Merge branch 'develop' into pr/samgermain/6558

This commit is contained in:
Matthias
2022-04-23 09:16:28 +02:00
196 changed files with 34421 additions and 5193 deletions

View File

@@ -49,7 +49,8 @@ ARGS_LIST_EXCHANGES = ["print_one_column", "list_exchanges_all"]
ARGS_LIST_TIMEFRAMES = ["exchange", "print_one_column"]
ARGS_LIST_PAIRS = ["exchange", "print_list", "list_pairs_print_json", "print_one_column",
"print_csv", "base_currencies", "quote_currencies", "list_pairs_all"]
"print_csv", "base_currencies", "quote_currencies", "list_pairs_all",
"trading_mode"]
ARGS_TEST_PAIRLIST = ["verbosity", "config", "quote_currencies", "print_one_column",
"list_pairs_print_json", "exchange"]
@@ -61,15 +62,17 @@ ARGS_BUILD_CONFIG = ["config"]
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase"]
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes"]
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes", "exchange", "trading_mode",
"candle_types"]
ARGS_CONVERT_TRADES = ["pairs", "timeframes", "exchange", "dataformat_ohlcv", "dataformat_trades"]
ARGS_LIST_DATA = ["exchange", "dataformat_ohlcv", "pairs"]
ARGS_LIST_DATA = ["exchange", "dataformat_ohlcv", "pairs", "trading_mode"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "new_pairs_days", "include_inactive",
"timerange", "download_trades", "exchange", "timeframes",
"erase", "dataformat_ohlcv", "dataformat_trades"]
"erase", "dataformat_ohlcv", "dataformat_trades", "trading_mode"]
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
"db_url", "trade_source", "export", "exportfilename",

View File

@@ -104,7 +104,7 @@ def ask_user_config() -> Dict[str, Any]:
"type": "select",
"name": "exchange_name",
"message": "Select exchange",
"choices": [
"choices": lambda x: [
"binance",
"binanceus",
"bittrex",
@@ -114,10 +114,18 @@ def ask_user_config() -> Dict[str, Any]:
"kraken",
"kucoin",
"okx",
Separator(),
Separator("------------------"),
"other",
],
},
{
"type": "confirm",
"name": "trading_mode",
"message": "Do you want to trade Perpetual Swaps (perpetual futures)?",
"default": False,
"filter": lambda val: 'futures' if val else 'spot',
"when": lambda x: x["exchange_name"] in ['binance', 'gateio', 'okx'],
},
{
"type": "autocomplete",
"name": "exchange_name",
@@ -194,7 +202,13 @@ def ask_user_config() -> Dict[str, Any]:
if not answers:
# Interrupted questionary sessions return an empty dict.
raise OperationalException("User interrupted interactive questions.")
# Ensure default is set for non-futures exchanges
answers['trading_mode'] = answers.get('trading_mode', "spot")
answers['margin_mode'] = (
'isolated'
if answers.get('trading_mode') == 'futures'
else ''
)
# Force JWT token to be a random string
answers['api_server_jwt_key'] = secrets.token_hex()

View File

@@ -5,6 +5,7 @@ from argparse import SUPPRESS, ArgumentTypeError
from freqtrade import __version__, constants
from freqtrade.constants import HYPEROPT_LOSS_BUILTIN
from freqtrade.enums import CandleType
def check_int_positive(value: str) -> int:
@@ -184,7 +185,6 @@ AVAILABLE_CLI_OPTIONS = {
'--export',
help='Export backtest results (default: trades).',
choices=constants.EXPORT_OPTIONS,
),
"exportfilename": Arg(
"--export-filename",
@@ -361,6 +361,17 @@ AVAILABLE_CLI_OPTIONS = {
nargs='+',
metavar='BASE_CURRENCY',
),
"trading_mode": Arg(
'--trading-mode',
help='Select Trading mode',
choices=constants.TRADING_MODES,
),
"candle_types": Arg(
'--candle-types',
help='Select candle type to use',
choices=[c.value for c in CandleType],
nargs='+',
),
# Script options
"pairs": Arg(
'-p', '--pairs',

