add tensorflow interface
This commit is contained in:
		| @@ -3,10 +3,10 @@ from time import time | ||||
| from typing import Any | ||||
|  | ||||
| from pandas import DataFrame | ||||
|  | ||||
| import numpy as np | ||||
| from freqtrade.freqai.data_kitchen import FreqaiDataKitchen | ||||
| from freqtrade.freqai.freqai_interface import IFreqaiModel | ||||
|  | ||||
| import tensorflow as tf | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
| @@ -17,6 +17,13 @@ class BaseTensorFlowModel(IFreqaiModel): | ||||
|     User *must* inherit from this class and set fit() and predict(). | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, **kwargs): | ||||
|         super().__init__(config=kwargs['config']) | ||||
|         self.keras = True | ||||
|         if self.ft_params.get("DI_threshold", 0): | ||||
|             self.ft_params["DI_threshold"] = 0 | ||||
|             logger.warning("DI threshold is not configured for Keras models yet. Deactivating.") | ||||
|  | ||||
|     def train( | ||||
|         self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs | ||||
|     ) -> Any: | ||||
| @@ -68,3 +75,76 @@ class BaseTensorFlowModel(IFreqaiModel): | ||||
|                     f"({end_time - start_time:.2f} secs) --------------------") | ||||
|  | ||||
|         return model | ||||
|  | ||||
|  | ||||
| class WindowGenerator: | ||||
|     def __init__( | ||||
|         self, | ||||
|         input_width, | ||||
|         label_width, | ||||
|         shift, | ||||
|         train_df=None, | ||||
|         val_df=None, | ||||
|         test_df=None, | ||||
|         train_labels=None, | ||||
|         val_labels=None, | ||||
|         test_labels=None, | ||||
|         batch_size=None, | ||||
|     ): | ||||
|         # Store the raw data. | ||||
|         self.train_df = train_df | ||||
|         self.val_df = val_df | ||||
|         self.test_df = test_df | ||||
|         self.train_labels = train_labels | ||||
|         self.val_labels = val_labels | ||||
|         self.test_labels = test_labels | ||||
|         self.batch_size = batch_size | ||||
|         self.input_width = input_width | ||||
|         self.label_width = label_width | ||||
|         self.shift = shift | ||||
|         self.total_window_size = input_width + shift | ||||
|         self.input_slice = slice(0, input_width) | ||||
|         self.input_indices = np.arange(self.total_window_size)[self.input_slice] | ||||
|  | ||||
|     def make_dataset(self, data, labels=None): | ||||
|         data = np.array(data, dtype=np.float32) | ||||
|         if labels is not None: | ||||
|             labels = np.array(labels, dtype=np.float32) | ||||
|         ds = tf.keras.preprocessing.timeseries_dataset_from_array( | ||||
|             data=data, | ||||
|             targets=labels, | ||||
|             sequence_length=self.total_window_size, | ||||
|             sequence_stride=1, | ||||
|             sampling_rate=1, | ||||
|             shuffle=False, | ||||
|             batch_size=self.batch_size, | ||||
|         ) | ||||
|  | ||||
|         return ds | ||||
|  | ||||
|     @property | ||||
|     def train(self): | ||||
|         return self.make_dataset(self.train_df, self.train_labels) | ||||
|  | ||||
|     @property | ||||
|     def val(self): | ||||
|         return self.make_dataset(self.val_df, self.val_labels) | ||||
|  | ||||
|     @property | ||||
|     def test(self): | ||||
|         return self.make_dataset(self.test_df, self.test_labels) | ||||
|  | ||||
|     @property | ||||
|     def inference(self): | ||||
|         return self.make_dataset(self.test_df) | ||||
|  | ||||
|     @property | ||||
|     def example(self): | ||||
|         """Get and cache an example batch of `inputs, labels` for plotting.""" | ||||
|         result = getattr(self, "_example", None) | ||||
|         if result is None: | ||||
|             # No example batch was found, so get one from the `.train` dataset | ||||
|             result = next(iter(self.train)) | ||||
