Merge 93091e9b22
into 721fb3e326
This commit is contained in:
commit
f67ee6171d
@ -5,6 +5,7 @@ RUN apt-get update && apt-get -y install curl build-essential && apt-get clean
|
||||
RUN curl -L http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz | \
|
||||
tar xzvf - && \
|
||||
cd ta-lib && \
|
||||
sed -i "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h && \
|
||||
./configure && make && make install && \
|
||||
cd .. && rm -rf ta-lib
|
||||
ENV LD_LIBRARY_PATH /usr/local/lib
|
||||
|
@ -24,7 +24,7 @@ hesitate to read the source code and understand the mechanism of this bot.
|
||||
## Exchange marketplaces supported
|
||||
|
||||
- [X] [Bittrex](https://bittrex.com/)
|
||||
- [X] [Binance](https://www.binance.com/)
|
||||
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](#a-note-on-binance))
|
||||
- [ ] [113 others to tests](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
|
||||
|
||||
## Features
|
||||
@ -152,6 +152,13 @@ The project is currently setup in two main branches:
|
||||
|
||||
- `develop` - This branch has often new features, but might also cause breaking changes.
|
||||
- `master` - This branch contains the latest stable release. The bot 'should' be stable on this branch, and is generally well tested.
|
||||
- `feat/*` - These are feature branches, which are beeing worked on heavily. Please don't use these unless you want to test a specific feature.
|
||||
|
||||
|
||||
## A note on Binance
|
||||
|
||||
For Binance, please add `"BNB/<STAKE>"` to your blacklist to avoid issues.
|
||||
Accounts having BNB accounts use this to pay for fees - if your first trade happens to be on `BNB`, further trades will consume this position and make the initial BNB order unsellable as the expected amount is not there anymore.
|
||||
|
||||
## Support
|
||||
|
||||
|
@ -151,7 +151,7 @@ cp freqtrade/tests/testdata/pairs.json user_data/data/binance
|
||||
Then run:
|
||||
|
||||
```bash
|
||||
python scripts/download_backtest_data --exchange binance
|
||||
python scripts/download_backtest_data.py --exchange binance
|
||||
```
|
||||
|
||||
This will download ticker data for all the currency pairs you defined in `pairs.json`.
|
||||
@ -238,6 +238,31 @@ On the other hand, if you set a too high `minimal_roi` like `"0": 0.55`
|
||||
profit. Hence, keep in mind that your performance is a mix of your
|
||||
strategies, your configuration, and the crypto-currency you have set up.
|
||||
|
||||
## Backtesting multiple strategies
|
||||
|
||||
To backtest multiple strategies, a list of Strategies can be provided.
|
||||
|
||||
This is limited to 1 ticker-interval per run, however, data is only loaded once from disk so if you have multiple
|
||||
strategies you'd like to compare, this should give a nice runtime boost.
|
||||
|
||||
All listed Strategies need to be in the same folder.
|
||||
|
||||
``` bash
|
||||
freqtrade backtesting --timerange 20180401-20180410 --ticker-interval 5m --strategy-list Strategy001 Strategy002 --export trades
|
||||
```
|
||||
|
||||
This will save the results to `user_data/backtest_data/backtest-result-<strategy>.json`, injecting the strategy-name into the target filename.
|
||||
There will be an additional table comparing win/losses of the different strategies (identical to the "Total" row in the first table).
|
||||
Detailed output for all strategies one after the other will be available, so make sure to scroll up.
|
||||
|
||||
```
|
||||
=================================================== Strategy Summary ====================================================
|
||||
| Strategy | buy count | avg profit % | cum profit % | total profit ETH | avg duration | profit | loss |
|
||||
|:-----------|------------:|---------------:|---------------:|-------------------:|:----------------|---------:|-------:|
|
||||
| Strategy1 | 19 | -0.76 | -14.39 | -0.01440287 | 15:48:00 | 15 | 4 |
|
||||
| Strategy2 | 6 | -2.73 | -16.40 | -0.01641299 | 1 day, 14:12:00 | 3 | 3 |
|
||||
```
|
||||
|
||||
## Next step
|
||||
|
||||
Great, your strategy is profitable. What if the bot can give your the
|
||||
|
@ -1,13 +1,15 @@
|
||||
# Bot usage
|
||||
This page explains the difference parameters of the bot and how to run
|
||||
it.
|
||||
|
||||
This page explains the difference parameters of the bot and how to run it.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Bot commands](#bot-commands)
|
||||
- [Backtesting commands](#backtesting-commands)
|
||||
- [Hyperopt commands](#hyperopt-commands)
|
||||
|
||||
## Bot commands
|
||||
|
||||
```
|
||||
usage: freqtrade [-h] [-v] [--version] [-c PATH] [-d PATH] [-s NAME]
|
||||
[--strategy-path PATH] [--dynamic-whitelist [INT]]
|
||||
@ -41,6 +43,7 @@ optional arguments:
|
||||
```
|
||||
|
||||
### How to use a different config file?
|
||||
|
||||
The bot allows you to select which config file you want to use. Per
|
||||
default, the bot will load the file `./config.json`
|
||||
|
||||
@ -49,6 +52,7 @@ python3 ./freqtrade/main.py -c path/far/far/away/config.json
|
||||
```
|
||||
|
||||
### How to use --strategy?
|
||||
|
||||
This parameter will allow you to load your custom strategy class.
|
||||
Per default without `--strategy` or `-s` the bot will load the
|
||||
`DefaultStrategy` included with the bot (`freqtrade/strategy/default_strategy.py`).
|
||||
@ -60,6 +64,7 @@ To load a strategy, simply pass the class name (e.g.: `CustomStrategy`) in this
|
||||
**Example:**
|
||||
In `user_data/strategies` you have a file `my_awesome_strategy.py` which has
|
||||
a strategy class called `AwesomeStrategy` to load it:
|
||||
|
||||
```bash
|
||||
python3 ./freqtrade/main.py --strategy AwesomeStrategy
|
||||
```
|
||||
@ -70,6 +75,7 @@ message the reason (File not found, or errors in your code).
|
||||
Learn more about strategy file in [optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md).
|
||||
|
||||
### How to use --strategy-path?
|
||||
|
||||
This parameter allows you to add an additional strategy lookup path, which gets
|
||||
checked before the default locations (The passed path must be a folder!):
|
||||
```bash
|
||||
@ -77,21 +83,25 @@ python3 ./freqtrade/main.py --strategy AwesomeStrategy --strategy-path /some/fol
|
||||
```
|
||||
|
||||
#### How to install a strategy?
|
||||
|
||||
This is very simple. Copy paste your strategy file into the folder
|
||||
`user_data/strategies` or use `--strategy-path`. And voila, the bot is ready to use it.
|
||||
|
||||
### How to use --dynamic-whitelist?
|
||||
|
||||
Per default `--dynamic-whitelist` will retrieve the 20 currencies based
|
||||
on BaseVolume. This value can be changed when you run the script.
|
||||
|
||||
**By Default**
|
||||
Get the 20 currencies based on BaseVolume.
|
||||
|
||||
```bash
|
||||
python3 ./freqtrade/main.py --dynamic-whitelist
|
||||
```
|
||||
|
||||
**Customize the number of currencies to retrieve**
|
||||
Get the 30 currencies based on BaseVolume.
|
||||
|
||||
```bash
|
||||
python3 ./freqtrade/main.py --dynamic-whitelist 30
|
||||
```
|
||||
@ -102,6 +112,7 @@ negative value (e.g -2), `--dynamic-whitelist` will use the default
|
||||
value (20).
|
||||
|
||||
### How to use --db-url?
|
||||
|
||||
When you run the bot in Dry-run mode, per default no transactions are
|
||||
stored in a database. If you want to store your bot actions in a DB
|
||||
using `--db-url`. This can also be used to specify a custom database
|
||||
@ -111,14 +122,14 @@ in production mode. Example command:
|
||||
python3 ./freqtrade/main.py -c config.json --db-url sqlite:///tradesv3.dry_run.sqlite
|
||||
```
|
||||
|
||||
|
||||
## Backtesting commands
|
||||
|
||||
Backtesting also uses the config specified via `-c/--config`.
|
||||
|
||||
```
|
||||
usage: main.py backtesting [-h] [-i TICKER_INTERVAL] [--eps] [--dmmp]
|
||||
usage: freqtrade backtesting [-h] [-i TICKER_INTERVAL] [--eps] [--dmmp]
|
||||
[--timerange TIMERANGE] [-l] [-r]
|
||||
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
|
||||
[--export EXPORT] [--export-filename PATH]
|
||||
|
||||
optional arguments:
|
||||
@ -139,6 +150,13 @@ optional arguments:
|
||||
refresh the pairs files in tests/testdata with the
|
||||
latest data from the exchange. Use it if you want to
|
||||
run your backtesting with up-to-date data.
|
||||
--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]
|
||||
Provide a commaseparated list of strategies to
|
||||
backtest Please note that ticker-interval needs to be
|
||||
set either in config or via command line. When using
|
||||
this together with --export trades, the strategy-name
|
||||
is injected into the filename (so backtest-data.json
|
||||
becomes backtest-data-DefaultStrategy.json
|
||||
--export EXPORT export backtest results, argument are: trades Example
|
||||
--export=trades
|
||||
--export-filename PATH
|
||||
@ -151,6 +169,7 @@ optional arguments:
|
||||
```
|
||||
|
||||
### How to use --refresh-pairs-cached parameter?
|
||||
|
||||
The first time your run Backtesting, it will take the pairs you have
|
||||
set in your config file and download data from Bittrex.
