wall e files
This commit is contained in:
parent
ea38b58081
commit
f3ed3a715f
165
config_examples/Strategy002.py
Normal file
165
config_examples/Strategy002.py
Normal file
@ -0,0 +1,165 @@
|
|||||||
|
|
||||||
|
# --- Do not remove these libs ---
|
||||||
|
from freqtrade.strategy import IStrategy
|
||||||
|
from typing import Dict, List
|
||||||
|
from functools import reduce
|
||||||
|
from pandas import DataFrame
|
||||||
|
# --------------------------------
|
||||||
|
|
||||||
|
import talib.abstract as ta
|
||||||
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
|
import numpy # noqa
|
||||||
|
|
||||||
|
PROJECT_DIR = "/home/ubuntu/workspace/execution/"
|
||||||
|
import sys
|
||||||
|
sys.path.append(PROJECT_DIR)
|
||||||
|
from executor import *
|
||||||
|
|
||||||
|
class Strategy002(IStrategy):
|
||||||
|
"""
|
||||||
|
Strategy 002
|
||||||
|
author@: Gerald Lonlas
|
||||||
|
github@: https://github.com/freqtrade/freqtrade-strategies
|
||||||
|
|
||||||
|
How to use it?
|
||||||
|
> python3 ./freqtrade/main.py -s Strategy002
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Minimal ROI designed for the strategy.
|
||||||
|
# This attribute will be overridden if the config file contains "minimal_roi"
|
||||||
|
minimal_roi = {
|
||||||
|
"60": 0.01,
|
||||||
|
"30": 0.03,
|
||||||
|
"20": 0.04,
|
||||||
|
"0": 0.05
|
||||||
|
}
|
||||||
|
|
||||||
|
# Optimal stoploss designed for the strategy
|
||||||
|
# This attribute will be overridden if the config file contains "stoploss"
|
||||||
|
stoploss = -0.10
|
||||||
|
|
||||||
|
# Optimal timeframe for the strategy
|
||||||
|
timeframe = '5m'
|
||||||
|
|
||||||
|
# trailing stoploss
|
||||||
|
trailing_stop = False
|
||||||
|
trailing_stop_positive = 0.01
|
||||||
|
trailing_stop_positive_offset = 0.02
|
||||||
|
|
||||||
|
# run "populate_indicators" only for new candle
|
||||||
|
process_only_new_candles = False
|
||||||
|
|
||||||
|
# Experimental settings (configuration will overide these if set)
|
||||||
|
use_sell_signal = True
|
||||||
|
sell_profit_only = True
|
||||||
|
ignore_roi_if_buy_signal = False
|
||||||
|
|
||||||
|
# Optional order type mapping
|
||||||
|
order_types = {
|
||||||
|
'buy': 'limit',
|
||||||
|
'sell': 'limit',
|
||||||
|
'stoploss': 'market',
|
||||||
|
'stoploss_on_exchange': False
|
||||||
|
}
|
||||||
|
|
||||||
|
executor = Executor()
|
||||||
|
|
||||||
|
def informative_pairs(self):
|
||||||
|
"""
|
||||||
|
Define additional, informative pair/interval combinations to be cached from the exchange.
|
||||||
|
These pair/interval combinations are non-tradeable, unless they are part
|
||||||
|
of the whitelist as well.
