Merge pull request #2719 from xmatthias/data_handler

Introduce Data handler
This commit is contained in:
hroff-1902 2020-02-19 21:22:08 +03:00 committed by GitHub
commit f2f2c281c0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
27 changed files with 1282 additions and 522 deletions

View File

@ -129,5 +129,7 @@
"heartbeat_interval": 60
},
"strategy": "DefaultStrategy",
"strategy_path": "user_data/strategies/"
"strategy_path": "user_data/strategies/",
"dataformat_ohlcv": "json",
"dataformat_trades": "jsongz"
}

View File

@ -111,6 +111,8 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> **Datatype:** Boolean
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `user_data_dir` | Directory containing user data. <br> *Defaults to `./user_data/`*. <br> **Datatype:** String
| `dataformat_ohlcv` | Data format to use to store OHLCV historic data. <br> *Defaults to `json`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store trades historic data. <br> *Defaults to `jsongz`*. <br> **Datatype:** String
### Parameters in the strategy

View File

@ -12,6 +12,152 @@ Otherwise `--exchange` becomes mandatory.
If you already have backtesting data available in your data-directory and would like to refresh this data up to today, use `--days xx` with a number slightly higher than the missing number of days. Freqtrade will keep the available data and only download the missing data.
Be carefull though: If the number is too small (which would result in a few missing days), the whole dataset will be removed and only xx days will be downloaded.
### Usage
```
usage: freqtrade download-data [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [-p PAIRS [PAIRS ...]]
[--pairs-file FILE] [--days INT] [--dl-trades] [--exchange EXCHANGE]
[-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]]
[--erase] [--data-format-ohlcv {json,jsongz}] [--data-format-trades {json,jsongz}]
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space-separated.
--pairs-file FILE File containing a list of pairs to download.
--days INT Download data for given number of days.
--dl-trades Download trades instead of OHLCV data. The bot will resample trades to the desired timeframe as specified as
--timeframes/-t.
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no config is provided.
-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...], --timeframes {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]
Specify which tickers to download. Space-separated list. Default: `1m 5m`.
--erase Clean all existing data for the selected exchange/pairs/timeframes.
--data-format-ohlcv {json,jsongz}
Storage format for downloaded ohlcv data. (default: `json`).
--data-format-trades {json,jsongz}
Storage format for downloaded trades data. (default: `jsongz`).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are: 'syslog', 'journald'. See the documentation for more details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to `-`
to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
### Data format
Freqtrade currently supports 2 dataformats, `json` (plain "text" json files) and `jsongz` (a gzipped version of json files).
By default, OHLCV data is stored as `json` data, while trades data is stored as `jsongz` data.
This can be changed via the `--data-format-ohlcv` and `--data-format-trades` parameters respectivly.
If the default dataformat has been changed during download, then the keys `dataformat_ohlcv` and `dataformat_trades` in the configuration file need to be adjusted to the selected dataformat as well.
!!! Note
You can convert between data-formats using the [convert-data](#subcommand-convert-data) and [convert-trade-data](#subcommand-convert-trade-data) methods.
#### Subcommand convert data
```
usage: freqtrade convert-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[-p PAIRS [PAIRS ...]] --format-from
{json,jsongz} --format-to {json,jsongz}
[--erase]
[-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]]
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space-
separated.
--format-from {json,jsongz}
Source format for data conversion.
--format-to {json,jsongz}
Destination format for data conversion.
--erase Clean all existing data for the selected
exchange/pairs/timeframes.
-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...], --timeframes {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]
Specify which tickers to download. Space-separated
list. Default: `1m 5m`.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
##### Example converting data
The following command will convert all ohlcv (candle) data available in `~/.freqtrade/data/binance` from json to jsongz, saving diskspace in the process.
It'll also remove original json data files (`--erase` parameter).
``` bash
freqtrade convert-data --format-from json --format-to jsongz --data-dir ~/.freqtrade/data/binance -t 5m 15m --erase
```
#### Subcommand convert-trade data
```
usage: freqtrade convert-trade-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[-p PAIRS [PAIRS ...]] --format-from
{json,jsongz} --format-to {json,jsongz}
[--erase]
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space-
separated.
--format-from {json,jsongz}
Source format for data conversion.
--format-to {json,jsongz}
Destination format for data conversion.
--erase Clean all existing data for the selected
exchange/pairs/timeframes.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
##### Example converting trades
The following command will convert all available trade-data in `~/.freqtrade/data/kraken` from jsongz to json.
It'll also remove original jsongz data files (`--erase` parameter).
``` bash
freqtrade convert-trade-data --format-from jsongz --format-to json --data-dir ~/.freqtrade/data/kraken --erase
```
### Pairs file
In alternative to the whitelist from `config.json`, a `pairs.json` file can be used.

View File

@ -8,7 +8,8 @@ Note: Be careful with file-scoped imports in these subfiles.
"""
from freqtrade.commands.arguments import Arguments
from freqtrade.commands.build_config_commands import start_new_config
from freqtrade.commands.data_commands import start_download_data
from freqtrade.commands.data_commands import (start_convert_data,
start_download_data)
from freqtrade.commands.deploy_commands import (start_create_userdir,
start_new_hyperopt,
start_new_strategy)

View File

@ -51,8 +51,11 @@ ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt", "template"]
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase"]
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange",
"timeframes", "erase"]
"timeframes", "erase", "dataformat_ohlcv", "dataformat_trades"]
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
"db_url", "trade_source", "export", "exportfilename",
@ -71,8 +74,9 @@ ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperopt_show_index",
"print_json", "hyperopt_show_no_header"]
NO_CONF_REQURIED = ["download-data", "list-timeframes", "list-markets", "list-pairs",
"list-strategies", "list-hyperopts", "hyperopt-list", "hyperopt-show",
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies",
"list-hyperopts", "hyperopt-list", "hyperopt-show",
"plot-dataframe", "plot-profit"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-hyperopt", "new-strategy"]
@ -151,7 +155,8 @@ class Arguments:
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
self._build_args(optionlist=['version'], parser=self.parser)
from freqtrade.commands import (start_create_userdir, start_download_data,
from freqtrade.commands import (start_create_userdir, start_convert_data,
start_download_data,
start_hyperopt_list, start_hyperopt_show,
start_list_exchanges, start_list_hyperopts,
start_list_markets, start_list_strategies,
@ -288,6 +293,24 @@ class Arguments:
download_data_cmd.set_defaults(func=start_download_data)
self._build_args(optionlist=ARGS_DOWNLOAD_DATA, parser=download_data_cmd)
# Add convert-data subcommand
convert_data_cmd = subparsers.add_parser(
'convert-data',
help='Convert OHLCV data from one format to another.',
parents=[_common_parser],
)
convert_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=True))
self._build_args(optionlist=ARGS_CONVERT_DATA_OHLCV, parser=convert_data_cmd)
# Add convert-trade-data subcommand
convert_trade_data_cmd = subparsers.add_parser(
'convert-trade-data',
help='Convert trade-data from one format to another.',
parents=[_common_parser],
)
convert_trade_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=False))
self._build_args(optionlist=ARGS_CONVERT_DATA, parser=convert_trade_data_cmd)
# Add Plotting subcommand
plot_dataframe_cmd = subparsers.add_parser(
'plot-dataframe',

View File

@ -333,6 +333,30 @@ AVAILABLE_CLI_OPTIONS = {
'desired timeframe as specified as --timeframes/-t.',
action='store_true',
),
"format_from": Arg(
'--format-from',
help='Source format for data conversion.',
choices=constants.AVAILABLE_DATAHANDLERS,
required=True,
),
"format_to": Arg(
'--format-to',
help='Destination format for data conversion.',
choices=constants.AVAILABLE_DATAHANDLERS,
required=True,
),
"dataformat_ohlcv": Arg(
'--data-format-ohlcv',
help='Storage format for downloaded ohlcv data. (default: `%(default)s`).',
choices=constants.AVAILABLE_DATAHANDLERS,
default='json'
),
"dataformat_trades": Arg(
'--data-format-trades',
help='Storage format for downloaded trades data. (default: `%(default)s`).',
choices=constants.AVAILABLE_DATAHANDLERS,
default='jsongz'
),
"exchange": Arg(
'--exchange',
help=f'Exchange name (default: `{constants.DEFAULT_EXCHANGE}`). '

View File

@ -5,6 +5,8 @@ from typing import Any, Dict, List
import arrow
from freqtrade.configuration import TimeRange, setup_utils_configuration
from freqtrade.data.converter import (convert_ohlcv_format,
convert_trades_format)
from freqtrade.data.history import (convert_trades_to_ohlcv,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data)
@ -48,18 +50,21 @@ def start_download_data(args: Dict[str, Any]) -> None:
if config.get('download_trades'):
pairs_not_available = refresh_backtest_trades_data(
exchange, pairs=config["pairs"], datadir=config['datadir'],
timerange=timerange, erase=bool(config.get("erase")))
timerange=timerange, erase=bool(config.get("erase")),
data_format=config['dataformat_trades'])
# Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv(
pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange,
erase=bool(config.get("erase")))
datadir=config['datadir'], timerange=timerange, erase=bool(config.get("erase")),
data_format_ohlcv=config['dataformat_ohlcv'],
data_format_trades=config['dataformat_trades'],
)
else:
pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange,
erase=bool(config.get("erase")))
datadir=config['datadir'], timerange=timerange, erase=bool(config.get("erase")),
data_format=config['dataformat_ohlcv'])
except KeyboardInterrupt:
sys.exit("SIGINT received, aborting ...")