|
||||
|
||||
@ -162,7 +181,6 @@ to come back to the previous version.**
|
||||
To test your strategy with latest data, we recommend continuing using
|
||||
the parameter `-l` or `--live`.
|
||||
|
||||
|
||||
## Hyperopt commands
|
||||
|
||||
To optimize your strategy, you can use hyperopt parameter hyperoptimization
|
||||
@ -194,10 +212,11 @@ optional arguments:
|
||||
```
|
||||
|
||||
## A parameter missing in the configuration?
|
||||
|
||||
All parameters for `main.py`, `backtesting`, `hyperopt` are referenced
|
||||
in [misc.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/misc.py#L84)
|
||||
|
||||
## Next step
|
||||
The optimal strategy of the bot will change with time depending of the
|
||||
market trends. The next step is to
|
||||
|
||||
The optimal strategy of the bot will change with time depending of the market trends. The next step is to
|
||||
[optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md).
|
||||
|
@ -267,6 +267,7 @@ Official webpage: https://mrjbq7.github.io/ta-lib/install.html
|
||||
wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
|
||||
tar xvzf ta-lib-0.4.0-src.tar.gz
|
||||
cd ta-lib
|
||||
sed -i "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h
|
||||
./configure --prefix=/usr
|
||||
make
|
||||
make install
|
||||
|
@ -142,6 +142,16 @@ class Arguments(object):
|
||||
action='store_true',
|
||||
dest='refresh_pairs',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--strategy-list',
|
||||
help='Provide a commaseparated list of strategies to backtest '
|
||||
'Please note that ticker-interval needs to be set either in config '
|
||||
'or via command line. When using this together with --export trades, '
|
||||
'the strategy-name is injected into the filename '
|
||||
'(so backtest-data.json becomes backtest-data-DefaultStrategy.json',
|
||||
nargs='+',
|
||||
dest='strategy_list',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--export',
|
||||
help='export backtest results, argument are: trades\
|
||||
@ -161,14 +171,6 @@ class Arguments(object):
|
||||
dest='exportfilename',
|
||||
metavar='PATH',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--backslap',
|
||||
help="Utilize the Backslapping approach instead of the default Backtesting. This should provide more "
|
||||
"accurate results, unless you are utilizing Min/Max function in your strategy.",
|
||||
required=False,
|
||||
dest='backslap',
|
||||
action='store_true'
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def optimizer_shared_options(parser: argparse.ArgumentParser) -> None:
|
||||
@ -236,7 +238,7 @@ class Arguments(object):
|
||||
Builds and attaches all subcommands
|
||||
:return: None
|
||||
"""
|
||||
from freqtrade.optimize import backtesting, hyperopt
|
||||
from freqtrade.optimize import backtesting, backslapping, hyperopt
|
||||
|
||||
subparsers = self.parser.add_subparsers(dest='subparser')
|
||||
|
||||
@ -246,6 +248,12 @@ class Arguments(object):
|
||||
self.optimizer_shared_options(backtesting_cmd)
|
||||
self.backtesting_options(backtesting_cmd)
|
||||
|
||||
# Add backslapping subcommand
|
||||
backslapping_cmd = subparsers.add_parser('backslapping', help='backslapping module')
|
||||
backslapping_cmd.set_defaults(func=backslapping.start)
|
||||
self.optimizer_shared_options(backslapping_cmd)
|
||||
self.backtesting_options(backslapping_cmd)
|
||||
|
||||
# Add hyperopt subcommand
|
||||
hyperopt_cmd = subparsers.add_parser('hyperopt', help='hyperopt module')
|
||||
hyperopt_cmd.set_defaults(func=hyperopt.start)
|
||||
|
@ -187,6 +187,14 @@ class Configuration(object):
|
||||
config.update({'refresh_pairs': True})
|
||||
logger.info('Parameter -r/--refresh-pairs-cached detected ...')
|
||||
|
||||
if 'strategy_list' in self.args and self.args.strategy_list:
|
||||
config.update({'strategy_list': self.args.strategy_list})
|
||||
logger.info('Using strategy list of %s Strategies', len(self.args.strategy_list))
|
||||
|
||||
if 'ticker_interval' in self.args and self.args.ticker_interval:
|
||||
config.update({'ticker_interval': self.args.ticker_interval})
|
||||
logger.info('Overriding ticker interval with Command line argument')
|
||||
|
||||
# If --export is used we add it to the configuration
|
||||
if 'export' in self.args and self.args.export:
|
||||
config.update({'export': self.args.export})
|
||||
|
@ -36,7 +36,7 @@ SUPPORTED_FIAT = [
|
||||
"EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY",
|
||||
"KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN",
|
||||
"RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD",
|
||||
"BTC", "ETH", "XRP", "LTC", "BCH", "USDT"
|
||||
"BTC", "XBT", "ETH", "XRP", "LTC", "BCH", "USDT"
|
||||
]
|
||||
|
||||
# Required json-schema for user specified config
|
||||
@ -45,7 +45,7 @@ CONF_SCHEMA = {
|
||||
'properties': {
|
||||
'max_open_trades': {'type': 'integer', 'minimum': 0},
|
||||
'ticker_interval': {'type': 'string', 'enum': list(TICKER_INTERVAL_MINUTES.keys())},
|
||||
'stake_currency': {'type': 'string', 'enum': ['BTC', 'ETH', 'USDT', 'EUR', 'USD']},
|
||||
'stake_currency': {'type': 'string', 'enum': ['BTC', 'XBT', 'ETH', 'USDT', 'EUR', 'USD']},
|
||||
'stake_amount': {
|
||||
"type": ["number", "string"],
|
||||
"minimum": 0.0005,
|
||||
|
@ -330,7 +330,7 @@ class Exchange(object):
|
||||
return self._cached_ticker[pair]
|
||||
|
||||
@retrier
|
||||
def get_ticker_history(self, pair: str, tick_interval: str,
|
||||
def get_candle_history(self, pair: str, tick_interval: str,
|
||||
since_ms: Optional[int] = None) -> List[Dict]:
|
||||
try:
|
||||
# last item should be in the time interval [now - tick_interval, now]
|
||||
|
@ -10,7 +10,7 @@ logger = logging.getLogger(__name__)
|
||||
def parse_ticker_dataframe(ticker: list) -> DataFrame:
|
||||
"""
|
||||
Analyses the trend for the given ticker history
|
||||
:param ticker: See exchange.get_ticker_history
|
||||
:param ticker: See exchange.get_candle_history
|
||||
:return: DataFrame
|
||||
"""
|
||||
cols = ['date', 'open', 'high', 'low', 'close', 'volume']
|
||||
|
@ -330,7 +330,7 @@ class FreqtradeBot(object):
|
||||
|
||||
# Pick pair based on buy signals
|
||||
for _pair in whitelist:
|
||||
thistory = self.exchange.get_ticker_history(_pair, interval)
|
||||
thistory = self.exchange.get_candle_history(_pair, interval)
|
||||
(buy, sell) = self.strategy.get_signal(_pair, interval, thistory)
|
||||
|
||||
if buy and not sell:
|
||||
@ -497,7 +497,7 @@ class FreqtradeBot(object):
|
||||
(buy, sell) = (False, False)
|
||||
experimental = self.config.get('experimental', {})
|
||||
if experimental.get('use_sell_signal') or experimental.get('ignore_roi_if_buy_signal'):
|
||||
ticker = self.exchange.get_ticker_history(trade.pair, self.strategy.ticker_interval)
|
||||
ticker = self.exchange.get_candle_history(trade.pair, self.strategy.ticker_interval)
|
||||
(buy, sell) = self.strategy.get_signal(trade.pair, self.strategy.ticker_interval,
|
||||
ticker)
|
||||
|
||||
|
@ -235,7 +235,7 @@ def download_backtesting_testdata(datadir: str,
|
||||
logger.debug("Current Start: %s", misc.format_ms_time(data[1][0]) if data else 'None')
|
||||
logger.debug("Current End: %s", misc.format_ms_time(data[-1][0]) if data else 'None')
|
||||
|
||||
new_data = exchange.get_ticker_history(pair=pair, tick_interval=tick_interval,
|
||||
new_data = exchange.get_candle_history(pair=pair, tick_interval=tick_interval,
|
||||
since_ms=since_ms)
|
||||
data.extend(new_data)
|
||||
|
||||
|
@ -1,48 +1,36 @@
|
||||
import timeit
|
||||
from argparse import Namespace
|
||||
import logging
|
||||
from typing import Dict, Any
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.optimize.optimize import IOptimize, BacktestResult, OptimizeType, setup_configuration
|
||||
from freqtrade.strategy import IStrategy
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.strategy.resolver import StrategyResolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class Backslapping:
|
||||
|
||||
class Backslapping(IOptimize):
|
||||
"""
|
||||
provides a quick way to evaluate strategies over a longer term of time
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any], exchange = None) -> None:
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
"""
|
||||
constructor
|
||||
"""
|
||||
|
||||
self.config = config
|
||||
self.strategy: IStrategy = StrategyResolver(self.config).strategy
|
||||
self.ticker_interval = self.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||
self.populate_buy_trend = self.strategy.populate_buy_trend
|
||||
self.populate_sell_trend = self.strategy.populate_sell_trend
|
||||
|
||||
###
|
||||
#
|
||||
###
|
||||
if exchange is None:
|
||||
self.config['exchange']['secret'] = ''
|
||||
self.config['exchange']['password'] = ''
|
||||
self.config['exchange']['uid'] = ''
|
||||
self.config['dry_run'] = True
|
||||
self.exchange = Exchange(self.config)
|
||||
else:
|
||||
self.exchange = exchange
|
||||
super().__init__(config)
|
||||
self._optimizetype = OptimizeType.BACKTEST
|
||||
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
self.stop_loss_value = self.strategy.stoploss
|
||||
|
||||
#### backslap config
|
||||
# backslap config
|
||||
'''
|
||||
Numpy arrays are used for 100x speed up
|
||||
We requires setting Int values for
|
||||
@ -81,7 +69,7 @@ class Backslapping:
|
||||
def f(self, st):
|
||||
return (timeit.default_timer() - st)
|
||||
|
||||
def run(self,args):
|
||||
def run(self, args):
|
||||
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
|
||||
processed = args['processed']
|
||||
@ -96,8 +84,8 @@ class Backslapping:
|
||||
if self.debug_timing: # Start timer
|
||||
