missing opt: fetchMyTrades
|
||||
bitmex False Various reasons.
|
||||
bitpanda True
|
||||
bitso False missing: fetchOHLCV
|
||||
bitstamp False Does not provide history. Details in https://github.com/freqtrade/freqtrade/issues/1983
|
||||
bitstamp1 False missing: fetchOrder, fetchOHLCV
|
||||
bittrex True
|
||||
bitvavo True
|
||||
bitz True missing opt: fetchMyTrades
|
||||
bl3p False missing: fetchOrder, fetchOHLCV
|
||||
bleutrade False missing: fetchOrder
|
||||
braziliex False missing: fetchOHLCV
|
||||
btcalpha True missing opt: fetchTicker, fetchTickers
|
||||
btcbox False missing: fetchOHLCV
|
||||
btcmarkets True missing opt: fetchTickers
|
||||
btctradeua False missing: fetchOrder, fetchOHLCV
|
||||
btcturk False missing: fetchOrder
|
||||
buda True missing opt: fetchMyTrades, fetchTickers
|
||||
bw True missing opt: fetchMyTrades, fetchL2OrderBook
|
||||
bybit True
|
||||
bytetrade True
|
||||
cdax True
|
||||
cex True missing opt: fetchMyTrades
|
||||
chilebit False missing: fetchOrder, fetchOHLCV
|
||||
coinbase False missing: fetchOrder, cancelOrder, createOrder, fetchOHLCV
|
||||
coinbaseprime True missing opt: fetchTickers
|
||||
coinbasepro True missing opt: fetchTickers
|
||||
coincheck False missing: fetchOrder, fetchOHLCV
|
||||
coinegg False missing: fetchOHLCV
|
||||
coinex True
|
||||
coinfalcon False missing: fetchOHLCV
|
||||
coinfloor False missing: fetchOrder, fetchOHLCV
|
||||
coingi False missing: fetchOrder, fetchOHLCV
|
||||
coinmarketcap False missing: fetchOrder, cancelOrder, createOrder, fetchBalance, fetchOHLCV
|
||||
coinmate False missing: fetchOHLCV
|
||||
coinone False missing: fetchOHLCV
|
||||
coinspot False missing: fetchOrder, cancelOrder, fetchOHLCV
|
||||
crex24 True
|
||||
currencycom False missing: fetchOrder
|
||||
delta False missing: fetchOrder
|
||||
deribit True
|
||||
digifinex True
|
||||
equos True missing opt: fetchTicker, fetchTickers
|
||||
eterbase True
|
||||
exmo False missing: fetchOrder
|
||||
exx False missing: fetchOHLCV
|
||||
fcoin True missing opt: fetchMyTrades, fetchTickers
|
||||
fcoinjp True missing opt: fetchMyTrades, fetchTickers
|
||||
flowbtc False missing: fetchOrder, fetchOHLCV
|
||||
foxbit False missing: fetchOrder, fetchOHLCV
|
||||
ftx True
|
||||
gateio True
|
||||
gemini True
|
||||
gopax True
|
||||
hbtc True
|
||||
hitbtc True
|
||||
hollaex False missing: fetchOrder
|
||||
huobijp True
|
||||
huobipro True
|
||||
idex True
|
||||
independentreserve False missing: fetchOHLCV
|
||||
indodax False missing: fetchOHLCV
|
||||
itbit False missing: fetchOHLCV
|
||||
kraken True
|
||||
kucoin True
|
||||
kuna False missing: fetchOHLCV
|
||||
lakebtc False missing: fetchOrder, fetchOHLCV
|
||||
latoken False missing: fetchOrder, fetchOHLCV
|
||||
lbank True missing opt: fetchMyTrades
|
||||
liquid False missing: fetchOHLCV
|
||||
luno False missing: fetchOHLCV
|
||||
lykke False missing: fetchOHLCV
|
||||
mercado True missing opt: fetchTickers
|
||||
mixcoins False missing: fetchOrder, fetchOHLCV
|
||||
ndax True missing opt: fetchTickers
|
||||
novadax True
|
||||
oceanex False missing: fetchOHLCV
|
||||
okcoin True
|
||||
okex True
|
||||
paymium False missing: fetchOrder, fetchOHLCV
|
||||
phemex False Does not provide history.