|             # And cache it for next time | ||||
|             self._example = result | ||||
|         return result | ||||
|   | ||||
| @@ -413,10 +413,13 @@ class FreqaiDataDrawer: | ||||
|         save_path = Path(dk.data_path) | ||||
|  | ||||
|         # Save the trained model | ||||
|         if not dk.keras: | ||||
|         model_type = self.freqai_info.get('model_save_type', 'joblib') | ||||
|         if model_type == 'joblib': | ||||
|             dump(model, save_path / f"{dk.model_filename}_model.joblib") | ||||
|         else: | ||||
|         elif model_type == 'keras': | ||||
|             model.save(save_path / f"{dk.model_filename}_model.h5") | ||||
|         elif 'stable_baselines' in model_type: | ||||
|             model.save(save_path / f"{dk.model_filename}_model.zip") | ||||
|  | ||||
|         if dk.svm_model is not None: | ||||
|             dump(dk.svm_model, save_path / f"{dk.model_filename}_svm_model.joblib") | ||||
| @@ -492,15 +495,20 @@ class FreqaiDataDrawer: | ||||
|             dk.data_path / f"{dk.model_filename}_trained_df.pkl" | ||||
|         ) | ||||
|  | ||||
|         model_type = self.freqai_info.get('model_save_type', 'joblib') | ||||
|         # try to access model in memory instead of loading object from disk to save time | ||||
|         if dk.live and coin in self.model_dictionary: | ||||
|             model = self.model_dictionary[coin] | ||||
|         elif not dk.keras: | ||||
|         elif model_type == 'joblib': | ||||
|             model = load(dk.data_path / f"{dk.model_filename}_model.joblib") | ||||
|         else: | ||||
|         elif model_type == 'keras': | ||||
|             from tensorflow import keras | ||||
|  | ||||
|             model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5") | ||||
|         elif model_type == 'stable_baselines': | ||||
|             mod = __import__('stable_baselines3', fromlist=[ | ||||
|                              self.freqai_info['rl_config']['model_type']]) | ||||
|             MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type']) | ||||
|             model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model") | ||||
|  | ||||
|         if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file(): | ||||
|             dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib") | ||||
|   | ||||
| @@ -76,9 +76,10 @@ class FreqaiDataKitchen: | ||||
|         self.backtest_predictions_folder: str = "backtesting_predictions" | ||||
|         self.live = live | ||||
|         self.pair = pair | ||||
|         self.model_save_type = self.freqai_config.get('model_save_type', 'joblib') | ||||
|  | ||||
|         self.svm_model: linear_model.SGDOneClassSVM = None | ||||
|         self.keras: bool = self.freqai_config.get("keras", False) | ||||
|         # self.model_save_type: bool = self.freqai_config.get("keras", False) | ||||
|         self.set_all_pairs() | ||||
|         if not self.live: | ||||
|             if not self.config["timerange"]: | ||||
| @@ -571,7 +572,7 @@ class FreqaiDataKitchen: | ||||
|         predict: bool = If true, inference an existing SVM model, else construct one | ||||
|         """ | ||||
|  | ||||
|         if self.keras: | ||||
|         if self.model_save_type == 'keras': | ||||
|             logger.warning( | ||||
|                 "SVM outlier removal not currently supported for Keras based models. " | ||||
|                 "Skipping user requested function." | ||||
|   | ||||
| @@ -72,10 +72,10 @@ class IFreqaiModel(ABC): | ||||
|         self.identifier: str = self.freqai_info.get("identifier", "no_id_provided") | ||||
|         self.scanning = False | ||||
|         self.ft_params = self.freqai_info["feature_parameters"] | ||||
|         self.keras: bool = self.freqai_info.get("keras", False) | ||||
|         if self.keras and self.ft_params.get("DI_threshold", 0): | ||||
|             self.ft_params["DI_threshold"] = 0 | ||||
|             logger.warning("DI threshold is not configured for Keras models yet. Deactivating.") | ||||