|
||||||
|
For more information, please consult the documentation
|
||||||
|
:return: List of tuples in the format (pair, interval)
|
||||||
|
Sample: return [("ETH/USDT", "5m"),
|
||||||
|
("BTC/USDT", "15m"),
|
||||||
|
]
|
||||||
|
"""
|
||||||
|
return []
|
||||||
|
|
||||||
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Adds several different TA indicators to the given DataFrame
|
||||||
|
|
||||||
|
Performance Note: For the best performance be frugal on the number of indicators
|
||||||
|
you are using. Let uncomment only the indicator you are using in your strategies
|
||||||
|
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Stoch
|
||||||
|
stoch = ta.STOCH(dataframe)
|
||||||
|
dataframe['slowk'] = stoch['slowk']
|
||||||
|
|
||||||
|
# RSI
|
||||||
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||||||
|
|
||||||
|
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||||
|
rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||||
|
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
||||||
|
|
||||||
|
# Bollinger bands
|
||||||
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||||
|
dataframe['bb_lowerband'] = bollinger['lower']
|
||||||
|
|
||||||
|
# SAR Parabol
|
||||||
|
dataframe['sar'] = ta.SAR(dataframe)
|
||||||
|
|
||||||
|
# Hammer: values [0, 100]
|
||||||
|
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Based on TA indicators, populates the buy signal for the given dataframe
|
||||||
|
:param dataframe: DataFrame
|
||||||
|
:return: DataFrame with buy column
|
||||||
|
"""
|
||||||
|
dataframe.loc[
|
||||||
|
(
|
||||||
|
(dataframe['rsi'] < 30) &
|
||||||
|
(dataframe['slowk'] < 20) &
|
||||||
|
(dataframe['bb_lowerband'] > dataframe['close']) &
|
||||||
|
(dataframe['CDLHAMMER'] == 100)
|
||||||
|
),
|
||||||
|
'buy'] = 1
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Based on TA indicators, populates the sell signal for the given dataframe
|
||||||
|
:param dataframe: DataFrame
|
||||||
|
:return: DataFrame with buy column
|
||||||
|
"""
|
||||||
|
dataframe.loc[
|
||||||
|
(
|
||||||
|
(dataframe['sar'] > dataframe['close']) &
|
||||||
|
(dataframe['fisher_rsi'] > 0.3)
|
||||||
|
),
|
||||||
|
'sell'] = 1
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
||||||
|
time_in_force: str, current_time: datetime, **kwargs) -> bool:
|
||||||
|
"""
|
||||||
|
Called right before placing a buy order.
|
||||||
|
Timing for this function is critical, so avoid doing heavy computations or
|
||||||
|
network requests in this method.
|
||||||
|
|
||||||
|
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||||
|
|
||||||
|
When not implemented by a strategy, returns True (always confirming).
|
||||||
|
|
||||||
|
:param pair: Pair that's about to be bought.
|
||||||
|
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||||
|
:param amount: Amount in target (quote) currency that's going to be traded.
|
||||||
|
:param rate: Rate that's going to be used when using limit orders
|
||||||
|
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||||
|
:param current_time: datetime object, containing the current datetime
|
||||||
|
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||||
|
:return bool: When True is returned, then the buy-order is placed on the exchange.
|
||||||
|
False aborts the process
|
||||||
|
"""
|
||||||
|
self.executor.start_signal()
|
||||||
|
return True
|
152
config_examples/Strategy003.py
Normal file
152
config_examples/Strategy003.py
Normal file
@ -0,0 +1,152 @@
|
|||||||
|
|
||||||
|
# --- Do not remove these libs ---
|
||||||
|
from freqtrade.strategy.interface import IStrategy
|
||||||
|
from typing import Dict, List
|
||||||
|
from functools import reduce
|
||||||
|
from pandas import DataFrame
|
||||||
|
# --------------------------------
|
||||||
|
|
||||||
|
import talib.abstract as ta
|
||||||
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
|
import numpy # noqa
|
||||||
|
|
||||||
|
|
||||||
|
class Strategy003(IStrategy):
|
||||||
|
"""
|
||||||
|
Strategy 003
|
||||||
|
author@: Gerald Lonlas
|
||||||
|
github@: https://github.com/freqtrade/freqtrade-strategies
|
||||||
|
|
||||||
|
How to use it?
|
||||||
|
> python3 ./freqtrade/main.py -s Strategy003
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Minimal ROI designed for the strategy.