|
||||
poloniex False missing: fetchOrder
|
||||
probit True
|
||||
qtrade True
|
||||
rightbtc False missing: fetchOrder
|
||||
ripio False missing: fetchOHLCV
|
||||
southxchange False missing: fetchOrder, fetchOHLCV
|
||||
stex True
|
||||
surbitcoin False missing: fetchOrder, fetchOHLCV
|
||||
therock False missing: fetchOHLCV
|
||||
tidebit False missing: fetchOrder
|
||||
tidex False missing: fetchOHLCV
|
||||
timex True
|
||||
upbit True missing opt: fetchMyTrades
|
||||
vbtc False missing: fetchOrder, fetchOHLCV
|
||||
vcc True
|
||||
wavesexchange False missing: fetchOrder
|
||||
whitebit False missing: fetchOrder, cancelOrder, createOrder, fetchBalance
|
||||
xbtce False missing: fetchOrder, fetchOHLCV
|
||||
xena False missing: fetchOrder
|
||||
yobit False missing: fetchOHLCV
|
||||
zaif False missing: fetchOrder, fetchOHLCV
|
||||
zb True missing opt: fetchMyTrades
|
||||
```
|
||||
|
||||
## List Timeframes
|
||||
|
||||
Use the `list-timeframes` subcommand to see the list of timeframes (ticker intervals) available for the exchange.
|
||||
Use the `list-timeframes` subcommand to see the list of timeframes available for the exchange.
|
||||
|
||||
```
|
||||
usage: freqtrade list-timeframes [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [--exchange EXCHANGE] [-1]
|
||||
|
@@ -19,6 +19,11 @@ Sample configuration (tested using IFTTT).
|
||||
"value1": "Cancelling Open Buy Order for {pair}",
|
||||
"value2": "limit {limit:8f}",
|
||||
"value3": "{stake_amount:8f} {stake_currency}"
|
||||
},
|
||||
"webhookbuyfill": {
|
||||
"value1": "Buy Order for {pair} filled",
|
||||
"value2": "at {open_rate:8f}",
|
||||
"value3": ""
|
||||
},
|
||||
"webhooksell": {
|
||||
"value1": "Selling {pair}",
|
||||
@@ -30,6 +35,11 @@ Sample configuration (tested using IFTTT).
|
||||
"value2": "limit {limit:8f}",
|
||||
"value3": "profit: {profit_amount:8f} {stake_currency} ({profit_ratio})"
|
||||
},
|
||||
"webhooksellfill": {
|
||||
"value1": "Sell Order for {pair} filled",
|
||||
"value2": "at {close_rate:8f}.",
|
||||
"value3": ""
|
||||
},
|
||||
"webhookstatus": {
|
||||
"value1": "Status: {status}",
|
||||
"value2": "",
|
||||
@@ -91,6 +101,21 @@ Possible parameters are:
|
||||
* `order_type`
|
||||
* `current_rate`
|
||||
|
||||
### Webhookbuyfill
|
||||
|
||||
The fields in `webhook.webhookbuyfill` are filled when the bot filled a buy order. Parameters are filled using string.format.
|
||||
Possible parameters are:
|
||||
|
||||
* `trade_id`
|
||||
* `exchange`
|
||||
* `pair`
|
||||
* `open_rate`
|
||||
* `amount`
|
||||
* `open_date`
|
||||
* `stake_amount`
|
||||
* `stake_currency`
|
||||
* `fiat_currency`
|
||||
|
||||
### Webhooksell
|
||||
|
||||
The fields in `webhook.webhooksell` are filled when the bot sells a trade. Parameters are filled using string.format.
|
||||
@@ -103,6 +128,27 @@ Possible parameters are:
|
||||
* `limit`
|
||||
* `amount`
|
||||
* `open_rate`
|
||||
* `profit_amount`
|
||||
* `profit_ratio`
|
||||
* `stake_currency`
|
||||
* `fiat_currency`
|
||||
* `sell_reason`
|
||||
* `order_type`
|
||||
* `open_date`
|
||||
* `close_date`
|
||||
|
||||
### Webhooksellfill
|
||||
|
||||
The fields in `webhook.webhooksellfill` are filled when the bot fills a sell order (closes a Trae). Parameters are filled using string.format.
|
||||
Possible parameters are:
|
||||
|
||||
* `trade_id`
|
||||
* `exchange`
|
||||
* `pair`
|
||||
* `gain`
|
||||
* `close_rate`
|
||||
* `amount`
|
||||
* `open_rate`
|
||||
* `current_rate`
|
||||
* `profit_amount`
|
||||
* `profit_ratio`
|
||||
|
Reference in New Issue
Block a user