fl = self.s()
|
||||
|
||||
ticker_data = self.populate_sell_trend(
|
||||
self.populate_buy_trend(pair_data))[headers].copy()
|
||||
ticker_data = self.advise_sell(self.advise_buy(pair_data, {'pair': pair}),
|
||||
{'pair': pair})[headers].copy()
|
||||
|
||||
if self.debug_timing: # print time taken
|
||||
flt = self.f(fl)
|
||||
@ -132,7 +120,7 @@ class Backslapping:
|
||||
|
||||
bslap_results_df = self.vector_fill_results_table(bslap_results_df, pair)
|
||||
else:
|
||||
from freqtrade.optimize.backtesting import BacktestResult
|
||||
|
||||
|
||||
bslap_results_df = []
|
||||
bslap_results_df = DataFrame.from_records(bslap_results_df, columns=BacktestResult._fields)
|
||||
@ -763,7 +751,7 @@ class Backslapping:
|
||||
bslap_result["open_rate"] = round(np_trade_enter_price, 15)
|
||||
bslap_result["close_rate"] = round(np_trade_exit_price, 15)
|
||||
bslap_result["exit_type"] = t_exit_type
|
||||
bslap_result["sell_reason"] = t_exit_type #duplicated, but I don't care
|
||||
bslap_result["sell_reason"] = t_exit_type # duplicated, but I don't care
|
||||
# append the dict to the list and print list
|
||||
bslap_pair_results.append(bslap_result)
|
||||
|
||||
@ -787,3 +775,18 @@ class Backslapping:
|
||||
|
||||
# Send back List of trade dicts
|
||||
return bslap_pair_results
|
||||
|
||||
|
||||
def start(args: Namespace) -> None:
|
||||
"""
|
||||
Start Backtesting script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
# Initialize configuration
|
||||
config = setup_configuration(args)
|
||||
logger.info('Starting freqtrade in Backtesting mode')
|
||||
|
||||
# Initialize backtesting object
|
||||
backslapping = Backslapping(config)
|
||||
backslapping.start()
|
||||
|
@ -4,51 +4,19 @@
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
import logging
|
||||
import operator
|
||||
from argparse import Namespace
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame, to_datetime
|
||||
from tabulate import tabulate
|
||||
from pandas import DataFrame
|
||||
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade import DependencyException, constants
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.optimize.backslapping import Backslapping
|
||||
from freqtrade.optimize.optimize import IOptimize, BacktestResult, OptimizeType, setup_configuration
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||
from collections import OrderedDict
|
||||
import timeit
|
||||
from time import sleep
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BacktestResult(NamedTuple):
|
||||
"""
|
||||
NamedTuple Defining BacktestResults inputs.
|
||||
"""
|
||||
pair: str
|
||||
profit_percent: float
|
||||
profit_abs: float
|
||||
open_time: datetime
|
||||
close_time: datetime
|
||||
open_index: int
|
||||
close_index: int
|
||||
trade_duration: float
|
||||
open_at_end: bool
|
||||
open_rate: float
|
||||
close_rate: float
|
||||
sell_reason: SellType
|
||||
|
||||
|
||||
class Backtesting(object):
|
||||
class Backtesting(IOptimize):
|
||||
"""
|
||||
Backtesting class, this class contains all the logic to run a backtest
|
||||
|
||||
@ -58,139 +26,8 @@ class Backtesting(object):
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
self.config = config
|
||||
self.strategy: IStrategy = StrategyResolver(self.config).strategy
|
||||
self.ticker_interval = self.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||
self.advise_buy = self.strategy.advise_buy
|
||||
self.advise_sell = self.strategy.advise_sell
|
||||
|
||||
# Reset keys for backtesting
|
||||
self.config['exchange']['key'] = ''
|
||||
self.config['exchange']['secret'] = ''
|
||||
self.config['exchange']['password'] = ''
|
||||
self.config['exchange']['uid'] = ''
|
||||
self.config['dry_run'] = True
|
||||
self.exchange = Exchange(self.config)
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
self.stop_loss_value = self.strategy.stoploss
|
||||
|
||||
#### backslap config
|
||||
'''
|
||||
Numpy arrays are used for 100x speed up
|
||||
We requires setting Int values for
|
||||
buy stop triggers and stop calculated on
|
||||
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6
|
||||
'''
|
||||
self.np_buy: int = 0
|
||||
self.np_open: int = 1
|
||||
self.np_close: int = 2
|
||||
self.np_sell: int = 3
|
||||
self.np_high: int = 4
|
||||
self.np_low: int = 5
|
||||
self.np_stop: int = 6
|
||||
self.np_bto: int = self.np_close # buys_triggered_on - should be close
|
||||
self.np_bco: int = self.np_open # buys calculated on - open of the next candle.
|
||||
self.np_sto: int = self.np_low # stops_triggered_on - Should be low, FT uses close
|
||||
self.np_sco: int = self.np_stop # stops_calculated_on - Should be stop, FT uses close
|
||||
# self.np_sto: int = self.np_close # stops_triggered_on - Should be low, FT uses close
|
||||
# self.np_sco: int = self.np_close # stops_calculated_on - Should be stop, FT uses close
|
||||
|
||||
if 'backslap' in config:
|
||||
self.use_backslap = config['backslap'] # Enable backslap - if false Orginal code is executed.
|
||||
else:
|
||||
self.use_backslap = False
|
||||
|
||||
logger.info("using backslap: {}".format(self.use_backslap))
|
||||
|
||||
self.debug = False # Main debug enable, very print heavy, enable 2 loops recommended
|
||||
self.debug_timing = False # Stages within Backslap
|
||||
self.debug_2loops = False # Limit each pair to two loops, useful when debugging
|
||||
self.debug_vector = False # Debug vector calcs
|
||||
self.debug_timing_main_loop = False # print overall timing per pair - works in Backtest and Backslap
|
||||
|
||||
self.backslap_show_trades = False # prints trades in addition to summary report
|
||||
self.backslap_save_trades = True # saves trades as a pretty table to backslap.txt
|
||||
|
||||
self.stop_stops: int = 9999 # stop back testing any pair with this many stops, set to 999999 to not hit
|
||||
|
||||
self.backslap = Backslapping(config)
|
||||
|
||||
@staticmethod
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
timeframe = [
|
||||
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
|
||||
for frame in data.values()
|
||||
]
|
||||
return min(timeframe, key=operator.itemgetter(0))[0], \
|
||||
max(timeframe, key=operator.itemgetter(1))[1]
|
||||
|
||||
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:return: pretty printed table with tabulate as str
|
||||
"""
|
||||
stake_currency = str(self.config.get('stake_currency'))
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for pair in data:
|
||||
result = results[results.pair == pair]
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_percent.sum() * 100.0,
|
||||
result.profit_abs.sum(),
|
||||
str(timedelta(
|
||||
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
||||
len(result[result.profit_abs > 0]),
|
||||
len(result[result.profit_abs < 0])
|
||||
])
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
'TOTAL',
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
|
||||
def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
"""
|
||||
|
||||
tabular_data = []
|
||||
headers = ['Sell Reason', 'Count']
|
||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||
tabular_data.append([reason.value, count])
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
||||
|
||||
def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None:
|
||||
|
||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
|
||||
for index, t in results.iterrows()]
|
||||
|
||||
if records:
|
||||
logger.info('Dumping backtest results to %s', recordfilename)
|
||||
file_dump_json(recordfilename, records)
|
||||
super().__init__(config)
|
||||
self._optimizetype = OptimizeType.BACKTEST
|
||||
|
||||
def _get_sell_trade_entry(
|
||||
self, pair: str, buy_row: DataFrame,
|
||||
@ -217,6 +54,7 @@ class Backtesting(object):
|
||||
sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, buy_signal,
|
||||
sell_row.sell)
|
||||
if sell.sell_flag:
|
||||
|
||||
return BacktestResult(pair=pair,
|
||||
profit_percent=trade.calc_profit_percent(rate=sell_row.open),
|
||||
profit_abs=trade.calc_profit(rate=sell_row.open),
|
||||
@ -253,14 +91,7 @@ class Backtesting(object):
|
||||
return btr
|
||||
return None
|
||||
|
||||
def s(self):
|
||||
st = timeit.default_timer()
|
||||
return st
|
||||
|
||||
def f(self, st):
|
||||
return (timeit.default_timer() - st)
|
||||
|
||||
def backtest(self, args: Dict) -> DataFrame:
|
||||
def run(self, args: Dict) -> DataFrame:
|
||||
"""
|
||||
Implements backtesting functionality
|
||||
|
||||
@ -275,26 +106,13 @@ class Backtesting(object):
|
||||
position_stacking: do we allow position stacking? (default: False)
|
||||
:return: DataFrame
|
||||
"""
|
||||
|
||||
use_backslap = self.use_backslap
|
||||
debug_timing = self.debug_timing_main_loop
|
||||
|
||||
if use_backslap: # Use Back Slap code
|
||||
return self.backslap.run(args)
|
||||
else: # use Original Back test code
|
||||
########################## Original BT loop
|
||||
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell']
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
position_stacking = args.get('position_stacking', False)
|
||||
trades = []
|
||||
trade_count_lock: Dict = {}
|
||||
|
||||
for pair, pair_data in processed.items():
|
||||
if debug_timing: # Start timer
|
||||
fl = self.s()
|
||||
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||
|
||||
ticker_data = self.advise_sell(
|
||||
@ -306,11 +124,6 @@ class Backtesting(object):
|
||||
|
||||
ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
||||
|
||||
if debug_timing: # print time taken
|
||||
flt = self.f(fl)
|
||||
# print("populate_buy_trend:", pair, round(flt, 10))
|
||||
st = self.s()