|
||||||
|
# This attribute will be overridden if the config file contains "minimal_roi"
|
||||||
|
minimal_roi = {
|
||||||
|
"60": 0.01,
|
||||||
|
"30": 0.03,
|
||||||
|
"20": 0.04,
|
||||||
|
"0": 0.05
|
||||||
|
}
|
||||||
|
|
||||||
|
# Optimal stoploss designed for the strategy
|
||||||
|
# This attribute will be overridden if the config file contains "stoploss"
|
||||||
|
stoploss = -0.10
|
||||||
|
|
||||||
|
# Optimal timeframe for the strategy
|
||||||
|
timeframe = '5m'
|
||||||
|
|
||||||
|
# trailing stoploss
|
||||||
|
trailing_stop = False
|
||||||
|
trailing_stop_positive = 0.01
|
||||||
|
trailing_stop_positive_offset = 0.02
|
||||||
|
|
||||||
|
# run "populate_indicators" only for new candle
|
||||||
|
process_only_new_candles = False
|
||||||
|
|
||||||
|
# Experimental settings (configuration will overide these if set)
|
||||||
|
use_sell_signal = True
|
||||||
|
sell_profit_only = True
|
||||||
|
ignore_roi_if_buy_signal = False
|
||||||
|
|
||||||
|
# Optional order type mapping
|
||||||
|
order_types = {
|
||||||
|
'buy': 'limit',
|
||||||
|
'sell': 'limit',
|
||||||
|
'stoploss': 'market',
|
||||||
|
'stoploss_on_exchange': False
|
||||||
|
}
|
||||||
|
|
||||||
|
def informative_pairs(self):
|
||||||
|
"""
|
||||||
|
Define additional, informative pair/interval combinations to be cached from the exchange.
|
||||||
|
These pair/interval combinations are non-tradeable, unless they are part
|
||||||
|
of the whitelist as well.
|
||||||
|
For more information, please consult the documentation
|
||||||
|
:return: List of tuples in the format (pair, interval)
|
||||||
|
Sample: return [("ETH/USDT", "5m"),
|
||||||
|
("BTC/USDT", "15m"),
|
||||||
|
]
|
||||||
|
"""
|
||||||
|
return []
|
||||||
|
|
||||||
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Adds several different TA indicators to the given DataFrame
|
||||||
|
|
||||||
|
Performance Note: For the best performance be frugal on the number of indicators
|
||||||
|
you are using. Let uncomment only the indicator you are using in your strategies
|
||||||
|
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# MFI
|
||||||
|
dataframe['mfi'] = ta.MFI(dataframe)
|
||||||
|
|
||||||
|
# Stoch fast
|
||||||
|
stoch_fast = ta.STOCHF(dataframe)
|
||||||
|
dataframe['fastd'] = stoch_fast['fastd']
|
||||||
|
dataframe['fastk'] = stoch_fast['fastk']
|
||||||
|
|
||||||
|
# RSI
|
||||||
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||||||
|
|
||||||
|
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||||
|
rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||||
|
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
||||||
|
|
||||||
|
# Bollinger bands
|
||||||
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||||
|
dataframe['bb_lowerband'] = bollinger['lower']
|
||||||
|
|
||||||
|
# EMA - Exponential Moving Average
|
||||||
|
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||||||
|
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||||
|
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
||||||
|
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
||||||
|
|
||||||
|
# SAR Parabol
|
||||||
|
dataframe['sar'] = ta.SAR(dataframe)
|
||||||
|
|
||||||
|
# SMA - Simple Moving Average
|
||||||
|
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Based on TA indicators, populates the buy signal for the given dataframe
|
||||||
|
:param dataframe: DataFrame
|
||||||
|
:return: DataFrame with buy column
|
||||||
|
"""
|
||||||
|
dataframe.loc[
|
||||||
|
(
|
||||||
|
(dataframe['rsi'] < 28) &
|
||||||
|
(dataframe['rsi'] > 0) &
|
||||||
|
(dataframe['close'] < dataframe['sma']) &