|         # self.keras: bool = self.freqai_info.get("keras", False) | ||||
|         # if self.keras and self.ft_params.get("DI_threshold", 0): | ||||
|         #     self.ft_params["DI_threshold"] = 0 | ||||
|         #     logger.warning("DI threshold is not configured for Keras models yet. Deactivating.") | ||||
|         self.CONV_WIDTH = self.freqai_info.get("conv_width", 2) | ||||
|         if self.ft_params.get("inlier_metric_window", 0): | ||||
|             self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2 | ||||
| @@ -627,7 +627,8 @@ class IFreqaiModel(ABC): | ||||
|  | ||||
|         # # for keras type models, the conv_window needs to be prepended so | ||||
|         # # viewing is correct in frequi | ||||
|         if self.freqai_info.get('keras', False) or self.ft_params.get('inlier_metric_window', 0): | ||||
|         if (not self.freqai_info.get('model_save_type', 'joblib') or | ||||
|                 self.ft_params.get('inlier_metric_window', 0)): | ||||
|             n_lost_points = self.freqai_info.get('conv_width', 2) | ||||
|             zeros_df = DataFrame(np.zeros((n_lost_points, len(hist_preds_df.columns))), | ||||
|                                  columns=hist_preds_df.columns) | ||||
|   | ||||
							
								
								
									
										144
									
								
								freqtrade/freqai/prediction_models/CNNPredictionModel.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										144
									
								
								freqtrade/freqai/prediction_models/CNNPredictionModel.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,144 @@ | ||||
| import logging | ||||
| from typing import Any, Dict, Tuple | ||||
|  | ||||
| from pandas import DataFrame | ||||
| from freqtrade.exceptions import OperationalException | ||||
| from freqtrade.freqai.data_kitchen import FreqaiDataKitchen | ||||
| import tensorflow as tf | ||||
| from freqtrade.freqai.base_models.BaseTensorFlowModel import BaseTensorFlowModel, WindowGenerator | ||||
| from tensorflow.keras.layers import Input, Conv1D, Dense | ||||
| from tensorflow.keras.models import Model | ||||
| import numpy as np | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
| # tf.config.run_functions_eagerly(True) | ||||
| # tf.data.experimental.enable_debug_mode() | ||||
|  | ||||
| MAX_EPOCHS = 10 | ||||
|  | ||||
|  | ||||
| class CNNPredictionModel(BaseTensorFlowModel): | ||||
|     """ | ||||
|     User created prediction model. The class needs to override three necessary | ||||
|     functions, predict(), fit(). | ||||
|     """ | ||||
|  | ||||
|     def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen) -> Any: | ||||
|         """ | ||||
|         User sets up the training and test data to fit their desired model here | ||||
|         :params: | ||||
|         :data_dictionary: the dictionary constructed by DataHandler to hold | ||||
|         all the training and test data/labels. | ||||
|         """ | ||||
|         train_df = data_dictionary["train_features"] | ||||
|         train_labels = data_dictionary["train_labels"] | ||||
|         test_df = data_dictionary["test_features"] | ||||
|         test_labels = data_dictionary["test_labels"] | ||||
|         n_labels = len(train_labels.columns) | ||||
|         if n_labels > 1: | ||||
|             raise OperationalException( | ||||
|                 "Neural Net not yet configured for multi-targets. Please " | ||||
|                 " reduce number of targets to 1 in strategy." | ||||
|             ) | ||||
|  | ||||
|         n_features = len(data_dictionary["train_features"].columns) | ||||
|         BATCH_SIZE = self.freqai_info.get("batch_size", 64) | ||||
|         input_dims = [BATCH_SIZE, self.CONV_WIDTH, n_features] | ||||
|  | ||||
|         w1 = WindowGenerator( | ||||
|             input_width=self.CONV_WIDTH, | ||||
|             label_width=1, | ||||
|             shift=1, | ||||
|             train_df=train_df, | ||||
|             val_df=test_df, | ||||
|             train_labels=train_labels, | ||||