|
||||
|
||||
# Convert from Pandas to list for performance reasons
|
||||
# (Looping Pandas is slow.)
|
||||
ticker = [x for x in ticker_data.itertuples()]
|
||||
@ -341,165 +154,7 @@ class Backtesting(object):
|
||||
# This happens only if the buy-signal was with the last candle
|
||||
lock_pair_until = ticker_data.iloc[-1].date
|
||||
|
||||
if debug_timing: # print time taken
|
||||
tt = self.f(st)
|
||||
print("Time to BackTest :", pair, round(tt, 10))
|
||||
print("-----------------------")
|
||||
|
||||
return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
||||
####################### Original BT loop end
|
||||
|
||||
def start(self) -> None:
|
||||
"""
|
||||
Run a backtesting end-to-end
|
||||
:return: None
|
||||
"""
|
||||
data = {}
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
|
||||
|
||||
if self.config.get('live'):
|
||||
logger.info('Downloading data for all pairs in whitelist ...')
|
||||
for pair in pairs:
|
||||
data[pair] = self.exchange.get_ticker_history(pair, self.ticker_interval)
|
||||
else:
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
timerange = Arguments.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
ticker_interval=self.ticker_interval,
|
||||
refresh_pairs=self.config.get('refresh_pairs', False),
|
||||
exchange=self.exchange,
|
||||
timerange=timerange
|
||||
)
|
||||
|
||||
ld_files = self.s()
|
||||
if not data:
|
||||
logger.critical("No data found. Terminating.")
|
||||
return
|
||||
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
|
||||
if self.config.get('use_max_market_positions', True):
|
||||
max_open_trades = self.config['max_open_trades']
|
||||
else:
|
||||
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
||||
max_open_trades = 0
|
||||
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
t_t = self.f(ld_files)
|
||||
print("Load from json to file to df in mem took", t_t)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
|
||||
# Execute backtest and print results
|
||||
results = self.backtest(
|
||||
{
|
||||
'stake_amount': self.config.get('stake_amount'),
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'position_stacking': self.config.get('position_stacking', False),
|
||||
}
|
||||
)
|
||||
|
||||
if self.config.get('export', False):
|
||||
self._store_backtest_result(self.config.get('exportfilename'), results)
|
||||
|
||||
if self.use_backslap:
|
||||
logger.info(
|
||||
'\n====================================================== '
|
||||
'BackSLAP REPORT'
|
||||
' =======================================================\n'
|
||||
'%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results
|
||||
)
|
||||
)
|
||||
# optional print trades
|
||||
if self.backslap_show_trades:
|
||||
TradesFrame = results.filter(['open_time', 'pair', 'exit_type', 'profit_percent', 'profit_abs',
|
||||
'buy_spend', 'sell_take', 'trade_duration', 'close_time'], axis=1)
|
||||
|
||||
def to_fwf(df, fname):
|
||||
content = tabulate(df.values.tolist(), list(df.columns), floatfmt=".8f", tablefmt='psql')
|
||||
print(content)
|
||||
|
||||
DataFrame.to_fwf = to_fwf(TradesFrame, "backslap.txt")
|
||||
|
||||
# optional save trades
|
||||
if self.backslap_save_trades:
|
||||
TradesFrame = results.filter(['open_time', 'pair', 'exit_type', 'profit_percent', 'profit_abs',
|
||||
'buy_spend', 'sell_take', 'trade_duration', 'close_time'], axis=1)
|
||||
|
||||
def to_fwf(df, fname):
|
||||
content = tabulate(df.values.tolist(), list(df.columns), floatfmt=".8f", tablefmt='psql')
|
||||
open(fname, "w").write(content)
|
||||
|
||||
DataFrame.to_fwf = to_fwf(TradesFrame, "backslap.txt")
|
||||
|
||||
else:
|
||||
logger.info(
|
||||
'\n================================================= '
|
||||
'BACKTEST REPORT'
|
||||
' ==================================================\n'
|
||||
'%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results
|
||||
)
|
||||
)
|
||||
|
||||
if 'sell_reason' in results.columns:
|
||||
logger.info(
|
||||
'\n' +
|
||||
' SELL READON STATS '.center(119, '=') +
|
||||
'\n%s \n',
|
||||
self._generate_text_table_sell_reason(data, results)
|
||||
|
||||
)
|
||||
else:
|
||||
logger.info("no sell reasons available!")
|
||||
|
||||
logger.info(
|
||||
'\n' +
|
||||
' LEFT OPEN TRADES REPORT '.center(119, '=') +
|
||||
'\n%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results.loc[results.open_at_end]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for the backtesting
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
configuration = Configuration(args)
|
||||
config = configuration.get_config()
|
||||
|
||||
# Ensure we do not use Exchange credentials
|
||||
config['exchange']['key'] = ''
|
||||
config['exchange']['secret'] = ''
|
||||
config['backslap'] = args.backslap
|
||||
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
|
||||
raise DependencyException('stake amount could not be "%s" for backtesting' %
|
||||
constants.UNLIMITED_STAKE_AMOUNT)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def start(args: Namespace) -> None:
|
||||
|
@ -24,6 +24,7 @@ import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.optimize import load_data
|
||||
from freqtrade.optimize.optimize import OptimizeType
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -42,6 +43,7 @@ class Hyperopt(Backtesting):
|
||||
"""
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
super().__init__(config)
|
||||
self._optimizetype = OptimizeType.HYPEROPT
|
||||
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
||||
# to the number of days
|
||||
self.target_trades = 600
|
||||
@ -276,7 +278,7 @@ class Hyperopt(Backtesting):
|
||||
self.strategy.stoploss = params['stoploss']
|
||||
|
||||
processed = load(TICKERDATA_PICKLE)
|
||||
results = self.backtest(
|
||||
results = self.run(
|
||||
{
|
||||
'stake_amount': self.config['stake_amount'],
|
||||
'processed': processed,
|
||||
|
329
freqtrade/optimize/optimize.py
Normal file
329
freqtrade/optimize/optimize.py
Normal file
@ -0,0 +1,329 @@
|
||||
# pragma pylint: disable=missing-docstring, W0212, too-many-arguments
|
||||
|
||||
"""
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
import logging
|
||||
import operator
|
||||
from abc import ABC, abstractmethod
|
||||
from argparse import Namespace
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
||||
from enum import Enum
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade import DependencyException, constants
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.misc import file_dump_json
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BacktestResult(NamedTuple):
|
||||
"""
|
||||
NamedTuple Defining BacktestResults inputs.