@ -68,3 +73,18 @@ def start_download_data(args: Dict[str, Any]) -> None:
if pairs_not_available:
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {exchange.name}.")
def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
"""
Convert data from one format to another
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if ohlcv:
convert_ohlcv_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
erase=args['erase'])
else:
convert_trades_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
erase=args['erase'])

View File

@ -364,9 +364,16 @@ class Configuration:
self._args_to_config(config, argname='days',
logstring='Detected --days: {}')
self._args_to_config(config, argname='download_trades',
logstring='Detected --dl-trades: {}')
self._args_to_config(config, argname='dataformat_ohlcv',
logstring='Using "{}" to store OHLCV data.')
self._args_to_config(config, argname='dataformat_trades',
logstring='Using "{}" to store trades data.')
def _process_runmode(self, config: Dict[str, Any]) -> None:
if not self.runmode:

View File

@ -19,8 +19,10 @@ ORDERTYPE_POSSIBILITIES = ['limit', 'market']
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
'PrecisionFilter', 'PriceFilter', 'SpreadFilter']
AVAILABLE_DATAHANDLERS = ['json', 'jsongz']
DRY_RUN_WALLET = 1000
MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons
DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
USERPATH_HYPEROPTS = 'hyperopts'
USERPATH_STRATEGIES = 'strategies'
@ -217,11 +219,22 @@ CONF_SCHEMA = {
'forcebuy_enable': {'type': 'boolean'},
'internals': {
'type': 'object',
'default': {},
'properties': {
'process_throttle_secs': {'type': 'integer'},
'interval': {'type': 'integer'},
'sd_notify': {'type': 'boolean'},
}
},
'dataformat_ohlcv': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'json'
},
'dataformat_trades': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'jsongz'
}
},
'definitions': {
@ -292,9 +305,14 @@ SCHEMA_TRADE_REQUIRED = [
'unfilledtimeout',
'stoploss',
'minimal_roi',
'internals',
'dataformat_ohlcv',
'dataformat_trades',
]
SCHEMA_MINIMAL_REQUIRED = [
'exchange',
'dry_run',
'dataformat_ohlcv',
'dataformat_trades',
]

View File

@ -2,10 +2,13 @@
Functions to convert data from one format to another
"""
import logging
from datetime import datetime, timezone
from typing import Any, Dict
import pandas as pd
from pandas import DataFrame, to_datetime
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
logger = logging.getLogger(__name__)
@ -24,7 +27,7 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
:return: DataFrame
"""
logger.debug("Parsing tickerlist to dataframe")
cols = ['date', 'open', 'high', 'low', 'close', 'volume']
cols = DEFAULT_DATAFRAME_COLUMNS
frame = DataFrame(ticker, columns=cols)
frame['date'] = to_datetime(frame['date'],
@ -37,9 +40,29 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
# and fail with exception...
frame = frame.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
'volume': 'float'})
return clean_ohlcv_dataframe(frame, timeframe, pair,
fill_missing=fill_missing,
drop_incomplete=drop_incomplete)
def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
"""
Clense a ohlcv dataframe by
* Grouping it by date (removes duplicate tics)
* dropping last candles if requested
* Filling up missing data (if requested)
:param data: DataFrame containing ohlcv data.
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details)
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
# group by index and aggregate results to eliminate duplicate ticks
frame = frame.groupby(by='date', as_index=False, sort=True).agg({
data = data.groupby(by='date', as_index=False, sort=True).agg({
'open': 'first',
'high': 'max',
'low': 'min',
@ -48,13 +71,13 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
})
# eliminate partial candle
if drop_incomplete:
frame.drop(frame.tail(1).index, inplace=True)
data.drop(data.tail(1).index, inplace=True)
logger.debug('Dropping last candle')
if fill_missing:
return ohlcv_fill_up_missing_data(frame, timeframe, pair)
return ohlcv_fill_up_missing_data(data, timeframe, pair)
else:
return frame
return data
def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) -> DataFrame:
@ -92,8 +115,26 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
return df
def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date') -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param: df_date_col: Column in the dataframe to use as Date column
:return: trimmed dataframe
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
return df
def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
"""
TODO: This should get a dedicated test
Gets order book list, returns dataframe with below format per suggested by creslin
-------------------------------------------------------------------
b_sum b_size bids asks a_size a_sum
@ -116,12 +157,13 @@ def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
return frame
def trades_to_ohlcv(trades: list, timeframe: str) -> list:
def trades_to_ohlcv(trades: list, timeframe: str) -> DataFrame:
"""
Converts trades list to ohlcv list
TODO: This should get a dedicated test
:param trades: List of trades, as returned by ccxt.fetch_trades.
:param timeframe: Ticker timeframe to resample data to
:return: ohlcv timeframe as list (as returned by ccxt.fetch_ohlcv)
:return: ohlcv Dataframe.
"""
from freqtrade.exchange import timeframe_to_minutes
ticker_minutes = timeframe_to_minutes(timeframe)
@ -131,8 +173,68 @@ def trades_to_ohlcv(trades: list, timeframe: str) -> list:
df_new = df['price'].resample(f'{ticker_minutes}min').ohlc()
df_new['volume'] = df['amount'].resample(f'{ticker_minutes}min').sum()
df_new['date'] = df_new.index.astype("int64") // 10 ** 6
df_new['date'] = df_new.index
# Drop 0 volume rows
df_new = df_new.dropna()
columns = ["date", "open", "high", "low", "close", "volume"]
return list(zip(*[df_new[x].values.tolist() for x in columns]))
return df_new[DEFAULT_DATAFRAME_COLUMNS]
def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert trades from one format to another format.
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
if 'pairs' not in config:
config['pairs'] = src.trades_get_pairs(config['datadir'])
logger.info(f"Converting trades for {config['pairs']}")
for pair in config['pairs']:
data = src.trades_load(pair=pair)
logger.info(f"Converting {len(data)} trades for {pair}")
trg.trades_store(pair, data)
if erase and convert_from != convert_to:
logger.info(f"Deleting source Trade data for {pair}.")
src.trades_purge(pair=pair)
def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert ohlcv from one format to another format.
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
timeframes = config.get('timeframes', [config.get('ticker_interval')])
logger.info(f"Converting OHLCV for timeframe {timeframes}")
if 'pairs' not in config:
config['pairs'] = []
# Check timeframes or fall back to ticker_interval.
for timeframe in timeframes:
config['pairs'].extend(src.ohlcv_get_pairs(config['datadir'],
timeframe))
logger.info(f"Converting OHLCV for {config['pairs']}")
for timeframe in timeframes:
for pair in config['pairs']:
data = src.ohlcv_load(pair=pair, timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=False,
startup_candles=0)
logger.info(f"Converting {len(data)} candles for {pair}")
trg.ohlcv_store(pair=pair, timeframe=timeframe, data=data)
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe)

View File

@ -0,0 +1,14 @@
"""
Handle historic data (ohlcv).
Includes:
* load data for a pair (or a list of pairs) from disk
* download data from exchange and store to disk
"""
from .history_utils import (convert_trades_to_ohlcv, # noqa: F401
get_timerange, load_data, load_pair_history,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data, refresh_data,
validate_backtest_data)
from .idatahandler import get_datahandler # noqa: F401

View File

@ -1,138 +1,31 @@
"""
Handle historic data (ohlcv).
Includes:
* load data for a pair (or a list of pairs) from disk
* download data from exchange and store to disk
"""
import logging
import operator
from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple
import arrow
from pandas import DataFrame
from freqtrade import misc
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
from freqtrade.data.converter import parse_ticker_dataframe, trades_to_ohlcv
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (Exchange, timeframe_to_minutes,
timeframe_to_seconds)
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
def trim_tickerlist(tickerlist: List[Dict], timerange: TimeRange) -> List[Dict]:
"""
Trim tickerlist based on given timerange
"""
if not tickerlist:
return tickerlist
start_index = 0
stop_index = len(tickerlist)
if timerange.starttype == 'date':
while (start_index < len(tickerlist) and
tickerlist[start_index][0] < timerange.startts * 1000):
start_index += 1
if timerange.stoptype == 'date':
while (stop_index > 0 and
tickerlist[stop_index-1][0] > timerange.stopts * 1000):
stop_index -= 1
if start_index > stop_index:
raise ValueError(f'The timerange [{timerange.startts},{timerange.stopts}] is incorrect')
return tickerlist[start_index:stop_index]
def trim_dataframe(df: DataFrame, timerange: TimeRange, df_date_col: str = 'date') -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param: df_date_col: Column in the dataframe to use as Date column
:return: trimmed dataframe
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
return df
def load_tickerdata_file(datadir: Path, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
:return: tickerlist or None if unsuccessful
"""
filename = pair_data_filename(datadir, pair, timeframe)
pairdata = misc.file_load_json(filename)
if not pairdata:
return []
if timerange:
pairdata = trim_tickerlist(pairdata, timerange)
return pairdata
def store_tickerdata_file(datadir: Path, pair: str,
timeframe: str, data: list, is_zip: bool = False) -> None:
"""
Stores tickerdata to file
"""
filename = pair_data_filename(datadir, pair, timeframe)
misc.file_dump_json(filename, data, is_zip=is_zip)
def load_trades_file(datadir: Path, pair: str,
timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
:return: tradelist or empty list if unsuccesful
"""
filename = pair_trades_filename(datadir, pair)
tradesdata = misc.file_load_json(filename)
if not tradesdata:
return []
return tradesdata
def store_trades_file(datadir: Path, pair: str,
data: list, is_zip: bool = True) -> None:
"""
Stores tickerdata to file
"""
filename = pair_trades_filename(datadir, pair)
misc.file_dump_json(filename, data, is_zip=is_zip)
def _validate_pairdata(pair: str, pairdata: List[Dict], timerange: TimeRange) -> None:
if timerange.starttype == 'date' and pairdata[0][0] > timerange.startts * 1000:
logger.warning('Missing data at start for pair %s, data starts at %s',
pair, arrow.get(pairdata[0][0] // 1000).strftime('%Y-%m-%d %H:%M:%S'))
if timerange.stoptype == 'date' and pairdata[-1][0] < timerange.stopts * 1000:
logger.warning('Missing data at end for pair %s, data ends at %s',
pair, arrow.get(pairdata[-1][0] // 1000).strftime('%Y-%m-%d %H:%M:%S'))
def load_pair_history(pair: str,
timeframe: str,
datadir: Path,
datadir: Path, *,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
drop_incomplete: bool = True,
startup_candles: int = 0,
data_format: str = None,
data_handler: IDataHandler = None,
) -> DataFrame:
"""
Load cached ticker history for the given pair.