|
||||||
|
(dataframe['fisher_rsi'] < -0.94) &
|
||||||
|
(dataframe['mfi'] < 16.0) &
|
||||||
|
(
|
||||||
|
(dataframe['ema50'] > dataframe['ema100']) |
|
||||||
|
(qtpylib.crossed_above(dataframe['ema5'], dataframe['ema10']))
|
||||||
|
) &
|
||||||
|
(dataframe['fastd'] > dataframe['fastk']) &
|
||||||
|
(dataframe['fastd'] > 0)
|
||||||
|
),
|
||||||
|
'buy'] = 1
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Based on TA indicators, populates the sell signal for the given dataframe
|
||||||
|
:param dataframe: DataFrame
|
||||||
|
:return: DataFrame with buy column
|
||||||
|
"""
|
||||||
|
dataframe.loc[
|
||||||
|
(
|
||||||
|
(dataframe['sar'] > dataframe['close']) &
|
||||||
|
(dataframe['fisher_rsi'] > 0.3)
|
||||||
|
),
|
||||||
|
'sell'] = 1
|
||||||
|
return dataframe
|
83
config_examples/config_json
Normal file
83
config_examples/config_json
Normal file
@ -0,0 +1,83 @@
|
|||||||
|
{
|
||||||
|
"max_open_trades": 1,
|
||||||
|
"stake_currency": "USDT",
|
||||||
|
"stake_amount": 50,
|
||||||
|
"tradable_balance_ratio": 0.99,
|
||||||
|
"fiat_display_currency": "USD",
|
||||||
|
"dry_run": true,
|
||||||
|
"cancel_open_orders_on_exit": false,
|
||||||
|
"unfilledtimeout": {
|
||||||
|
"buy": 10,
|
||||||
|
"sell": 30,
|
||||||
|
"unit": "minutes"
|
||||||
|
},
|
||||||
|
"bid_strategy": {
|
||||||
|
"price_side": "bid",
|
||||||
|
"ask_last_balance": 0.0,
|
||||||
|
"use_order_book": true,
|
||||||
|
"order_book_top": 1,
|
||||||
|
"check_depth_of_market": {
|
||||||
|
"enabled": false,
|
||||||
|
"bids_to_ask_delta": 1
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"ask_strategy": {
|
||||||
|
"price_side": "ask",
|
||||||
|
"use_order_book": true,
|
||||||
|
"order_book_top": 1
|
||||||
|
},
|
||||||
|
"exchange": {
|
||||||
|
"name": "binance",
|
||||||
|
"key": "r7jNtIb7EWp8VR0Y9wyONEboIDYJ1P6LtY7ywpIH3knxDXQDukeAPTLMztlP2OGB",
|
||||||
|
"secret": "qdtxxwCA5USIb1F3086C3a0RlTqoRSX8pzxWqjmTDF8ap5v6CKLNn2GlbukiADHJ",
|
||||||
|
"ccxt_config": {},
|
||||||
|
"ccxt_async_config": {},
|
||||||
|
"pair_whitelist": [
|
||||||
|
"SOL/USDT"
|
||||||
|
],
|
||||||
|
"pair_blacklist": [
|
||||||
|
"BNB/.*"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"pairlists": [
|
||||||
|
{
|
||||||
|
"method": "StaticPairList"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"edge": {
|
||||||
|
"enabled": false,
|
||||||
|
"process_throttle_secs": 3600,
|
||||||
|
"calculate_since_number_of_days": 7,
|
||||||
|
"allowed_risk": 0.01,
|
||||||
|
"stoploss_range_min": -0.01,
|
||||||
|
"stoploss_range_max": -0.1,
|
||||||
|
"stoploss_range_step": -0.01,
|
||||||
|
"minimum_winrate": 0.60,
|
||||||
|
"minimum_expectancy": 0.20,
|
||||||
|
"min_trade_number": 10,
|
||||||
|
"max_trade_duration_minute": 1440,
|
||||||
|
"remove_pumps": false
|
||||||
|
},
|
||||||
|
"telegram": {
|
||||||
|
"enabled": true,
|
||||||
|
"token": "2123575847:AAHGr3YpgIm3K-atU1qxhEj3ZNjTsiIj2GQ",
|
||||||
|
"chat_id": "2091515934"
|
||||||
|
},
|
||||||
|
"api_server": {
|
||||||
|
"enabled": false,
|
||||||
|
"listen_ip_address": "127.0.0.1",
|
||||||
|
"listen_port": 8080,
|
||||||
|
"verbosity": "error",
|
||||||
|
"enable_openapi": false,
|
||||||
|
"jwt_secret_key": "85c2f16af43e3f710301a69b497ea7bfdbc2639cc3af3b3e22257f7e7e56c161",
|
||||||
|
"CORS_origins": [],
|
||||||
|
"username": "",
|
||||||
|
"password": ""
|
||||||
|
},
|
||||||
|
"bot_name": "freqtrade",
|
||||||
|
"initial_state": "running",
|
||||||
|
"forcebuy_enable": false,
|
||||||
|
"internals": {
|
||||||
|
"process_throttle_secs": 5
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user