|
||||
"""
|
||||
pair: str
|
||||
profit_percent: float
|
||||
profit_abs: float
|
||||
open_time: datetime
|
||||
close_time: datetime
|
||||
open_index: int
|
||||
close_index: int
|
||||
trade_duration: float
|
||||
open_at_end: bool
|
||||
open_rate: float
|
||||
close_rate: float
|
||||
sell_reason: SellType
|
||||
|
||||
|
||||
class OptimizeType(Enum):
|
||||
BACKTEST = "backtest"
|
||||
BACKSLAP = "backslap"
|
||||
HYPEROPT = "hyperopt"
|
||||
|
||||
|
||||
class IOptimize(ABC):
|
||||
"""
|
||||
Backtesting Abstract class, this class contains all the logic to run a backtest
|
||||
|
||||
To run a backtest:
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
self.config = config
|
||||
|
||||
# Reset keys for backtesting
|
||||
self.config['exchange']['key'] = ''
|
||||
self.config['exchange']['secret'] = ''
|
||||
self.config['exchange']['password'] = ''
|
||||
self.config['exchange']['uid'] = ''
|
||||
self.config['dry_run'] = True
|
||||
self.strategylist: List[IStrategy] = []
|
||||
if self.config.get('strategy_list', None):
|
||||
# Force one interval
|
||||
self.ticker_interval = str(self.config.get('ticker_interval'))
|
||||
for strat in list(self.config['strategy_list']):
|
||||
stratconf = deepcopy(self.config)
|
||||
stratconf['strategy'] = strat
|
||||
self.strategylist.append(StrategyResolver(stratconf).strategy)
|
||||
|
||||
else:
|
||||
# only one strategy
|
||||
strat = StrategyResolver(self.config).strategy
|
||||
|
||||
self.strategylist.append(StrategyResolver(self.config).strategy)
|
||||
# Load one strategy
|
||||
self._set_strategy(self.strategylist[0])
|
||||
|
||||
self.exchange = Exchange(self.config)
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
def _set_strategy(self, strategy):
|
||||
"""
|
||||
Load strategy into backtesting
|
||||
"""
|
||||
self.strategy = strategy
|
||||
self.ticker_interval = self.config.get('ticker_interval')
|
||||
self.tickerdata_to_dataframe = strategy.tickerdata_to_dataframe
|
||||
self.advise_buy = strategy.advise_buy
|
||||
self.advise_sell = strategy.advise_sell
|
||||
|
||||
def _get_timeframe(self, data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
timeframe = [
|
||||
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
|
||||
for frame in data.values()
|
||||
]
|
||||
return min(timeframe, key=operator.itemgetter(0))[0], \
|
||||
max(timeframe, key=operator.itemgetter(1))[1]
|
||||
|
||||
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:return: pretty printed table with tabulate as str
|
||||
"""
|
||||
stake_currency = str(self.config.get('stake_currency'))
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for pair in data:
|
||||
result = results[results.pair == pair]
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_percent.sum() * 100.0,
|
||||
result.profit_abs.sum(),
|
||||
str(timedelta(
|
||||
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
||||
len(result[result.profit_abs > 0]),
|
||||
len(result[result.profit_abs < 0])
|
||||
])
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
'TOTAL',
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
|
||||
def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
"""
|
||||
tabular_data = []
|
||||
headers = ['Sell Reason', 'Count']
|
||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||
tabular_data.append([reason.value, count])
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
||||
|
||||
def _generate_text_table_strategy(self, all_results: dict) -> str:
|
||||
"""
|
||||
Generate summary table per strategy
|
||||
"""
|
||||
stake_currency = str(self.config.get('stake_currency'))
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for strategy, results in all_results.items():
|
||||
tabular_data.append([
|
||||
strategy,
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
|
||||
def _store_backtest_result(self, recordfilename: str, results: DataFrame,
|
||||
strategyname: Optional[str] = None) -> None:
|
||||
|
||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
|
||||
for index, t in results.iterrows()]
|
||||
|
||||
if records:
|
||||
if strategyname:
|
||||
# Inject strategyname to filename
|
||||
recname = Path(recordfilename)
|
||||
recordfilename = str(Path.joinpath(
|
||||
recname.parent, f'{recname.stem}-{strategyname}').with_suffix(recname.suffix))
|
||||
logger.info('Dumping backtest results to %s', recordfilename)
|
||||
file_dump_json(recordfilename, records)
|
||||
|
||||
def start(self) -> None:
|
||||
"""
|
||||
Run a backtesting end-to-end
|
||||
:return: None
|
||||
"""
|
||||
data = {}
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
|
||||
|
||||
if self.config.get('live'):
|
||||
logger.info('Downloading data for all pairs in whitelist ...')
|
||||
for pair in pairs:
|
||||
data[pair] = self.exchange.get_candle_history(pair, self.ticker_interval)
|
||||
else:
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
timerange = Arguments.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
ticker_interval=self.ticker_interval,
|
||||
refresh_pairs=self.config.get('refresh_pairs', False),
|
||||
exchange=self.exchange,
|
||||
timerange=timerange
|
||||
)
|
||||
|
||||
if not data:
|
||||
logger.critical("No data found. Terminating.")
|
||||
return
|
||||
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
|
||||
if self.config.get('use_max_market_positions', True):
|
||||
max_open_trades = self.config['max_open_trades']
|
||||
else:
|
||||
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
||||
max_open_trades = 0
|
||||
all_results = {}
|
||||
|
||||
for strat in self.strategylist:
|
||||
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
|
||||
self._set_strategy(strat)
|
||||
|
||||
# need to reprocess data every time to populate signals
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self._get_timeframe(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
|
||||
# Execute backtest and print results
|
||||
all_results[self.strategy.get_strategy_name()] = self.run(
|
||||
{
|
||||
'stake_amount': self.config.get('stake_amount'),
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'position_stacking': self.config.get('position_stacking', False),
|
||||
}
|
||||
)
|
||||
|
||||
for strategy, results in all_results.items():
|
||||
|
||||
if self.config.get('export', False):
|
||||
self._store_backtest_result(self.config['exportfilename'], results,
|
||||
strategy if len(self.strategylist) > 1 else None)
|
||||
|
||||
print(f"Result for strategy {strategy}")
|
||||
print(f' {self._optimizetype.value.upper()} REPORT '.center(119, '='))
|
||||
print(self._generate_text_table(data, results))
|
||||
|
||||
print(' SELL REASON STATS '.center(119, '='))
|
||||
print(self._generate_text_table_sell_reason(data, results))
|
||||
|
||||
print(' LEFT OPEN TRADES REPORT '.center(119, '='))
|
||||
print(self._generate_text_table(data, results.loc[results.open_at_end]))
|
||||
print()
|
||||
if len(all_results) > 1:
|
||||
# Print Strategy summary table
|
||||
print(' Strategy Summary '.center(119, '='))
|
||||
print(self._generate_text_table_strategy(all_results))
|
||||
print('\nFor more details, please look at the detail tables above')
|
||||
|
||||
@abstractmethod
|
||||
def run(self, args: Dict) -> DataFrame:
|
||||
"""
|
||||
Runs backtesting functionality.
|
||||
|
||||
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
||||
Of course try to not have ugly code. By some accessor are sometime slower than functions.
|
||||
Avoid, logging on this method
|
||||
|
||||
:param args: a dict containing:
|
||||
stake_amount: btc amount to use for each trade
|
||||
processed: a processed dictionary with format {pair, data}
|
||||
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
|
||||
position_stacking: do we allow position stacking? (default: False)
|
||||
:return: DataFrame
|
||||
"""
|
||||
|
||||
|
||||
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for the backtesting
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
configuration = Configuration(args)
|
||||
config = configuration.get_config()
|
||||
|
||||
# Ensure we do not use Exchange credentials
|
||||
config['exchange']['key'] = ''
|
||||
config['exchange']['secret'] = ''
|
||||
|
||||
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
|
||||
raise DependencyException('stake amount could not be "%s" for backtesting' %
|
||||
constants.UNLIMITED_STAKE_AMOUNT)
|
||||
|
||||
return config
|
@ -82,7 +82,7 @@ def check_migrate(engine) -> None:
|
||||
logger.info(f'trying {table_back_name}')
|
||||
|
||||
# Check for latest column
|
||||
if not has_column(cols, 'max_rate'):
|
||||
if not has_column(cols, 'ticker_interval'):
|
||||
fee_open = get_column_def(cols, 'fee_open', 'fee')
|
||||
fee_close = get_column_def(cols, 'fee_close', 'fee')
|
||||
open_rate_requested = get_column_def(cols, 'open_rate_requested', 'null')
|
||||
@ -157,8 +157,8 @@ class Trade(_DECL_BASE):
|
||||
|
||||
id = Column(Integer, primary_key=True)
|
||||
exchange = Column(String, nullable=False)
|
||||
pair = Column(String, nullable=False)
|
||||
is_open = Column(Boolean, nullable=False, default=True)
|
||||
pair = Column(String, nullable=False, index=True)
|
||||
is_open = Column(Boolean, nullable=False, default=True, index=True)
|
||||
fee_open = Column(Float, nullable=False, default=0.0)
|
||||
fee_close = Column(Float, nullable=False, default=0.0)
|
||||
open_rate = Column(Float)
|
||||
|
@ -524,7 +524,7 @@ def make_fetch_ohlcv_mock(data):
|
||||
return fetch_ohlcv_mock
|
||||
|
||||
|
||||
def test_get_ticker_history(default_conf, mocker):
|
||||
def test_get_candle_history(default_conf, mocker):
|
||||
api_mock = MagicMock()
|
||||
tick = [
|
||||
[
|
||||
@ -541,7 +541,7 @@ def test_get_ticker_history(default_conf, mocker):
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
|
||||
# retrieve original ticker
|
||||
ticks = exchange.get_ticker_history('ETH/BTC', default_conf['ticker_interval'])
|
||||
ticks = exchange.get_candle_history('ETH/BTC', default_conf['ticker_interval'])
|
||||
assert ticks[0][0] == 1511686200000
|
||||
assert ticks[0][1] == 1
|
||||
assert ticks[0][2] == 2
|
||||
@ -563,7 +563,7 @@ def test_get_ticker_history(default_conf, mocker):
|
||||
api_mock.fetch_ohlcv = MagicMock(side_effect=make_fetch_ohlcv_mock(new_tick))
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
|
||||
ticks = exchange.get_ticker_history('ETH/BTC', default_conf['ticker_interval'])
|
||||
ticks = exchange.get_candle_history('ETH/BTC', default_conf['ticker_interval'])
|
||||
assert ticks[0][0] == 1511686210000
|
||||
assert ticks[0][1] == 6
|
||||
assert ticks[0][2] == 7
|
||||
@ -572,16 +572,16 @@ def test_get_ticker_history(default_conf, mocker):
|
||||
assert ticks[0][5] == 10
|
||||