@ -140,39 +33,34 @@ def load_pair_history(pair: str,
:param pair: Pair to load data for
:param timeframe: Ticker timeframe (e.g. "5m")
:param datadir: Path to the data storage location.
:param data_format: Format of the data. Ignored if data_handler is set.
:param timerange: Limit data to be loaded to this timerange
:param fill_up_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete.
:param startup_candles: Additional candles to load at the start of the period
:param data_handler: Initialized data-handler to use.
Will be initialized from data_format if not set
:return: DataFrame with ohlcv data, or empty DataFrame
"""
timerange_startup = deepcopy(timerange)
if startup_candles > 0 and timerange_startup:
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
data_handler = get_datahandler(datadir, data_format, data_handler)
pairdata = load_tickerdata_file(datadir, pair, timeframe, timerange=timerange_startup)
if pairdata:
if timerange_startup:
_validate_pairdata(pair, pairdata, timerange_startup)
return parse_ticker_dataframe(pairdata, timeframe, pair=pair,
return data_handler.ohlcv_load(pair=pair,
timeframe=timeframe,
timerange=timerange,
fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete)
else:
logger.warning(
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data'
drop_incomplete=drop_incomplete,
startup_candles=startup_candles,
)
return DataFrame()
def load_data(datadir: Path,
timeframe: str,
pairs: List[str],
pairs: List[str], *,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
startup_candles: int = 0,
fail_without_data: bool = False
fail_without_data: bool = False,
data_format: str = 'json',
) -> Dict[str, DataFrame]:
"""
Load ticker history data for a list of pairs.
@ -184,17 +72,22 @@ def load_data(datadir: Path,
:param fill_up_missing: Fill missing values with "No action"-candles
:param startup_candles: Additional candles to load at the start of the period
:param fail_without_data: Raise OperationalException if no data is found.
:param data_format: Data format which should be used. Defaults to json
:return: dict(<pair>:<Dataframe>)
"""
result: Dict[str, DataFrame] = {}
if startup_candles > 0 and timerange:
logger.info(f'Using indicator startup period: {startup_candles} ...')
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
hist = load_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange,
fill_up_missing=fill_up_missing,
startup_candles=startup_candles)
startup_candles=startup_candles,
data_handler=data_handler
)
if not hist.empty:
result[pair] = hist
@ -207,6 +100,7 @@ def refresh_data(datadir: Path,
timeframe: str,
pairs: List[str],
exchange: Exchange,
data_format: str = None,
timerange: Optional[TimeRange] = None,
) -> None:
"""
@ -218,70 +112,50 @@ def refresh_data(datadir: Path,
:param exchange: Exchange object
:param timerange: Limit data to be loaded to this timerange
"""
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
_download_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange,
exchange=exchange)
exchange=exchange, data_handler=data_handler)
def pair_data_filename(datadir: Path, pair: str, timeframe: str) -> Path:
pair_s = pair.replace("/", "_")
filename = datadir.joinpath(f'{pair_s}-{timeframe}.json')
return filename
def pair_trades_filename(datadir: Path, pair: str) -> Path:
pair_s = pair.replace("/", "_")
filename = datadir.joinpath(f'{pair_s}-trades.json.gz')
return filename
def _load_cached_data_for_updating(datadir: Path, pair: str, timeframe: str,
timerange: Optional[TimeRange]) -> Tuple[List[Any],
Optional[int]]:
def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optional[TimeRange],
data_handler: IDataHandler) -> Tuple[DataFrame, Optional[int]]:
"""
Load cached data to download more data.
If timerange is passed in, checks whether data from an before the stored data will be
downloaded.
If that's the case then what's available should be completely overwritten.
Only used by download_pair_history().
Otherwise downloads always start at the end of the available data to avoid data gaps.
Note: Only used by download_pair_history().
"""
since_ms = None
# user sets timerange, so find the start time
start = None
if timerange:
if timerange.starttype == 'date':
since_ms = timerange.startts * 1000
elif timerange.stoptype == 'line':
num_minutes = timerange.stopts * timeframe_to_minutes(timeframe)
since_ms = arrow.utcnow().shift(minutes=num_minutes).timestamp * 1000
# TODO: convert to date for conversion
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
# read the cached file
# Intentionally don't pass timerange in - since we need to load the full dataset.
data = load_tickerdata_file(datadir, pair, timeframe)
# remove the last item, could be incomplete candle
if data:
data.pop()
else:
data = []
if data:
if since_ms and since_ms < data[0][0]:
data = data_handler.ohlcv_load(pair, timeframe=timeframe,
timerange=None, fill_missing=False,
drop_incomplete=True, warn_no_data=False)
if not data.empty:
if start and start < data.iloc[0]['date']:
# Earlier data than existing data requested, redownload all
data = []
data = DataFrame(columns=DEFAULT_DATAFRAME_COLUMNS)
else:
# a part of the data was already downloaded, so download unexist data only
since_ms = data[-1][0] + 1
start = data.iloc[-1]['date']
return (data, since_ms)
start_ms = int(start.timestamp() * 1000) if start else None
return data, start_ms
def _download_pair_history(datadir: Path,
exchange: Exchange,
pair: str,
pair: str, *,
timeframe: str = '5m',
timerange: Optional[TimeRange] = None) -> bool:
timerange: Optional[TimeRange] = None,
data_handler: IDataHandler = None) -> bool:
"""
Download latest candles from the exchange for the pair and timeframe passed in parameters
The data is downloaded starting from the last correct data that
@ -295,16 +169,22 @@ def _download_pair_history(datadir: Path,
:param timerange: range of time to download
:return: bool with success state
"""
data_handler = get_datahandler(datadir, data_handler=data_handler)
try:
logger.info(
f'Download history data for pair: "{pair}", timeframe: {timeframe} '
f'and store in {datadir}.'
)
data, since_ms = _load_cached_data_for_updating(datadir, pair, timeframe, timerange)
# data, since_ms = _load_cached_data_for_updating_old(datadir, pair, timeframe, timerange)
data, since_ms = _load_cached_data_for_updating(pair, timeframe, timerange,
data_handler=data_handler)
logger.debug("Current Start: %s", misc.format_ms_time(data[1][0]) if data else 'None')
logger.debug("Current End: %s", misc.format_ms_time(data[-1][0]) if data else 'None')
logger.debug("Current Start: %s",
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
logger.debug("Current End: %s",
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
# Default since_ms to 30 days if nothing is given
new_data = exchange.get_historic_ohlcv(pair=pair,
@ -313,12 +193,20 @@ def _download_pair_history(datadir: Path,
int(arrow.utcnow().shift(
days=-30).float_timestamp) * 1000
)
data.extend(new_data)
# TODO: Maybe move parsing to exchange class (?)
new_dataframe = parse_ticker_dataframe(new_data, timeframe, pair,
fill_missing=False, drop_incomplete=True)
if data.empty:
data = new_dataframe
else:
data = data.append(new_dataframe)
logger.debug("New Start: %s", misc.format_ms_time(data[0][0]))
logger.debug("New End: %s", misc.format_ms_time(data[-1][0]))
logger.debug("New Start: %s",
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
logger.debug("New End: %s",
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
store_tickerdata_file(datadir, pair, timeframe, data=data)
data_handler.ohlcv_store(pair, timeframe, data=data)
return True
except Exception as e:
@ -331,13 +219,14 @@ def _download_pair_history(datadir: Path,
def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str],
datadir: Path, timerange: Optional[TimeRange] = None,
erase: bool = False) -> List[str]:
erase: bool = False, data_format: str = None) -> List[str]:
"""
Refresh stored ohlcv data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand.
:return: List of pairs that are not available.
"""
pairs_not_available = []
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
if pair not in exchange.markets:
pairs_not_available.append(pair)
@ -345,23 +234,23 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
continue
for timeframe in timeframes:
dl_file = pair_data_filename(datadir, pair, timeframe)
if erase and dl_file.exists():
if erase:
if data_handler.ohlcv_purge(pair, timeframe):
logger.info(
f'Deleting existing data for pair {pair}, interval {timeframe}.')
dl_file.unlink()
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
_download_pair_history(datadir=datadir, exchange=exchange,
pair=pair, timeframe=str(timeframe),
timerange=timerange)
timerange=timerange, data_handler=data_handler)
return pairs_not_available
def _download_trades_history(datadir: Path,
exchange: Exchange,
pair: str,
timerange: Optional[TimeRange] = None) -> bool:
def _download_trades_history(exchange: Exchange,
pair: str, *,
timerange: Optional[TimeRange] = None,
data_handler: IDataHandler
) -> bool:
"""
Download trade history from the exchange.
Appends to previously downloaded trades data.
@ -370,7 +259,7 @@ def _download_trades_history(datadir: Path,
since = timerange.startts * 1000 if timerange and timerange.starttype == 'date' else None
trades = load_trades_file(datadir, pair)
trades = data_handler.trades_load(pair)
from_id = trades[-1]['id'] if trades else None
@ -385,7 +274,7 @@ def _download_trades_history(datadir: Path,
from_id=from_id,
)
trades.extend(new_trades[1])
store_trades_file(datadir, pair, trades)
data_handler.trades_store(pair, data=trades)
logger.debug("New Start: %s", trades[0]['datetime'])
logger.debug("New End: %s", trades[-1]['datetime'])
@ -401,47 +290,52 @@ def _download_trades_history(datadir: Path,
def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path,
timerange: TimeRange, erase: bool = False) -> List[str]:
timerange: TimeRange, erase: bool = False,
data_format: str = 'jsongz') -> List[str]:
"""
Refresh stored trades data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand.
:return: List of pairs that are not available.
"""
pairs_not_available = []
data_handler = get_datahandler(datadir, data_format=data_format)
for pair in pairs:
if pair not in exchange.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
dl_file = pair_trades_filename(datadir, pair)
if erase and dl_file.exists():
logger.info(
f'Deleting existing data for pair {pair}.')
dl_file.unlink()
if erase:
if data_handler.trades_purge(pair):
logger.info(f'Deleting existing data for pair {pair}.')
logger.info(f'Downloading trades for pair {pair}.')