|             val_labels=test_labels, | ||||
|             batch_size=BATCH_SIZE, | ||||
|         ) | ||||
|  | ||||
|         model = self.create_model(input_dims, n_labels) | ||||
|  | ||||
|         steps_per_epoch = np.ceil(len(test_df) / BATCH_SIZE) | ||||
|         lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay( | ||||
|             0.001, decay_steps=steps_per_epoch * 1000, decay_rate=1, staircase=False | ||||
|         ) | ||||
|  | ||||
|         early_stopping = tf.keras.callbacks.EarlyStopping( | ||||
|             monitor="loss", patience=3, mode="min", min_delta=0.0001 | ||||
|         ) | ||||
|  | ||||
|         model.compile( | ||||
|             loss=tf.losses.MeanSquaredError(), | ||||
|             optimizer=tf.optimizers.Adam(lr_schedule), | ||||
|             metrics=[tf.metrics.MeanAbsoluteError()], | ||||
|         ) | ||||
|  | ||||
|         model.fit( | ||||
|             w1.train, | ||||
|             epochs=MAX_EPOCHS, | ||||
|             shuffle=False, | ||||
|             validation_data=w1.val, | ||||
|             callbacks=[early_stopping], | ||||
|             verbose=1, | ||||
|         ) | ||||
|  | ||||
|         return model | ||||
|  | ||||
|     def predict( | ||||
|         self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first=True | ||||
|     ) -> Tuple[DataFrame, DataFrame]: | ||||
|         """ | ||||
|         Filter the prediction features data and predict with it. | ||||
|         :param: unfiltered_dataframe: Full dataframe for the current backtest period. | ||||
|         :return: | ||||
|         :predictions: np.array of predictions | ||||
|         :do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove | ||||
|         data (NaNs) or felt uncertain about data (PCA and DI index) | ||||
|         """ | ||||
|  | ||||
|         dk.find_features(unfiltered_dataframe) | ||||
|         filtered_dataframe, _ = dk.filter_features( | ||||
|             unfiltered_dataframe, dk.training_features_list, training_filter=False | ||||
|         ) | ||||
|         filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe) | ||||
|         dk.data_dictionary["prediction_features"] = filtered_dataframe | ||||
|  | ||||
|         # optional additional data cleaning/analysis | ||||
|         self.data_cleaning_predict(dk, filtered_dataframe) | ||||
|  | ||||
|         if first: | ||||
|             full_df = dk.data_dictionary["prediction_features"] | ||||
|  | ||||
|             w1 = WindowGenerator( | ||||
|                 input_width=self.CONV_WIDTH, | ||||
|                 label_width=1, | ||||
|                 shift=1, | ||||
|                 test_df=full_df, | ||||
|                 batch_size=len(full_df), | ||||
|             ) | ||||
|  | ||||
|             predictions = self.model.predict(w1.inference) | ||||
|             len_diff = len(dk.do_predict) - len(predictions) | ||||
|             if len_diff > 0: | ||||
|                 dk.do_predict = dk.do_predict[len_diff:] | ||||
|  | ||||
|         else: | ||||
|             data = dk.data_dictionary["prediction_features"] | ||||
|             data = tf.expand_dims(data, axis=0) | ||||
|             predictions = self.model(data, training=False) | ||||
|  | ||||
|         predictions = predictions[:, 0, 0] | ||||
|         pred_df = DataFrame(predictions, columns=dk.label_list) | ||||
|  | ||||
|         pred_df = dk.denormalize_labels_from_metadata(pred_df) | ||||
|  | ||||
|         return (pred_df, np.ones(len(pred_df))) | ||||
|  | ||||
|     def create_model(self, input_dims, n_labels) -> Any: | ||||
|  | ||||
|         input_layer = Input(shape=(input_dims[1], input_dims[2])) | ||||
|         Layer_1 = Conv1D(filters=32, kernel_size=(self.CONV_WIDTH,), activation="relu")(input_layer) | ||||
|         Layer_3 = Dense(units=32, activation="relu")(Layer_1) | ||||
|         output_layer = Dense(units=n_labels)(Layer_3) | ||||
|         return Model(inputs=input_layer, outputs=output_layer) | ||||
		Reference in New Issue
	
	Block a user