|
||||
ccxt_exceptionhandlers(mocker, default_conf, api_mock,
|
||||
"get_ticker_history", "fetch_ohlcv",
|
||||
"get_candle_history", "fetch_ohlcv",
|
||||
pair='ABCD/BTC', tick_interval=default_conf['ticker_interval'])
|
||||
|
||||
with pytest.raises(OperationalException, match=r'Exchange .* does not support.*'):
|
||||
api_mock.fetch_ohlcv = MagicMock(side_effect=ccxt.NotSupported)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.get_ticker_history(pair='ABCD/BTC', tick_interval=default_conf['ticker_interval'])
|
||||
exchange.get_candle_history(pair='ABCD/BTC', tick_interval=default_conf['ticker_interval'])
|
||||
|
||||
|
||||
def test_get_ticker_history_sort(default_conf, mocker):
|
||||
def test_get_candle_history_sort(default_conf, mocker):
|
||||
api_mock = MagicMock()
|
||||
|
||||
# GDAX use-case (real data from GDAX)
|
||||
@ -604,7 +604,7 @@ def test_get_ticker_history_sort(default_conf, mocker):
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
|
||||
# Test the ticker history sort
|
||||
ticks = exchange.get_ticker_history('ETH/BTC', default_conf['ticker_interval'])
|
||||
ticks = exchange.get_candle_history('ETH/BTC', default_conf['ticker_interval'])
|
||||
assert ticks[0][0] == 1527830400000
|
||||
assert ticks[0][1] == 0.07649
|
||||
assert ticks[0][2] == 0.07651
|
||||
@ -637,7 +637,7 @@ def test_get_ticker_history_sort(default_conf, mocker):
|
||||
api_mock.fetch_ohlcv = MagicMock(side_effect=make_fetch_ohlcv_mock(tick))
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
# Test the ticker history sort
|
||||
ticks = exchange.get_ticker_history('ETH/BTC', default_conf['ticker_interval'])
|
||||
ticks = exchange.get_candle_history('ETH/BTC', default_conf['ticker_interval'])
|
||||
assert ticks[0][0] == 1527827700000
|
||||
assert ticks[0][1] == 0.07659999
|
||||
assert ticks[0][2] == 0.0766
|
||||
|
@ -91,7 +91,7 @@ def simple_backtest(config, contour, num_results, mocker) -> None:
|
||||
data = load_data_test(contour)
|
||||
processed = backtesting.tickerdata_to_dataframe(data)
|
||||
assert isinstance(processed, dict)
|
||||
results = backtesting.backtest(
|
||||
results = backtesting.run(
|
||||
{
|
||||
'stake_amount': config['stake_amount'],
|
||||
'processed': processed,
|
||||
@ -110,7 +110,7 @@ def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=Fals
|
||||
return pairdata
|
||||
|
||||
|
||||
# use for mock freqtrade.exchange.get_ticker_history'
|
||||
# use for mock freqtrade.exchange.get_candle_history'
|
||||
def _load_pair_as_ticks(pair, tickfreq):
|
||||
ticks = optimize.load_data(None, ticker_interval=tickfreq, pairs=[pair])
|
||||
ticks = trim_dictlist(ticks, -201)
|
||||
@ -347,7 +347,7 @@ def test_get_timeframe(default_conf, mocker) -> None:
|
||||
pairs=['UNITTEST/BTC']
|
||||
)
|
||||
)
|
||||
min_date, max_date = backtesting.get_timeframe(data)
|
||||
min_date, max_date = backtesting._get_timeframe(data)
|
||||
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
||||
assert max_date.isoformat() == '2017-11-14T22:58:00+00:00'
|
||||
|
||||
@ -406,18 +406,62 @@ def test_generate_text_table_sell_reason(default_conf, mocker):
|
||||
data={'ETH/BTC': {}}, results=results) == result_str
|
||||
|
||||
|
||||
def test_generate_text_table_strategyn(default_conf, mocker):
|
||||
"""
|
||||
Test Backtesting.generate_text_table_sell_reason() method
|
||||
"""
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
results = {}
|
||||
results['ETH/BTC'] = pd.DataFrame(
|
||||
{
|
||||
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [0.1, 0.2, 0.3],
|
||||
'profit_abs': [0.2, 0.4, 0.5],
|
||||
'trade_duration': [10, 30, 10],
|
||||
'profit': [2, 0, 0],
|
||||
'loss': [0, 0, 1],
|
||||
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
|
||||
}
|
||||
)
|
||||
results['LTC/BTC'] = pd.DataFrame(
|
||||
{
|
||||
'pair': ['LTC/BTC', 'LTC/BTC', 'LTC/BTC'],
|
||||
'profit_percent': [0.4, 0.2, 0.3],
|
||||
'profit_abs': [0.4, 0.4, 0.5],
|
||||
'trade_duration': [15, 30, 15],
|
||||
'profit': [4, 1, 0],
|
||||
'loss': [0, 0, 1],
|
||||
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
|
||||
}
|
||||
)
|
||||
|
||||
result_str = (
|
||||
'| Strategy | buy count | avg profit % | cum profit % '
|
||||
'| total profit BTC | avg duration | profit | loss |\n'
|
||||
'|:-----------|------------:|---------------:|---------------:'
|
||||
'|-------------------:|:---------------|---------:|-------:|\n'
|
||||
'| ETH/BTC | 3 | 20.00 | 60.00 '
|
||||
'| 1.10000000 | 0:17:00 | 3 | 0 |\n'
|
||||
'| LTC/BTC | 3 | 30.00 | 90.00 '
|
||||
'| 1.30000000 | 0:20:00 | 3 | 0 |'
|
||||
)
|
||||
print(backtesting._generate_text_table_strategy(all_results=results))
|
||||
assert backtesting._generate_text_table_strategy(all_results=results) == result_str
|
||||
|
||||
|
||||
def test_backtesting_start(default_conf, mocker, caplog) -> None:
|
||||
def get_timeframe(input1, input2):
|
||||
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
|
||||
|
||||
mocker.patch('freqtrade.optimize.load_data', mocked_load_data)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history')
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history')
|
||||
patch_exchange(mocker)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.optimize.backtesting.Backtesting',
|
||||
backtest=MagicMock(),
|
||||
run=MagicMock(),
|
||||
_generate_text_table=MagicMock(return_value='1'),
|
||||
get_timeframe=get_timeframe,
|
||||
_get_timeframe=get_timeframe,
|
||||
)
|
||||
|
||||
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
@ -446,13 +490,13 @@ def test_backtesting_start_no_data(default_conf, mocker, caplog) -> None:
|
||||
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
|
||||
|
||||
mocker.patch('freqtrade.optimize.load_data', MagicMock(return_value={}))
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history')
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history')
|
||||
patch_exchange(mocker)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.optimize.backtesting.Backtesting',
|
||||
backtest=MagicMock(),
|
||||
run=MagicMock(),
|
||||
_generate_text_table=MagicMock(return_value='1'),
|
||||
get_timeframe=get_timeframe,
|
||||
_get_timeframe=get_timeframe,
|
||||
)
|
||||
|
||||
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
@ -477,7 +521,7 @@ def test_backtest(default_conf, fee, mocker) -> None:
|
||||
data = optimize.load_data(None, ticker_interval='5m', pairs=['UNITTEST/BTC'])
|
||||
data = trim_dictlist(data, -200)
|
||||
data_processed = backtesting.tickerdata_to_dataframe(data)
|
||||
results = backtesting.backtest(
|
||||
results = backtesting.run(
|
||||
{
|
||||
'stake_amount': default_conf['stake_amount'],
|
||||
'processed': data_processed,
|
||||
@ -524,7 +568,7 @@ def test_backtest_1min_ticker_interval(default_conf, fee, mocker) -> None:
|
||||
# Run a backtesting for an exiting 5min ticker_interval
|
||||
data = optimize.load_data(None, ticker_interval='1m', pairs=['UNITTEST/BTC'])
|
||||
data = trim_dictlist(data, -200)
|
||||
results = backtesting.backtest(
|
||||
results = backtesting.run(
|
||||
{
|
||||
'stake_amount': default_conf['stake_amount'],
|
||||
'processed': backtesting.tickerdata_to_dataframe(data),
|
||||
@ -568,7 +612,7 @@ def test_backtest_ticks(default_conf, fee, mocker):
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.advise_buy = fun # Override
|
||||
backtesting.advise_sell = fun # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
results = backtesting.run(backtest_conf)
|
||||
assert not results.empty
|
||||
|
||||
|
||||
@ -583,7 +627,7 @@ def test_backtest_clash_buy_sell(mocker, default_conf):
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.advise_buy = fun # Override
|
||||
backtesting.advise_sell = fun # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
results = backtesting.run(backtest_conf)
|
||||
assert results.empty
|
||||
|
||||
|
||||
@ -598,7 +642,7 @@ def test_backtest_only_sell(mocker, default_conf):
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.advise_buy = fun # Override
|
||||
backtesting.advise_sell = fun # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
results = backtesting.run(backtest_conf)
|
||||
assert results.empty
|
||||
|
||||
|
||||
@ -608,7 +652,7 @@ def test_backtest_alternate_buy_sell(default_conf, fee, mocker):
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.advise_buy = _trend_alternate # Override
|
||||
backtesting.advise_sell = _trend_alternate # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
results = backtesting.run(backtest_conf)
|
||||
backtesting._store_backtest_result("test_.json", results)
|
||||
assert len(results) == 4
|
||||
# One trade was force-closed at the end
|
||||
@ -621,7 +665,7 @@ def test_backtest_record(default_conf, fee, mocker):
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.backtesting.file_dump_json',
|
||||
'freqtrade.optimize.optimize.file_dump_json',
|
||||
new=lambda n, r: (names.append(n), records.append(r))
|
||||
)
|
||||
|
||||
@ -654,6 +698,18 @@ def test_backtest_record(default_conf, fee, mocker):
|
||||
records = records[0]
|
||||
# Ensure records are of correct type
|
||||
assert len(records) == 4
|
||||
|
||||
# reset test to test with strategy name
|
||||
names = []
|
||||
records = []
|
||||
backtesting._store_backtest_result("backtest-result.json", results, "DefStrat")
|
||||
assert len(results) == 4
|
||||
# Assert file_dump_json was only called once
|
||||
assert names == ['backtest-result-DefStrat.json']
|
||||
records = records[0]
|
||||
# Ensure records are of correct type
|
||||
assert len(records) == 4
|
||||
|
||||
# ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117)
|
||||
# Below follows just a typecheck of the schema/type of trade-records
|
||||
oix = None
|
||||
@ -677,24 +733,15 @@ def test_backtest_record(default_conf, fee, mocker):
|
||||
|
||||
def test_backtest_start_live(default_conf, mocker, caplog):
|
||||
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history',
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history',
|
||||
new=lambda s, n, i: _load_pair_as_ticks(n, i))
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting.run', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', MagicMock())
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(default_conf)
|
||||
))
|
||||
|
||||
args = MagicMock()
|
||||
args.ticker_interval = 1
|
||||
args.level = 10
|
||||
args.live = True
|
||||
args.datadir = None
|
||||
args.export = None
|
||||
args.strategy = 'DefaultStrategy'
|
||||
args.timerange = '-100' # needed due to MagicMock malleability
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
@ -725,3 +772,60 @@ def test_backtest_start_live(default_conf, mocker, caplog):
|
||||
|
||||