_download_trades_history(datadir=datadir, exchange=exchange,
_download_trades_history(exchange=exchange,
pair=pair,
timerange=timerange)
timerange=timerange,
data_handler=data_handler)
return pairs_not_available
def convert_trades_to_ohlcv(pairs: List[str], timeframes: List[str],
datadir: Path, timerange: TimeRange, erase: bool = False) -> None:
datadir: Path, timerange: TimeRange, erase: bool = False,
data_format_ohlcv: str = 'json',
data_format_trades: str = 'jsongz') -> None:
"""
Convert stored trades data to ohlcv data
"""
data_handler_trades = get_datahandler(datadir, data_format=data_format_trades)
data_handler_ohlcv = get_datahandler(datadir, data_format=data_format_ohlcv)
for pair in pairs:
trades = load_trades_file(datadir, pair)
trades = data_handler_trades.trades_load(pair)
for timeframe in timeframes:
ohlcv_file = pair_data_filename(datadir, pair, timeframe)
if erase and ohlcv_file.exists():
if erase:
if data_handler_ohlcv.ohlcv_purge(pair, timeframe):
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
ohlcv_file.unlink()
ohlcv = trades_to_ohlcv(trades, timeframe)
# Store ohlcv
store_tickerdata_file(datadir, pair, timeframe, data=ohlcv)
data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv)
def get_timerange(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:

View File

@ -0,0 +1,220 @@
"""
Abstract datahandler interface.
It's subclasses handle and storing data from disk.
"""
import logging
from abc import ABC, abstractclassmethod, abstractmethod
from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path
from typing import Dict, List, Optional, Type
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.data.converter import clean_ohlcv_dataframe, trim_dataframe
from freqtrade.exchange import timeframe_to_seconds
logger = logging.getLogger(__name__)
class IDataHandler(ABC):
def __init__(self, datadir: Path) -> None:
self._datadir = datadir
@abstractclassmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
:return: List of Pairs
"""
@abstractmethod
def ohlcv_store(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Store data in json format "values".
format looks as follows:
[[<date>,<open>,<high>,<low>,<close>]]
:param pair: Pair - used to generate filename
:timeframe: Timeframe - used to generate filename
:data: Dataframe containing OHLCV data
:return: None
"""
@abstractmethod
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None,
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
:return: DataFrame with ohlcv data, or empty DataFrame
"""
@abstractmethod
def ohlcv_purge(self, pair: str, timeframe: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Ticker timeframe (e.g. "5m")
:return: True when deleted, false if file did not exist.
"""
@abstractmethod
def ohlcv_append(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
"""
@abstractclassmethod
def trades_get_pairs(cls, datadir: Path) -> List[str]:
"""
Returns a list of all pairs for which trade data is available in this
:param datadir: Directory to search for ohlcv files
:return: List of Pairs
"""
@abstractmethod
def trades_store(self, pair: str, data: List[Dict]) -> None:
"""
Store trades data (list of Dicts) to file
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
@abstractmethod
def trades_append(self, pair: str, data: List[Dict]):
"""
Append data to existing files
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
@abstractmethod
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
:param pair: Load trades for this pair
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
@abstractmethod
def trades_purge(self, pair: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:return: True when deleted, false if file did not exist.
"""
def ohlcv_load(self, pair, timeframe: str,
timerange: Optional[TimeRange] = None,
fill_missing: bool = True,
drop_incomplete: bool = True,
startup_candles: int = 0,
warn_no_data: bool = True
) -> DataFrame:
"""
Load cached ticker history for the given pair.
:param pair: Pair to load data for
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange
:param fill_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete.
:param startup_candles: Additional candles to load at the start of the period
:param warn_no_data: Log a warning message when no data is found
:return: DataFrame with ohlcv data, or empty DataFrame
"""
# Fix startup period
timerange_startup = deepcopy(timerange)
if startup_candles > 0 and timerange_startup:
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
pairdf = self._ohlcv_load(pair, timeframe,
timerange=timerange_startup)
if pairdf.empty:
if warn_no_data:
logger.warning(
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data'
)
return pairdf
else:
enddate = pairdf.iloc[-1]['date']
if timerange_startup:
self._validate_pairdata(pair, pairdf, timerange_startup)
pairdf = trim_dataframe(pairdf, timerange_startup)
# incomplete candles should only be dropped if we didn't trim the end beforehand.
return clean_ohlcv_dataframe(pairdf, timeframe,
pair=pair,
fill_missing=fill_missing,
drop_incomplete=(drop_incomplete and
enddate == pairdf.iloc[-1]['date']))
def _validate_pairdata(self, pair, pairdata: DataFrame, timerange: TimeRange):
"""
Validates pairdata for missing data at start end end and logs warnings.
:param pairdata: Dataframe to validate
:param timerange: Timerange specified for start and end dates
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
if pairdata.iloc[0]['date'] > start:
logger.warning(f"Missing data at start for pair {pair}, "
f"data starts at {pairdata.iloc[0]['date']:%Y-%m-%d %H:%M:%S}")
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
if pairdata.iloc[-1]['date'] < stop:
logger.warning(f"Missing data at end for pair {pair}, "
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")
def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
"""
Get datahandler class.
Could be done using Resolvers, but since this may be called often and resolvers
are rather expensive, doing this directly should improve performance.
:param datatype: datatype to use.
:return: Datahandler class
"""
if datatype == 'json':
from .jsondatahandler import JsonDataHandler
return JsonDataHandler
elif datatype == 'jsongz':
from .jsondatahandler import JsonGzDataHandler
return JsonGzDataHandler
else:
raise ValueError(f"No datahandler for datatype {datatype} available.")
def get_datahandler(datadir: Path, data_format: str = None,
data_handler: IDataHandler = None) -> IDataHandler:
"""
:param datadir: Folder to save data
:data_format: dataformat to use
:data_handler: returns this datahandler if it exists or initializes a new one
"""
if not data_handler:
HandlerClass = get_datahandlerclass(data_format or 'json')
data_handler = HandlerClass(datadir)
return data_handler

View File

@ -0,0 +1,177 @@
import re
from pathlib import Path
from typing import Dict, List, Optional
import numpy as np
from pandas import DataFrame, read_json, to_datetime
from freqtrade import misc
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
from .idatahandler import IDataHandler
class JsonDataHandler(IDataHandler):
_use_zip = False
_columns = DEFAULT_DATAFRAME_COLUMNS
@classmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
:return: List of Pairs
"""
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + '.json)', p.name)
for p in datadir.glob(f"*{timeframe}.{cls._get_file_extension()}")]
# Check if regex found something and only return these results
return [match[0].replace('_', '/') for match in _tmp if match]
def ohlcv_store(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Store data in json format "values".
format looks as follows:
[[<date>,<open>,<high>,<low>,<close>]]
:param pair: Pair - used to generate filename
:timeframe: Timeframe - used to generate filename
:data: Dataframe containing OHLCV data
:return: None
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
_data = data.copy()
# Convert date to int
_data['date'] = _data['date'].astype(np.int64) // 1000 // 1000
# Reset index, select only appropriate columns and save as json
_data.reset_index(drop=True).loc[:, self._columns].to_json(
filename, orient="values",
compression='gzip' if self._use_zip else None)
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None,
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
:return: DataFrame with ohlcv data, or empty DataFrame
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
if not filename.exists():
return DataFrame(columns=self._columns)
pairdata = read_json(filename, orient='values')
pairdata.columns = self._columns
pairdata['date'] = to_datetime(pairdata['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
return pairdata
def ohlcv_purge(self, pair: str, timeframe: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Ticker timeframe (e.g. "5m")
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
if filename.exists():
filename.unlink()
return True
return False
def ohlcv_append(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
"""
raise NotImplementedError()
@classmethod
def trades_get_pairs(cls, datadir: Path) -> List[str]:
"""
Returns a list of all pairs for which trade data is available in this
:param datadir: Directory to search for ohlcv files
:return: List of Pairs
"""
_tmp = [re.search(r'^(\S+)(?=\-trades.json)', p.name)
for p in datadir.glob(f"*trades.{cls._get_file_extension()}")]
# Check if regex found something and only return these results to avoid exceptions.
return [match[0].replace('_', '/') for match in _tmp if match]
def trades_store(self, pair: str, data: List[Dict]) -> None:
"""
Store trades data (list of Dicts) to file
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
filename = self._pair_trades_filename(self._datadir, pair)
misc.file_dump_json(filename, data, is_zip=self._use_zip)
def trades_append(self, pair: str, data: List[Dict]):
"""
Append data to existing files
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
raise NotImplementedError()
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
# TODO: respect timerange ...
:param pair: Load trades for this pair
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
filename = self._pair_trades_filename(self._datadir, pair)
tradesdata = misc.file_load_json(filename)
if not tradesdata:
return []
return tradesdata
def trades_purge(self, pair: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_trades_filename(self._datadir, pair)
if filename.exists():
filename.unlink()
return True
return False
@classmethod
def _pair_data_filename(cls, datadir: Path, pair: str, timeframe: str) -> Path:
pair_s = misc.pair_to_filename(pair)
filename = datadir.joinpath(f'{pair_s}-{timeframe}.{cls._get_file_extension()}')
return filename
@classmethod
def _get_file_extension(cls):
return "json.gz" if cls._use_zip else "json"
@classmethod
def _pair_trades_filename(cls, datadir: Path, pair: str) -> Path:
pair_s = misc.pair_to_filename(pair)
filename = datadir.joinpath(f'{pair_s}-trades.{cls._get_file_extension()}')
return filename
class JsonGzDataHandler(JsonDataHandler):
_use_zip = True

View File

@ -110,6 +110,7 @@ class Edge:
timeframe=self.strategy.ticker_interval,
timerange=self._timerange,
startup_candles=self.strategy.startup_candle_count,
data_format=self.config.get('dataformat_ohlcv', 'json'),
)
if not data:

View File

@ -48,14 +48,16 @@ def file_dump_json(filename: Path, data: Any, is_zip: bool = False) -> None:
:param data: JSON Data to save
:return:
"""
logger.info(f'dumping json to "{filename}"')
if is_zip:
if filename.suffix != '.gz':
filename = filename.with_suffix('.gz')
logger.info(f'dumping json to "{filename}"')
with gzip.open(filename, 'w') as fp:
rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE)
else:
logger.info(f'dumping json to "{filename}"')
with open(filename, 'w') as fp:
rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE)
@ -91,6 +93,12 @@ def file_load_json(file):
return pairdata
def pair_to_filename(pair: str) -> str:
for ch in ['/', '-', ' ', '.', '@', '$', '+', ':']:
pair = pair.replace(ch, '_')
return pair
def format_ms_time(date: int) -> str:
"""
convert MS date to readable format.