for line in exists:
|
||||
assert log_has(line, caplog.record_tuples)
|
||||
|
||||
|
||||
def test_backtest_start_multi_strat(default_conf, mocker, caplog):
|
||||
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history',
|
||||
new=lambda s, n, i: _load_pair_as_ticks(n, i))
|
||||
patch_exchange(mocker)
|
||||
backtestmock = MagicMock()
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting.run', backtestmock)
|
||||
gen_table_mock = MagicMock()
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', gen_table_mock)
|
||||
gen_strattable_mock = MagicMock()
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table_strategy',
|
||||
gen_strattable_mock)
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(default_conf)
|
||||
))
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--datadir', 'freqtrade/tests/testdata',
|
||||
'backtesting',
|
||||
'--ticker-interval', '1m',
|
||||
'--live',
|
||||
'--timerange', '-100',
|
||||
'--enable-position-stacking',
|
||||
'--disable-max-market-positions',
|
||||
'--strategy-list',
|
||||
'DefaultStrategy',
|
||||
'TestStrategy',
|
||||
]
|
||||
args = get_args(args)
|
||||
start(args)
|
||||
# 2 backtests, 4 tables
|
||||
assert backtestmock.call_count == 2
|
||||
assert gen_table_mock.call_count == 4
|
||||
assert gen_strattable_mock.call_count == 1
|
||||
|
||||
# check the logs, that will contain the backtest result
|
||||
exists = [
|
||||
'Parameter -i/--ticker-interval detected ...',
|
||||
'Using ticker_interval: 1m ...',
|
||||
'Parameter -l/--live detected ...',
|
||||
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
|
||||
'Parameter --timerange detected: -100 ...',
|
||||
'Using data folder: freqtrade/tests/testdata ...',
|
||||
'Using stake_currency: BTC ...',
|
||||
'Using stake_amount: 0.001 ...',
|
||||
'Downloading data for all pairs in whitelist ...',
|
||||
'Measuring data from 2017-11-14T19:31:00+00:00 up to 2017-11-14T22:58:00+00:00 (0 days)..',
|
||||
'Parameter --enable-position-stacking detected ...',
|
||||
'Running backtesting for Strategy DefaultStrategy',
|
||||
'Running backtesting for Strategy TestStrategy',
|
||||
]
|
||||
|
||||
for line in exists:
|
||||
assert log_has(line, caplog.record_tuples)
|
||||
|
@ -263,7 +263,7 @@ def test_generate_optimizer(mocker, default_conf) -> None:
|
||||
backtest_result = pd.DataFrame.from_records(trades, columns=labels)
|
||||
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.backtest',
|
||||
'freqtrade.optimize.hyperopt.Hyperopt.run',
|
||||
MagicMock(return_value=backtest_result)
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
|
@ -53,7 +53,7 @@ def _clean_test_file(file: str) -> None:
|
||||
|
||||
|
||||
def test_load_data_30min_ticker(ticker_history, mocker, caplog, default_conf) -> None:
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history', return_value=ticker_history)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
|
||||
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'UNITTEST_BTC-30m.json')
|
||||
_backup_file(file, copy_file=True)
|
||||
optimize.load_data(None, pairs=['UNITTEST/BTC'], ticker_interval='30m')
|
||||
@ -63,7 +63,7 @@ def test_load_data_30min_ticker(ticker_history, mocker, caplog, default_conf) ->
|
||||
|
||||
|
||||
def test_load_data_5min_ticker(ticker_history, mocker, caplog, default_conf) -> None:
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history', return_value=ticker_history)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
|
||||
|
||||
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'UNITTEST_BTC-5m.json')
|
||||
_backup_file(file, copy_file=True)
|
||||
@ -74,7 +74,7 @@ def test_load_data_5min_ticker(ticker_history, mocker, caplog, default_conf) ->
|
||||
|
||||
|
||||
def test_load_data_1min_ticker(ticker_history, mocker, caplog) -> None:
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history', return_value=ticker_history)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
|
||||
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'UNITTEST_BTC-1m.json')
|
||||
_backup_file(file, copy_file=True)
|
||||
optimize.load_data(None, ticker_interval='1m', pairs=['UNITTEST/BTC'])
|
||||
@ -87,7 +87,7 @@ def test_load_data_with_new_pair_1min(ticker_history, mocker, caplog, default_co
|
||||
"""
|
||||
Test load_data() with 1 min ticker
|
||||
"""
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history', return_value=ticker_history)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-1m.json')
|
||||
|
||||
@ -118,7 +118,7 @@ def test_testdata_path() -> None:
|
||||
|
||||
|
||||
def test_download_pairs(ticker_history, mocker, default_conf) -> None:
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history', return_value=ticker_history)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
file1_1 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-1m.json')
|
||||
file1_5 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-5m.json')
|
||||
@ -261,7 +261,7 @@ def test_load_cached_data_for_updating(mocker) -> None:
|
||||
|
||||
|
||||
def test_download_pairs_exception(ticker_history, mocker, caplog, default_conf) -> None:
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history', return_value=ticker_history)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
|
||||
mocker.patch('freqtrade.optimize.__init__.download_backtesting_testdata',
|
||||
side_effect=BaseException('File Error'))
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
@ -279,7 +279,7 @@ def test_download_pairs_exception(ticker_history, mocker, caplog, default_conf)
|
||||
|
||||
|
||||
def test_download_backtesting_testdata(ticker_history, mocker, default_conf) -> None:
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history', return_value=ticker_history)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=ticker_history)
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
|
||||
# Download a 1 min ticker file
|
||||
@ -304,7 +304,7 @@ def test_download_backtesting_testdata2(mocker, default_conf) -> None:
|
||||
[1509836580000, 0.00161, 0.00161, 0.00161, 0.00161, 82.390199]
|
||||
]
|
||||
json_dump_mock = mocker.patch('freqtrade.misc.file_dump_json', return_value=None)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history', return_value=tick)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=tick)
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
download_backtesting_testdata(None, exchange, pair="UNITTEST/BTC", tick_interval='1m')
|
||||
download_backtesting_testdata(None, exchange, pair="UNITTEST/BTC", tick_interval='3m')
|
||||
|
@ -88,7 +88,7 @@ def test_get_signal_old_dataframe(default_conf, mocker, caplog):
|
||||
|
||||
|
||||
def test_get_signal_handles_exceptions(mocker, default_conf):
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history', return_value=MagicMock())
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_candle_history', return_value=MagicMock())
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
mocker.patch.object(
|
||||
_STRATEGY, 'analyze_ticker',
|
||||
|
@ -132,7 +132,11 @@ def test_parse_args_backtesting_custom() -> None:
|
||||
'backtesting',
|
||||
'--live',
|
||||
'--ticker-interval', '1m',
|
||||
'--refresh-pairs-cached']
|
||||
'--refresh-pairs-cached',
|
||||
'--strategy-list',
|
||||
'DefaultStrategy',
|
||||
'TestStrategy'
|
||||
]
|
||||
call_args = Arguments(args, '').get_parsed_arg()
|
||||
assert call_args.config == 'test_conf.json'
|
||||
assert call_args.live is True
|
||||
@ -141,6 +145,8 @@ def test_parse_args_backtesting_custom() -> None:
|
||||
assert call_args.func is not None
|
||||
assert call_args.ticker_interval == '1m'
|
||||
assert call_args.refresh_pairs is True
|
||||
assert type(call_args.strategy_list) is list
|
||||
assert len(call_args.strategy_list) == 2
|
||||
|
||||
|
||||
def test_parse_args_hyperopt_custom() -> None:
|
||||
|
@ -292,6 +292,61 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
|
||||
)
|
||||
|
||||
|
||||
def test_setup_configuration_with_stratlist(mocker, default_conf, caplog) -> None:
|
||||
"""
|
||||
Test setup_configuration() function
|
||||
"""
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(default_conf)
|
||||
))
|
||||
|
||||
arglist = [
|
||||
'--config', 'config.json',
|
||||
'backtesting',
|
||||
'--ticker-interval', '1m',
|
||||
'--export', '/bar/foo',
|
||||
'--strategy-list',
|
||||
'DefaultStrategy',
|
||||
'TestStrategy'
|
||||
]
|
||||
|
||||
args = Arguments(arglist, '').get_parsed_arg()
|
||||
|
||||
configuration = Configuration(args)
|
||||
config = configuration.get_config()
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert log_has(
|
||||
'Using data folder: {} ...'.format(config['datadir']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert 'ticker_interval' in config
|
||||
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
|
||||
assert log_has(
|
||||
'Using ticker_interval: 1m ...',
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
assert 'strategy_list' in config
|
||||
assert log_has('Using strategy list of 2 Strategies', caplog.record_tuples)
|
||||
|
||||
assert 'position_stacking' not in config
|
||||
|
||||
assert 'use_max_market_positions' not in config
|
||||
|
||||
assert 'timerange' not in config
|
||||
|
||||
assert 'export' in config
|
||||
assert log_has(
|
||||
'Parameter --export detected: {} ...'.format(config['export']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
|
||||
def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(default_conf)
|
||||
|
@ -14,7 +14,7 @@ def load_dataframe_pair(pairs, strategy):
|
||||
assert isinstance(pairs[0], str)
|
||||
dataframe = ld[pairs[0]]
|
||||
|
||||
dataframe = strategy.analyze_ticker(dataframe, pairs[0])
|
||||
dataframe = strategy.analyze_ticker(dataframe, {'pair': pairs[0]})
|
||||
return dataframe
|
||||
|
||||
|
||||
|
@ -43,7 +43,7 @@ def patch_get_signal(freqtrade: FreqtradeBot, value=(True, False)) -> None:
|
||||
:return: None
|
||||
"""
|
||||
freqtrade.strategy.get_signal = lambda e, s, t: value
|
||||
freqtrade.exchange.get_ticker_history = lambda p, i: None
|
||||
freqtrade.exchange.get_candle_history = lambda p, i: None
|
||||
|
||||
|
||||
def patch_RPCManager(mocker) -> MagicMock:
|
||||
@ -544,7 +544,7 @@ def test_create_trade_no_signal(default_conf, fee, mocker) -> None:
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
validate_pairs=MagicMock(),
|
||||
get_ticker_history=MagicMock(return_value=20),
|
||||
get_candle_history=MagicMock(return_value=20),
|
||||
get_balance=MagicMock(return_value=20),
|
||||
get_fee=fee,
|
||||
)
|
||||
|
@ -404,6 +404,7 @@ def test_migrate_new(mocker, default_conf, fee, caplog):
|
||||
Test Database migration (starting with new pairformat)
|
||||
"""