View File

@ -15,6 +15,7 @@ from pandas import DataFrame
from freqtrade.configuration import (TimeRange, remove_credentials,
validate_config_consistency)
from freqtrade.data import history
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
@ -118,6 +119,7 @@ class Backtesting:
timerange=timerange,
startup_candles=self.required_startup,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
)
min_date, max_date = history.get_timerange(data)
@ -397,7 +399,7 @@ class Backtesting:
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
preprocessed[pair] = history.trim_dataframe(df, timerange)
preprocessed[pair] = trim_dataframe(df, timerange)
min_date, max_date = history.get_timerange(preprocessed)
logger.info(

View File

@ -22,7 +22,8 @@ from joblib import (Parallel, cpu_count, delayed, dump, load,
wrap_non_picklable_objects)
from pandas import DataFrame
from freqtrade.data.history import get_timerange, trim_dataframe
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.history import get_timerange
from freqtrade.exceptions import OperationalException
from freqtrade.misc import plural, round_dict
from freqtrade.optimize.backtesting import Backtesting

View File

@ -3,11 +3,14 @@ from pathlib import Path
from typing import Any, Dict, List
import pandas as pd
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import (combine_tickers_with_mean,
create_cum_profit,
extract_trades_of_period, load_trades)
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.history import load_data
from freqtrade.misc import pair_to_filename
from freqtrade.resolvers import StrategyResolver
logger = logging.getLogger(__name__)
@ -36,18 +39,19 @@ def init_plotscript(config):
# Set timerange to use
timerange = TimeRange.parse_timerange(config.get("timerange"))
tickers = history.load_data(
tickers = load_data(
datadir=config.get("datadir"),
pairs=pairs,
timeframe=config.get('ticker_interval', '5m'),
timerange=timerange,
data_format=config.get('dataformat_ohlcv', 'json'),
)
trades = load_trades(config['trade_source'],
db_url=config.get('db_url'),
exportfilename=config.get('exportfilename'),
)
trades = history.trim_dataframe(trades, timerange, 'open_time')
trades = trim_dataframe(trades, timerange, 'open_time')
return {"tickers": tickers,
"trades": trades,
"pairs": pairs,
@ -374,8 +378,8 @@ def generate_plot_filename(pair: str, timeframe: str) -> str:
"""
Generate filenames per pair/timeframe to be used for storing plots
"""
pair_name = pair.replace("/", "_")
file_name = 'freqtrade-plot-' + pair_name + '-' + timeframe + '.html'
pair_s = pair_to_filename(pair)
file_name = 'freqtrade-plot-' + pair_s + '-' + timeframe + '.html'
logger.info('Generate plot file for %s', pair)

View File

@ -439,7 +439,7 @@ class IStrategy(ABC):
else:
return current_profit > roi
def tickerdata_to_dataframe(self, tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
def tickerdata_to_dataframe(self, tickerdata: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
"""
Creates a dataframe and populates indicators for given ticker data
Used by optimize operations only, not during dry / live runs.

View File

@ -4,11 +4,11 @@ from unittest.mock import MagicMock, PropertyMock
import pytest
from freqtrade.commands import (start_create_userdir, start_download_data,
start_hyperopt_list, start_hyperopt_show,
start_list_exchanges, start_list_markets,
start_list_hyperopts, start_list_strategies,
start_list_timeframes,
from freqtrade.commands import (start_convert_data, start_create_userdir,
start_download_data, start_hyperopt_list,
start_hyperopt_show, start_list_exchanges,
start_list_hyperopts, start_list_markets,
start_list_strategies, start_list_timeframes,
start_new_hyperopt, start_new_strategy,
start_test_pairlist, start_trading)
from freqtrade.configuration import setup_utils_configuration
@ -973,3 +973,47 @@ def test_hyperopt_show(mocker, capsys, hyperopt_results):
with pytest.raises(OperationalException,
match="The index of the epoch to show should be less than 4."):
start_hyperopt_show(pargs)
def test_convert_data(mocker, testdatadir):
ohlcv_mock = mocker.patch("freqtrade.commands.data_commands.convert_ohlcv_format")
trades_mock = mocker.patch("freqtrade.commands.data_commands.convert_trades_format")
args = [
"convert-data",
"--format-from",
"json",
"--format-to",
"jsongz",
"--datadir",
str(testdatadir),
]
pargs = get_args(args)
pargs['config'] = None
start_convert_data(pargs, True)
assert trades_mock.call_count == 0
assert ohlcv_mock.call_count == 1
assert ohlcv_mock.call_args[1]['convert_from'] == 'json'
assert ohlcv_mock.call_args[1]['convert_to'] == 'jsongz'
assert ohlcv_mock.call_args[1]['erase'] is False
def test_convert_data_trades(mocker, testdatadir):
ohlcv_mock = mocker.patch("freqtrade.commands.data_commands.convert_ohlcv_format")
trades_mock = mocker.patch("freqtrade.commands.data_commands.convert_trades_format")
args = [
"convert-trade-data",
"--format-from",
"jsongz",
"--format-to",
"json",
"--datadir",
str(testdatadir),
]
pargs = get_args(args)
pargs['config'] = None
start_convert_data(pargs, False)
assert ohlcv_mock.call_count == 0
assert trades_mock.call_count == 1
assert trades_mock.call_args[1]['convert_from'] == 'jsongz'
assert trades_mock.call_args[1]['convert_to'] == 'json'
assert trades_mock.call_args[1]['erase'] is False

View File

@ -1,9 +1,15 @@
# pragma pylint: disable=missing-docstring, C0103
import logging
from freqtrade.data.converter import parse_ticker_dataframe, ohlcv_fill_up_missing_data
from freqtrade.data.history import load_pair_history, validate_backtest_data, get_timerange
from freqtrade.configuration.timerange import TimeRange
from freqtrade.data.converter import (convert_ohlcv_format,
convert_trades_format,
ohlcv_fill_up_missing_data,
parse_ticker_dataframe, trim_dataframe)
from freqtrade.data.history import (get_timerange, load_data,
load_pair_history, validate_backtest_data)
from tests.conftest import log_has
from tests.data.test_history import _backup_file, _clean_test_file
def test_dataframe_correct_columns(result):
@ -145,3 +151,113 @@ def test_ohlcv_drop_incomplete(caplog):
assert len(data) == 3
assert log_has("Dropping last candle", caplog)
def test_trim_dataframe(testdatadir) -> None:
data = load_data(
datadir=testdatadir,
timeframe='1m',
pairs=['UNITTEST/BTC']
)['UNITTEST/BTC']
min_date = int(data.iloc[0]['date'].timestamp())
max_date = int(data.iloc[-1]['date'].timestamp())
data_modify = data.copy()
# Remove first 30 minutes (1800 s)
tr = TimeRange('date', None, min_date + 1800, 0)
data_modify = trim_dataframe(data_modify, tr)
assert not data_modify.equals(data)
assert len(data_modify) < len(data)
assert len(data_modify) == len(data) - 30
assert all(data_modify.iloc[-1] == data.iloc[-1])
assert all(data_modify.iloc[0] == data.iloc[30])
data_modify = data.copy()
# Remove last 30 minutes (1800 s)
tr = TimeRange(None, 'date', 0, max_date - 1800)
data_modify = trim_dataframe(data_modify, tr)
assert not data_modify.equals(data)
assert len(data_modify) < len(data)
assert len(data_modify) == len(data) - 30
assert all(data_modify.iloc[0] == data.iloc[0])
assert all(data_modify.iloc[-1] == data.iloc[-31])
data_modify = data.copy()
# Remove first 25 and last 30 minutes (1800 s)
tr = TimeRange('date', 'date', min_date + 1500, max_date - 1800)
data_modify = trim_dataframe(data_modify, tr)
assert not data_modify.equals(data)
assert len(data_modify) < len(data)
assert len(data_modify) == len(data) - 55
# first row matches 25th original row
assert all(data_modify.iloc[0] == data.iloc[25])
def test_convert_trades_format(mocker, default_conf, testdatadir):
file = testdatadir / "XRP_ETH-trades.json.gz"
file_new = testdatadir / "XRP_ETH-trades.json"
_backup_file(file, copy_file=True)
default_conf['datadir'] = testdatadir
assert not file_new.exists()
convert_trades_format(default_conf, convert_from='jsongz',
convert_to='json', erase=False)
assert file_new.exists()
assert file.exists()
# Remove original file
file.unlink()
# Convert back
convert_trades_format(default_conf, convert_from='json',
convert_to='jsongz', erase=True)
assert file.exists()
assert not file_new.exists()
_clean_test_file(file)
if file_new.exists():
file_new.unlink()
def test_convert_ohlcv_format(mocker, default_conf, testdatadir):
file1 = testdatadir / "XRP_ETH-5m.json"
file1_new = testdatadir / "XRP_ETH-5m.json.gz"
file2 = testdatadir / "XRP_ETH-1m.json"
file2_new = testdatadir / "XRP_ETH-1m.json.gz"
_backup_file(file1, copy_file=True)
_backup_file(file2, copy_file=True)
default_conf['datadir'] = testdatadir
default_conf['pairs'] = ['XRP_ETH']
default_conf['timeframes'] = ['1m', '5m']
assert not file1_new.exists()
assert not file2_new.exists()
convert_ohlcv_format(default_conf, convert_from='json',
convert_to='jsongz', erase=False)
assert file1_new.exists()
assert file2_new.exists()
assert file1.exists()
assert file2.exists()
# Remove original files
file1.unlink()
file2.unlink()
# Convert back
convert_ohlcv_format(default_conf, convert_from='jsongz',