|
||||
amount = 103.223
|
||||
# Always create all columns apart from the last!
|
||||
create_table_old = """CREATE TABLE IF NOT EXISTS "trades" (
|
||||
id INTEGER NOT NULL,
|
||||
exchange VARCHAR NOT NULL,
|
||||
@ -418,14 +419,21 @@ def test_migrate_new(mocker, default_conf, fee, caplog):
|
||||
open_date DATETIME NOT NULL,
|
||||
close_date DATETIME,
|
||||
open_order_id VARCHAR,
|
||||
stop_loss FLOAT,
|
||||
initial_stop_loss FLOAT,
|
||||
max_rate FLOAT,
|
||||
sell_reason VARCHAR,
|
||||
strategy VARCHAR,
|
||||
PRIMARY KEY (id),
|
||||
CHECK (is_open IN (0, 1))
|
||||
);"""
|
||||
insert_table_old = """INSERT INTO trades (exchange, pair, is_open, fee,
|
||||
open_rate, stake_amount, amount, open_date)
|
||||
open_rate, stake_amount, amount, open_date,
|
||||
stop_loss, initial_stop_loss, max_rate)
|
||||
VALUES ('binance', 'ETC/BTC', 1, {fee},
|
||||
0.00258580, {stake}, {amount},
|
||||
'2019-11-28 12:44:24.000000')
|
||||
'2019-11-28 12:44:24.000000',
|
||||
0.0, 0.0, 0.0)
|
||||
""".format(fee=fee.return_value,
|
||||
stake=default_conf.get("stake_amount"),
|
||||
amount=amount
|
||||
|
16
freqtrade/tests/test_talib.py
Normal file
16
freqtrade/tests/test_talib.py
Normal file
@ -0,0 +1,16 @@
|
||||
|
||||
|
||||
import talib.abstract as ta
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_talib_bollingerbands_near_zero_values():
|
||||
inputs = pd.DataFrame([
|
||||
{'close': 0.00000010},
|
||||
{'close': 0.00000011},
|
||||
{'close': 0.00000012},
|
||||
{'close': 0.00000013},
|
||||
{'close': 0.00000014}
|
||||
])
|
||||
bollinger = ta.BBANDS(inputs, matype=0, timeperiod=2)
|
||||
assert (bollinger['upperband'][3] != bollinger['middleband'][3])
|
@ -1,6 +1,6 @@
|
||||
if [ ! -f "ta-lib/CHANGELOG.TXT" ]; then
|
||||
tar zxvf ta-lib-0.4.0-src.tar.gz
|
||||
cd ta-lib && ./configure && make && sudo make install && cd ..
|
||||
cd ta-lib && sed -i "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h && ./configure && make && sudo make install && cd ..
|
||||
else
|
||||
echo "TA-lib already installed, skipping download and build."
|
||||
cd ta-lib && sudo make install && cd ..
|
||||
|
@ -1,4 +1,4 @@
|
||||
ccxt==1.17.60
|
||||
ccxt==1.17.118
|
||||
SQLAlchemy==1.2.10
|
||||
python-telegram-bot==10.1.0
|
||||
arrow==0.12.1
|
||||
@ -6,13 +6,13 @@ cachetools==2.1.0
|
||||
requests==2.19.1
|
||||
urllib3==1.22
|
||||
wrapt==1.10.11
|
||||
pandas==0.23.3
|
||||
pandas==0.23.4
|
||||
scikit-learn==0.19.2
|
||||
scipy==1.1.0
|
||||
jsonschema==2.6.0
|
||||
numpy==1.15.0
|
||||
TA-Lib==0.4.17
|
||||
pytest==3.7.0
|
||||
pytest==3.7.1
|
||||
pytest-mock==1.10.0
|
||||
pytest-cov==2.5.1
|
||||
tabulate==0.8.2
|
||||
|
93
scripts/get_market_pairs.py
Normal file
93
scripts/get_market_pairs.py
Normal file
@ -0,0 +1,93 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(root + '/python')
|
||||
|
||||
import ccxt # noqa: E402
|
||||
|
||||
|
||||
def style(s, style):
|
||||
return style + s + '\033[0m'
|
||||
|
||||
|
||||
def green(s):
|
||||
return style(s, '\033[92m')
|
||||
|
||||
|
||||
def blue(s):
|
||||
return style(s, '\033[94m')
|
||||
|
||||
|
||||
def yellow(s):
|
||||
return style(s, '\033[93m')
|
||||
|
||||
|
||||
def red(s):
|
||||
return style(s, '\033[91m')
|
||||
|
||||
|
||||
def pink(s):
|
||||
return style(s, '\033[95m')
|
||||
|
||||
|
||||
def bold(s):
|
||||
return style(s, '\033[1m')
|
||||
|
||||
|
||||
def underline(s):
|
||||
return style(s, '\033[4m')
|
||||
|
||||
|
||||
def dump(*args):
|
||||
print(' '.join([str(arg) for arg in args]))
|
||||
|
||||
|
||||
def print_supported_exchanges():
|
||||
dump('Supported exchanges:', green(', '.join(ccxt.exchanges)))
|
||||
|
||||
|
||||
try:
|
||||
|
||||
id = sys.argv[1] # get exchange id from command line arguments
|
||||
|
||||
|
||||
# check if the exchange is supported by ccxt
|
||||
exchange_found = id in ccxt.exchanges
|
||||
|
||||
if exchange_found:
|
||||
dump('Instantiating', green(id), 'exchange')
|
||||
|
||||
# instantiate the exchange by id
|
||||
exchange = getattr(ccxt, id)({
|
||||
# 'proxy':'https://cors-anywhere.herokuapp.com/',
|
||||
})
|
||||
|
||||
# load all markets from the exchange
|
||||
markets = exchange.load_markets()
|
||||
|
||||
# output a list of all market symbols
|
||||
dump(green(id), 'has', len(exchange.symbols), 'symbols:', exchange.symbols)
|
||||
|
||||
tuples = list(ccxt.Exchange.keysort(markets).items())
|
||||
|
||||
# debug
|
||||
for (k, v) in tuples:
|
||||
print(v)
|
||||
|
||||
# output a table of all markets
|
||||
dump(pink('{:<15} {:<15} {:<15} {:<15}'.format('id', 'symbol', 'base', 'quote')))
|
||||
|
||||
for (k, v) in tuples:
|
||||
dump('{:<15} {:<15} {:<15} {:<15}'.format(v['id'], v['symbol'], v['base'], v['quote']))
|
||||
|
||||
else:
|
||||
|
||||
dump('Exchange ' + red(id) + ' not found')
|
||||
print_supported_exchanges()
|
||||
|
||||
except Exception as e:
|
||||
dump('[' + type(e).__name__ + ']', str(e))
|
||||
dump("Usage: python " + sys.argv[0], green('id'))
|
||||
print_supported_exchanges()
|
||||
|
@ -138,7 +138,7 @@ def plot_analyzed_dataframe(args: Namespace) -> None:
|
||||
tickers = {}
|
||||
if args.live:
|
||||
logger.info('Downloading pair.')
|
||||
tickers[pair] = exchange.get_ticker_history(pair, tick_interval)
|
||||
tickers[pair] = exchange.get_candle_history(pair, tick_interval)
|
||||
else:
|
||||
tickers = optimize.load_data(
|
||||
datadir=_CONF.get("datadir"),
|
||||
|
Loading…
Reference in New Issue
Block a user