convert_to='json', erase=True)
assert file1.exists()
assert file2.exists()
assert not file1_new.exists()
assert not file2_new.exists()
_clean_test_file(file1)
_clean_test_file(file2)
if file1_new.exists():
file1_new.unlink()
if file2_new.exists():
file2_new.unlink()

View File

@ -7,21 +7,21 @@ from shutil import copyfile
from unittest.mock import MagicMock, PropertyMock
import arrow
import pytest
from pandas import DataFrame
from pandas.testing import assert_frame_equal
from freqtrade.configuration import TimeRange
from freqtrade.data.history import (_download_pair_history,
_download_trades_history,
_load_cached_data_for_updating,
convert_trades_to_ohlcv, get_timerange,
load_data, load_pair_history,
load_tickerdata_file, pair_data_filename,
pair_trades_filename,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data,
refresh_data,
trim_dataframe, trim_tickerlist,
validate_backtest_data)
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.history.history_utils import (
_download_pair_history, _download_trades_history,
_load_cached_data_for_updating, convert_trades_to_ohlcv, get_timerange,
load_data, load_pair_history, refresh_backtest_ohlcv_data,
refresh_backtest_trades_data, refresh_data, validate_backtest_data)
from freqtrade.data.history.idatahandler import (IDataHandler, get_datahandler,
get_datahandlerclass)
from freqtrade.data.history.jsondatahandler import (JsonDataHandler,
JsonGzDataHandler)
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.misc import file_dump_json
from freqtrade.resolvers import StrategyResolver
@ -96,8 +96,9 @@ def test_load_data_1min_ticker(ticker_history, mocker, caplog, testdatadir) -> N
def test_load_data_startup_candles(mocker, caplog, default_conf, testdatadir) -> None:
ltfmock = mocker.patch('freqtrade.data.history.load_tickerdata_file',
MagicMock(return_value=None))
ltfmock = mocker.patch(
'freqtrade.data.history.jsondatahandler.JsonDataHandler._ohlcv_load',
MagicMock(return_value=DataFrame()))
timerange = TimeRange('date', None, 1510639620, 0)
load_pair_history(pair='UNITTEST/BTC', timeframe='1m',
datadir=testdatadir, timerange=timerange,
@ -143,27 +144,52 @@ def test_testdata_path(testdatadir) -> None:
assert str(Path('tests') / 'testdata') in str(testdatadir)
def test_pair_data_filename():
fn = pair_data_filename(Path('freqtrade/hello/world'), 'ETH/BTC', '5m')
@pytest.mark.parametrize("pair,expected_result", [
("ETH/BTC", 'freqtrade/hello/world/ETH_BTC-5m.json'),
("Fabric Token/ETH", 'freqtrade/hello/world/Fabric_Token_ETH-5m.json'),
("ETHH20", 'freqtrade/hello/world/ETHH20-5m.json'),
(".XBTBON2H", 'freqtrade/hello/world/_XBTBON2H-5m.json'),
("ETHUSD.d", 'freqtrade/hello/world/ETHUSD_d-5m.json'),
("ACC_OLD/BTC", 'freqtrade/hello/world/ACC_OLD_BTC-5m.json'),
])
def test_json_pair_data_filename(pair, expected_result):
fn = JsonDataHandler._pair_data_filename(Path('freqtrade/hello/world'), pair, '5m')
assert isinstance(fn, Path)
assert fn == Path('freqtrade/hello/world/ETH_BTC-5m.json')
def test_pair_trades_filename():
fn = pair_trades_filename(Path('freqtrade/hello/world'), 'ETH/BTC')
assert fn == Path(expected_result)
fn = JsonGzDataHandler._pair_data_filename(Path('freqtrade/hello/world'), pair, '5m')
assert isinstance(fn, Path)
assert fn == Path('freqtrade/hello/world/ETH_BTC-trades.json.gz')
assert fn == Path(expected_result + '.gz')
def test_load_cached_data_for_updating(mocker) -> None:
datadir = Path(__file__).parent.parent.joinpath('testdata')
@pytest.mark.parametrize("pair,expected_result", [
("ETH/BTC", 'freqtrade/hello/world/ETH_BTC-trades.json'),
("Fabric Token/ETH", 'freqtrade/hello/world/Fabric_Token_ETH-trades.json'),
("ETHH20", 'freqtrade/hello/world/ETHH20-trades.json'),
(".XBTBON2H", 'freqtrade/hello/world/_XBTBON2H-trades.json'),
("ETHUSD.d", 'freqtrade/hello/world/ETHUSD_d-trades.json'),
("ACC_OLD_BTC", 'freqtrade/hello/world/ACC_OLD_BTC-trades.json'),
])
def test_json_pair_trades_filename(pair, expected_result):
fn = JsonDataHandler._pair_trades_filename(Path('freqtrade/hello/world'), pair)
assert isinstance(fn, Path)
assert fn == Path(expected_result)
fn = JsonGzDataHandler._pair_trades_filename(Path('freqtrade/hello/world'), pair)
assert isinstance(fn, Path)
assert fn == Path(expected_result + '.gz')
def test_load_cached_data_for_updating(mocker, testdatadir) -> None:
data_handler = get_datahandler(testdatadir, 'json')
test_data = None
test_filename = datadir.joinpath('UNITTEST_BTC-1m.json')
test_filename = testdatadir.joinpath('UNITTEST_BTC-1m.json')
with open(test_filename, "rt") as file:
test_data = json.load(file)
# change now time to test 'line' cases
test_data_df = parse_ticker_dataframe(test_data, '1m', 'UNITTEST/BTC',
fill_missing=False, drop_incomplete=False)
# now = last cached item + 1 hour
now_ts = test_data[-1][0] / 1000 + 60 * 60
mocker.patch('arrow.utcnow', return_value=arrow.get(now_ts))
@ -171,72 +197,36 @@ def test_load_cached_data_for_updating(mocker) -> None:
# timeframe starts earlier than the cached data
# should fully update data
timerange = TimeRange('date', None, test_data[0][0] / 1000 - 1, 0)
data, start_ts = _load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == []
data, start_ts = _load_cached_data_for_updating('UNITTEST/BTC', '1m', timerange, data_handler)
assert data.empty
assert start_ts == test_data[0][0] - 1000
# same with 'line' timeframe
num_lines = (test_data[-1][0] - test_data[1][0]) / 1000 / 60 + 120
data, start_ts = _load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m',
TimeRange(None, 'line', 0, -num_lines))
assert data == []
assert start_ts < test_data[0][0] - 1
# timeframe starts in the center of the cached data
# should return the chached data w/o the last item
timerange = TimeRange('date', None, test_data[0][0] / 1000 + 1, 0)
data, start_ts = _load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
data, start_ts = _load_cached_data_for_updating('UNITTEST/BTC', '1m', timerange, data_handler)
# same with 'line' timeframe
num_lines = (test_data[-1][0] - test_data[1][0]) / 1000 / 60 + 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = _load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
assert_frame_equal(data, test_data_df.iloc[:-1])
assert test_data[-2][0] <= start_ts < test_data[-1][0]
# timeframe starts after the chached data
# should return the chached data w/o the last item
timerange = TimeRange('date', None, test_data[-1][0] / 1000 + 1, 0)
data, start_ts = _load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
# Try loading last 30 lines.
# Not supported by _load_cached_data_for_updating, we always need to get the full data.
num_lines = 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = _load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
# no timeframe is set
# should return the chached data w/o the last item
num_lines = 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = _load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
timerange = TimeRange('date', None, test_data[-1][0] / 1000 + 100, 0)
data, start_ts = _load_cached_data_for_updating('UNITTEST/BTC', '1m', timerange, data_handler)
assert_frame_equal(data, test_data_df.iloc[:-1])
assert test_data[-2][0] <= start_ts < test_data[-1][0]
# no datafile exist
# should return timestamp start time
timerange = TimeRange('date', None, now_ts - 10000, 0)
data, start_ts = _load_cached_data_for_updating(datadir, 'NONEXIST/BTC', '1m', timerange)
assert data == []
data, start_ts = _load_cached_data_for_updating('NONEXIST/BTC', '1m', timerange, data_handler)
assert data.empty
assert start_ts == (now_ts - 10000) * 1000
# same with 'line' timeframe
num_lines = 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = _load_cached_data_for_updating(datadir, 'NONEXIST/BTC', '1m', timerange)
assert data == []
assert start_ts == (now_ts - num_lines * 60) * 1000
# no datafile exist, no timeframe is set
# should return an empty array and None
data, start_ts = _load_cached_data_for_updating(datadir, 'NONEXIST/BTC', '1m', None)
assert data == []
data, start_ts = _load_cached_data_for_updating('NONEXIST/BTC', '1m', None, data_handler)
assert data.empty
assert start_ts is None
@ -293,7 +283,9 @@ def test_download_pair_history2(mocker, default_conf, testdatadir) -> None:
[1509836520000, 0.00162008, 0.00162008, 0.00162008, 0.00162008, 108.14853839],
[1509836580000, 0.00161, 0.00161, 0.00161, 0.00161, 82.390199]
]
json_dump_mock = mocker.patch('freqtrade.misc.file_dump_json', return_value=None)
json_dump_mock = mocker.patch(
'freqtrade.data.history.jsondatahandler.JsonDataHandler.ohlcv_store',
return_value=None)
mocker.patch('freqtrade.exchange.Exchange.get_historic_ohlcv', return_value=tick)
exchange = get_patched_exchange(mocker, default_conf)
_download_pair_history(testdatadir, exchange, pair="UNITTEST/BTC", timeframe='1m')
@ -325,17 +317,6 @@ def test_download_backtesting_data_exception(ticker_history, mocker, caplog,
)
def test_load_tickerdata_file(testdatadir) -> None:
# 7 does not exist in either format.
assert not load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '7m')
# 1 exists only as a .json
tickerdata = load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '1m')
assert _BTC_UNITTEST_LENGTH == len(tickerdata)
# 8 .json is empty and will fail if it's loaded. .json.gz is a copy of 1.json
tickerdata = load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '8m')
assert _BTC_UNITTEST_LENGTH == len(tickerdata)
def test_load_partial_missing(testdatadir, caplog) -> None:
# Make sure we start fresh - test missing data at start
start = arrow.get('2018-01-01T00:00:00')
@ -361,6 +342,7 @@ def test_load_partial_missing(testdatadir, caplog) -> None:
# timedifference in 5 minutes
td = ((end - start).total_seconds() // 60 // 5) + 1
assert td != len(tickerdata['UNITTEST/BTC'])
# Shift endtime with +5 - as last candle is dropped (partial candle)
end_real = arrow.get(tickerdata['UNITTEST/BTC'].iloc[-1, 0]).shift(minutes=5)
assert log_has(f'Missing data at end for pair '
@ -391,98 +373,6 @@ def test_init_with_refresh(default_conf, mocker) -> None:
)
def test_trim_tickerlist(testdatadir) -> None:
file = testdatadir / 'UNITTEST_BTC-1m.json'
with open(file) as data_file:
ticker_list = json.load(data_file)
ticker_list_len = len(ticker_list)
# Test the pattern ^(\d{8})-(\d{8})$
# This pattern extract a window between the dates
timerange = TimeRange('date', 'date', ticker_list[5][0] / 1000, ticker_list[10][0] / 1000 - 1)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_len == 5
assert ticker_list[0] is not ticker[0] # The first element should be different
assert ticker_list[5] is ticker[0] # The list starts at the index 5
assert ticker_list[9] is ticker[-1] # The list ends at the index 9 (5 elements)
# Test the pattern ^-(\d{8})$
# This pattern extracts elements from the start to the date
timerange = TimeRange(None, 'date', 0, ticker_list[10][0] / 1000 - 1)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_len == 10
assert ticker_list[0] is ticker[0] # The start of the list is included
assert ticker_list[9] is ticker[-1] # The element 10 is not included
# Test the pattern ^(\d{8})-$
# This pattern extracts elements from the date to now
timerange = TimeRange('date', None, ticker_list[10][0] / 1000 - 1, 0)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_len == ticker_list_len - 10
assert ticker_list[10] is ticker[0] # The first element is element #10
assert ticker_list[-1] is ticker[-1] # The last element is the same
# Test a wrong pattern
# This pattern must return the list unchanged
timerange = TimeRange(None, None, 0, 5)
ticker = trim_tickerlist(ticker_list, timerange)
ticker_len = len(ticker)
assert ticker_list_len == ticker_len
# passing empty list
timerange = TimeRange(None, None, 0, 5)
ticker = trim_tickerlist([], timerange)
assert 0 == len(ticker)
assert not ticker
def test_trim_dataframe(testdatadir) -> None:
data = load_data(
datadir=testdatadir,
timeframe='1m',
pairs=['UNITTEST/BTC']
)['UNITTEST/BTC']
min_date = int(data.iloc[0]['date'].timestamp())
max_date = int(data.iloc[-1]['date'].timestamp())
data_modify = data.copy()
# Remove first 30 minutes (1800 s)
tr = TimeRange('date', None, min_date + 1800, 0)
data_modify = trim_dataframe(data_modify, tr)
assert not data_modify.equals(data)
assert len(data_modify) < len(data)
assert len(data_modify) == len(data) - 30
assert all(data_modify.iloc[-1] == data.iloc[-1])
assert all(data_modify.iloc[0] == data.iloc[30])
data_modify = data.copy()
# Remove last 30 minutes (1800 s)
tr = TimeRange(None, 'date', 0, max_date - 1800)
data_modify = trim_dataframe(data_modify, tr)
assert not data_modify.equals(data)
assert len(data_modify) < len(data)
assert len(data_modify) == len(data) - 30
assert all(data_modify.iloc[0] == data.iloc[0])
assert all(data_modify.iloc[-1] == data.iloc[-31])
data_modify = data.copy()
# Remove first 25 and last 30 minutes (1800 s)
tr = TimeRange('date', 'date', min_date + 1500, max_date - 1800)
data_modify = trim_dataframe(data_modify, tr)
assert not data_modify.equals(data)
assert len(data_modify) < len(data)
assert len(data_modify) == len(data) - 55
# first row matches 25th original row
assert all(data_modify.iloc[0] == data.iloc[25])
def test_file_dump_json_tofile(testdatadir) -> None:
file = testdatadir / 'test_{id}.json'.format(id=str(uuid.uuid4()))
data = {'bar': 'foo'}
@ -573,7 +463,8 @@ def test_validate_backtest_data(default_conf, mocker, caplog, testdatadir) -> No
def test_refresh_backtest_ohlcv_data(mocker, default_conf, markets, caplog, testdatadir):
dl_mock = mocker.patch('freqtrade.data.history._download_pair_history', MagicMock())
dl_mock = mocker.patch('freqtrade.data.history.history_utils._download_pair_history',
MagicMock())
mocker.patch(
'freqtrade.exchange.Exchange.markets', PropertyMock(return_value=markets)
)
@ -594,7 +485,8 @@ def test_refresh_backtest_ohlcv_data(mocker, default_conf, markets, caplog, test
def test_download_data_no_markets(mocker, default_conf, caplog, testdatadir):
dl_mock = mocker.patch('freqtrade.data.history._download_pair_history', MagicMock())
dl_mock = mocker.patch('freqtrade.data.history.history_utils._download_pair_history',
MagicMock())
ex = get_patched_exchange(mocker, default_conf)
mocker.patch(
@ -614,7 +506,8 @@ def test_download_data_no_markets(mocker, default_conf, caplog, testdatadir):
def test_refresh_backtest_trades_data(mocker, default_conf, markets, caplog, testdatadir):
dl_mock = mocker.patch('freqtrade.data.history._download_trades_history', MagicMock())
dl_mock = mocker.patch('freqtrade.data.history.history_utils._download_trades_history',
MagicMock())
mocker.patch(
'freqtrade.exchange.Exchange.markets', PropertyMock(return_value=markets)
)
@ -644,12 +537,12 @@ def test_download_trades_history(trades_history, mocker, default_conf, testdatad
ght_mock)
exchange = get_patched_exchange(mocker, default_conf)
file1 = testdatadir / 'ETH_BTC-trades.json.gz'
data_handler = get_datahandler(testdatadir, data_format='jsongz')
_backup_file(file1)
assert not file1.is_file()
assert _download_trades_history(datadir=testdatadir, exchange=exchange,
assert _download_trades_history(data_handler=data_handler, exchange=exchange,
pair='ETH/BTC')
assert log_has("New Amount of trades: 5", caplog)
assert file1.is_file()
@ -660,7 +553,7 @@ def test_download_trades_history(trades_history, mocker, default_conf, testdatad
mocker.patch('freqtrade.exchange.Exchange.get_historic_trades',
MagicMock(side_effect=ValueError))
assert not _download_trades_history(datadir=testdatadir, exchange=exchange,
assert not _download_trades_history(data_handler=data_handler, exchange=exchange,
pair='ETH/BTC')
assert log_has_re('Failed to download historic trades for pair: "ETH/BTC".*', caplog)
@ -692,3 +585,73 @@ def test_convert_trades_to_ohlcv(mocker, default_conf, testdatadir, caplog):
_clean_test_file(file1)
_clean_test_file(file5)
def test_jsondatahandler_ohlcv_get_pairs(testdatadir):
pairs = JsonDataHandler.ohlcv_get_pairs(testdatadir, '5m')
# Convert to set to avoid failures due to sorting
assert set(pairs) == {'UNITTEST/BTC', 'XLM/BTC', 'ETH/BTC', 'TRX/BTC', 'LTC/BTC',
'XMR/BTC', 'ZEC/BTC', 'ADA/BTC', 'ETC/BTC', 'NXT/BTC',
'DASH/BTC', 'XRP/ETH'}
pairs = JsonGzDataHandler.ohlcv_get_pairs(testdatadir, '8m')
assert set(pairs) == {'UNITTEST/BTC'}
def test_jsondatahandler_trades_get_pairs(testdatadir):
pairs = JsonGzDataHandler.trades_get_pairs(testdatadir)
# Convert to set to avoid failures due to sorting
assert set(pairs) == {'XRP/ETH'}
def test_jsondatahandler_ohlcv_purge(mocker, testdatadir):
mocker.patch.object(Path, "exists", MagicMock(return_value=False))
mocker.patch.object(Path, "unlink", MagicMock())
dh = JsonGzDataHandler(testdatadir)
assert not dh.ohlcv_purge('UNITTEST/NONEXIST', '5m')
mocker.patch.object(Path, "exists", MagicMock(return_value=True))
assert dh.ohlcv_purge('UNITTEST/NONEXIST', '5m')
def test_jsondatahandler_trades_purge(mocker, testdatadir):
mocker.patch.object(Path, "exists", MagicMock(return_value=False))
mocker.patch.object(Path, "unlink", MagicMock())
dh = JsonGzDataHandler(testdatadir)
assert not dh.trades_purge('UNITTEST/NONEXIST')
mocker.patch.object(Path, "exists", MagicMock(return_value=True))
assert dh.trades_purge('UNITTEST/NONEXIST')
def test_jsondatahandler_ohlcv_append(testdatadir):
dh = JsonGzDataHandler(testdatadir)
with pytest.raises(NotImplementedError):
dh.ohlcv_append('UNITTEST/ETH', '5m', DataFrame())
def test_jsondatahandler_trades_append(testdatadir):
dh = JsonGzDataHandler(testdatadir)
with pytest.raises(NotImplementedError):
dh.trades_append('UNITTEST/ETH', [])
def test_gethandlerclass():
cl = get_datahandlerclass('json')
assert cl == JsonDataHandler
assert issubclass(cl, IDataHandler)
cl = get_datahandlerclass('jsongz')
assert cl == JsonGzDataHandler
assert issubclass(cl, IDataHandler)
assert issubclass(cl, JsonDataHandler)
with pytest.raises(ValueError, match=r"No datahandler for .*"):
get_datahandlerclass('DeadBeef')
def test_get_datahandler(testdatadir):
dh = get_datahandler(testdatadir, 'json')
assert type(dh) == JsonDataHandler
dh = get_datahandler(testdatadir, 'jsongz')
assert type(dh) == JsonGzDataHandler
dh1 = get_datahandler(testdatadir, 'jsongz', dh)
assert id(dh1) == id(dh)

View File

@ -1,6 +1,5 @@
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import math
import random
from pathlib import Path
from unittest.mock import MagicMock
@ -15,7 +14,7 @@ from freqtrade.configuration import TimeRange
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_backtesting
from freqtrade.data import history
from freqtrade.data.btanalysis import evaluate_result_multi
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.converter import clean_ohlcv_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import get_timerange
from freqtrade.exceptions import DependencyException, OperationalException
@ -50,46 +49,32 @@ def trim_dictlist(dict_list, num):
def load_data_test(what, testdatadir):
timerange = TimeRange.parse_timerange('1510694220-1510700340')
pair = history.load_tickerdata_file(testdatadir, timeframe='1m',
pair='UNITTEST/BTC', timerange=timerange)
datalen = len(pair)
data = history.load_pair_history(pair='UNITTEST/BTC', datadir=testdatadir,
timeframe='1m', timerange=timerange,
drop_incomplete=False,
fill_up_missing=False)
base = 0.001
if what == 'raise':
data = [
[
pair[x][0], # Keep old dates
x * base, # But replace O,H,L,C
x * base + 0.0001,
x * base - 0.0001,
x * base,
pair[x][5], # Keep old volume
] for x in range(0, datalen)
]
data.loc[:, 'open'] = data.index * base
data.loc[:, 'high'] = data.index * base + 0.0001
data.loc[:, 'low'] = data.index * base - 0.0001
data.loc[:, 'close'] = data.index * base
if what == 'lower':
data = [
[
pair[x][0], # Keep old dates
1 - x * base, # But replace O,H,L,C
1 - x * base + 0.0001,
1 - x * base - 0.0001,
1 - x * base,
pair[x][5] # Keep old volume
] for x in range(0, datalen)
]
data.loc[:, 'open'] = 1 - data.index * base
data.loc[:, 'high'] = 1 - data.index * base + 0.0001
data.loc[:, 'low'] = 1 - data.index * base - 0.0001
data.loc[:, 'close'] = 1 - data.index * base
if what == 'sine':
hz = 0.1 # frequency
data = [
[
pair[x][0], # Keep old dates
math.sin(x * hz) / 1000 + base, # But replace O,H,L,C
math.sin(x * hz) / 1000 + base + 0.0001,
math.sin(x * hz) / 1000 + base - 0.0001,
math.sin(x * hz) / 1000 + base,
pair[x][5] # Keep old volume
] for x in range(0, datalen)
]
return {'UNITTEST/BTC': parse_ticker_dataframe(data, '1m', pair="UNITTEST/BTC",
data.loc[:, 'open'] = np.sin(data.index * hz) / 1000 + base
data.loc[:, 'high'] = np.sin(data.index * hz) / 1000 + base + 0.0001
data.loc[:, 'low'] = np.sin(data.index * hz) / 1000 + base - 0.0001
data.loc[:, 'close'] = np.sin(data.index * hz) / 1000 + base
return {'UNITTEST/BTC': clean_ohlcv_dataframe(data, timeframe='1m', pair='UNITTEST/BTC',
fill_missing=True)}
@ -114,21 +99,6 @@ def simple_backtest(config, contour, num_results, mocker, testdatadir) -> None:
assert len(results) == num_results
def mocked_load_data(datadir, pairs=[], timeframe='0m',
timerange=None, *args, **kwargs):
tickerdata = history.load_tickerdata_file(datadir, 'UNITTEST/BTC', '1m', timerange=timerange)
pairdata = {'UNITTEST/BTC': parse_ticker_dataframe(tickerdata, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
return pairdata
# use for mock ccxt.fetch_ohlvc'
def _load_pair_as_ticks(pair, tickfreq):
ticks = history.load_tickerdata_file(None, timeframe=tickfreq, pair=pair)
ticks = ticks[-201:]
return ticks
# FIX: fixturize this?
def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC'):
data = history.load_data(datadir=datadir, timeframe='1m', pairs=[pair])
@ -339,12 +309,9 @@ def test_tickerdata_with_fee(default_conf, mocker, testdatadir) -> None:
def test_tickerdata_to_dataframe_bt(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
# timerange = TimeRange(None, 'line', 0, -100)
timerange = TimeRange.parse_timerange('1510694220-1510700340')
tick = history.load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '1m', timerange=timerange)
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
tickerlist = history.load_data(testdatadir, '1m', ['UNITTEST/BTC'], timerange=timerange,
fill_up_missing=True)
backtesting = Backtesting(default_conf)
data = backtesting.strategy.tickerdata_to_dataframe(tickerlist)
assert len(data['UNITTEST/BTC']) == 102
@ -361,7 +328,6 @@ def test_backtesting_start(default_conf, mocker, testdatadir, caplog) -> None:
def get_timerange(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.load_data', mocked_load_data)
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock())
patch_exchange(mocker)
@ -391,7 +357,8 @@ def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) ->
def get_timerange(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.load_pair_history', MagicMock(return_value=pd.DataFrame()))
mocker.patch('freqtrade.data.history.history_utils.load_pair_history',
MagicMock(return_value=pd.DataFrame()))
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock())
patch_exchange(mocker)
@ -695,13 +662,7 @@ def test_backtest_record(default_conf, fee, mocker):
def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir):
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
async def load_pairs(pair, timeframe, since):
return _load_pair_as_ticks(pair, timeframe)
api_mock = MagicMock()
api_mock.fetch_ohlcv = load_pairs
patch_exchange(mocker, api_mock)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.generate_text_table', MagicMock())
@ -741,12 +702,7 @@ def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir):
def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
async def load_pairs(pair, timeframe, since):
return _load_pair_as_ticks(pair, timeframe)
api_mock = MagicMock()
api_mock.fetch_ohlcv = load_pairs
patch_exchange(mocker, api_mock)
patch_exchange(mocker)
backtestmock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
gen_table_mock = MagicMock()

View File

@ -12,8 +12,7 @@ from filelock import Timeout
from freqtrade.commands.optimize_commands import (setup_optimize_configuration,
start_hyperopt)
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.history import load_tickerdata_file
from freqtrade.data.history import load_data
from freqtrade.exceptions import OperationalException
from freqtrade.optimize.default_hyperopt import DefaultHyperOpt
from freqtrade.optimize.default_hyperopt_loss import DefaultHyperOptLoss
@ -577,9 +576,7 @@ def test_has_space(hyperopt, spaces, expected_results):
def test_populate_indicators(hyperopt, testdatadir) -> None:
tick = load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '1m')
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
tickerlist = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True)
dataframes = hyperopt.backtesting.strategy.tickerdata_to_dataframe(tickerlist)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
@ -591,9 +588,7 @@ def test_populate_indicators(hyperopt, testdatadir) -> None:
def test_buy_strategy_generator(hyperopt, testdatadir) -> None:
tick = load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '1m')
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
tickerlist = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True)
dataframes = hyperopt.backtesting.strategy.tickerdata_to_dataframe(tickerlist)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})

View File

@ -7,8 +7,7 @@ import arrow
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.history import load_tickerdata_file
from freqtrade.data.history import load_data
from freqtrade.persistence import Trade
from freqtrade.resolvers import StrategyResolver
from freqtrade.strategy.default_strategy import DefaultStrategy
@ -109,9 +108,8 @@ def test_tickerdata_to_dataframe(default_conf, testdatadir) -> None:
strategy = StrategyResolver.load_strategy(default_conf)
timerange = TimeRange.parse_timerange('1510694220-1510700340')
tick = load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '1m', timerange=timerange)
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
tickerlist = load_data(testdatadir, '1m', ['UNITTEST/BTC'], timerange=timerange,
fill_up_missing=True)
data = strategy.tickerdata_to_dataframe(tickerlist)
assert len(data['UNITTEST/BTC']) == 102 # partial candle was removed

View File

@ -4,10 +4,12 @@ import datetime
from pathlib import Path
from unittest.mock import MagicMock
import pytest
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.history import pair_data_filename
from freqtrade.misc import (datesarray_to_datetimearray, file_dump_json,
file_load_json, format_ms_time, plural, shorten_date)
file_load_json, format_ms_time, pair_to_filename,
plural, shorten_date)
def test_shorten_date() -> None:
@ -48,16 +50,36 @@ def test_file_dump_json(mocker) -> None:
def test_file_load_json(mocker, testdatadir) -> None:
# 7m .json does not exist
ret = file_load_json(pair_data_filename(testdatadir, 'UNITTEST/BTC', '7m'))
ret = file_load_json(testdatadir / 'UNITTEST_BTC-7m.json')
assert not ret
# 1m json exists (but no .gz exists)
ret = file_load_json(pair_data_filename(testdatadir, 'UNITTEST/BTC', '1m'))
ret = file_load_json(testdatadir / 'UNITTEST_BTC-1m.json')
assert ret
# 8 .json is empty and will fail if it's loaded. .json.gz is a copy of 1.json
ret = file_load_json(pair_data_filename(testdatadir, 'UNITTEST/BTC', '8m'))
ret = file_load_json(testdatadir / 'UNITTEST_BTC-8m.json')
assert ret
@pytest.mark.parametrize("pair,expected_result", [
("ETH/BTC", 'ETH_BTC'),
("Fabric Token/ETH", 'Fabric_Token_ETH'),
("ETHH20", 'ETHH20'),
(".XBTBON2H", '_XBTBON2H'),
("ETHUSD.d", 'ETHUSD_d'),
("ADA-0327", 'ADA_0327'),
("BTC-USD-200110", 'BTC_USD_200110'),
("F-AKRO/USDT", 'F_AKRO_USDT'),
("LC+/ETH", 'LC__ETH'),
("CMT@18/ETH", 'CMT_18_ETH'),
("LBTC:1022/SAI", 'LBTC_1022_SAI'),
("$PAC/BTC", '_PAC_BTC'),
("ACC_OLD/BTC", 'ACC_OLD_BTC'),
])
def test_pair_to_filename(pair, expected_result):
pair_s = pair_to_filename(pair)
assert pair_s == expected_result
def test_format_ms_time() -> None:
# Date 2018-04-10 18:02:01
date_in_epoch_ms = 1523383321000