View File

@@ -8,7 +8,7 @@ from freqtrade.configuration import TimeRange, setup_utils_configuration
from freqtrade.data.converter import convert_ohlcv_format, convert_trades_format
from freqtrade.data.history import (convert_trades_to_ohlcv, refresh_backtest_ohlcv_data,
refresh_backtest_trades_data)
from freqtrade.enums import RunMode
from freqtrade.enums import CandleType, RunMode, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.exchange.exchange import market_is_active
@@ -64,6 +64,8 @@ def start_download_data(args: Dict[str, Any]) -> None:
try:
if config.get('download_trades'):
if config.get('trading_mode') == 'futures':
raise OperationalException("Trade download not supported for futures.")
pairs_not_available = refresh_backtest_trades_data(
exchange, pairs=expanded_pairs, datadir=config['datadir'],
timerange=timerange, new_pairs_days=config['new_pairs_days'],
@@ -81,7 +83,9 @@ def start_download_data(args: Dict[str, Any]) -> None:
exchange, pairs=expanded_pairs, timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange,
new_pairs_days=config['new_pairs_days'],
erase=bool(config.get('erase')), data_format=config['dataformat_ohlcv'])
erase=bool(config.get('erase')), data_format=config['dataformat_ohlcv'],
trading_mode=config.get('trading_mode', 'spot'),
)
except KeyboardInterrupt:
sys.exit("SIGINT received, aborting ...")
@@ -133,9 +137,11 @@ def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if ohlcv:
convert_ohlcv_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
erase=args['erase'])
candle_types = [CandleType.from_string(ct) for ct in config.get('candle_types', ['spot'])]
for candle_type in candle_types:
convert_ohlcv_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
erase=args['erase'], candle_type=candle_type)
else:
convert_trades_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
@@ -154,17 +160,26 @@ def start_list_data(args: Dict[str, Any]) -> None:
from freqtrade.data.history.idatahandler import get_datahandler
dhc = get_datahandler(config['datadir'], config['dataformat_ohlcv'])
paircombs = dhc.ohlcv_get_available_data(config['datadir'])
paircombs = dhc.ohlcv_get_available_data(
config['datadir'],
config.get('trading_mode', TradingMode.SPOT)
)
if args['pairs']:
paircombs = [comb for comb in paircombs if comb[0] in args['pairs']]
print(f"Found {len(paircombs)} pair / timeframe combinations.")
groupedpair = defaultdict(list)
for pair, timeframe in sorted(paircombs, key=lambda x: (x[0], timeframe_to_minutes(x[1]))):
groupedpair[pair].append(timeframe)
for pair, timeframe, candle_type in sorted(
paircombs,
key=lambda x: (x[0], timeframe_to_minutes(x[1]), x[2])
):
groupedpair[(pair, candle_type)].append(timeframe)
if groupedpair:
print(tabulate([(pair, ', '.join(timeframes)) for pair, timeframes in groupedpair.items()],
headers=("Pair", "Timeframe"),
tablefmt='psql', stralign='right'))
print(tabulate([
(pair, ', '.join(timeframes), candle_type)
for (pair, candle_type), timeframes in groupedpair.items()
],
headers=("Pair", "Timeframe", "Type"),
tablefmt='psql', stralign='right'))

View File

@@ -132,7 +132,7 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
try:
pairs = exchange.get_markets(base_currencies=base_currencies,
quote_currencies=quote_currencies,
pairs_only=pairs_only,
tradable_only=pairs_only,
active_only=active_only)
# Sort the pairs/markets by symbol
pairs = dict(sorted(pairs.items()))
@@ -152,15 +152,19 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
if quote_currencies else ""))
headers = ["Id", "Symbol", "Base", "Quote", "Active",
*(['Is pair'] if not pairs_only else [])]
"Spot", "Margin", "Future", "Leverage"]
tabular_data = []
for _, v in pairs.items():
tabular_data.append({'Id': v['id'], 'Symbol': v['symbol'],
'Base': v['base'], 'Quote': v['quote'],
'Active': market_is_active(v),
**({'Is pair': exchange.market_is_tradable(v)}
if not pairs_only else {})})
tabular_data = [{
'Id': v['id'],
'Symbol': v['symbol'],
'Base': v['base'],
'Quote': v['quote'],
'Active': market_is_active(v),
'Spot': 'Spot' if exchange.market_is_spot(v) else '',
'Margin': 'Margin' if exchange.market_is_margin(v) else '',
'Future': 'Future' if exchange.market_is_future(v) else '',
'Leverage': exchange.get_max_leverage(v['symbol'], 20)
} for _, v in pairs.items()]
if (args.get('print_one_column', False) or
args.get('list_pairs_print_json', False) or

View File

@@ -16,4 +16,4 @@ class PeriodicCache(TTLCache):
return ts - offset
# Init with smlight offset
super().__init__(maxsize=maxsize, ttl=ttl-1e-5, timer=local_timer, getsizeof=getsizeof)
super().__init__(maxsize=maxsize, ttl=ttl - 1e-5, timer=local_timer, getsizeof=getsizeof)

View File

@@ -6,7 +6,8 @@ from jsonschema import Draft4Validator, validators
from jsonschema.exceptions import ValidationError, best_match
from freqtrade import constants
from freqtrade.enums import RunMode
from freqtrade.configuration.deprecated_settings import process_deprecated_setting
from freqtrade.enums import RunMode, TradingMode
from freqtrade.exceptions import OperationalException
@@ -80,6 +81,7 @@ def validate_config_consistency(conf: Dict[str, Any]) -> None:
_validate_protections(conf)
_validate_unlimited_amount(conf)
_validate_ask_orderbook(conf)
validate_migrated_strategy_settings(conf)
# validate configuration before returning
logger.info('Validating configuration ...')
@@ -92,8 +94,8 @@ def _validate_unlimited_amount(conf: Dict[str, Any]) -> None:
:raise: OperationalException if config validation failed
"""
if (not conf.get('edge', {}).get('enabled')
and conf.get('max_open_trades') == float('inf')
and conf.get('stake_amount') == constants.UNLIMITED_STAKE_AMOUNT):
and conf.get('max_open_trades') == float('inf')
and conf.get('stake_amount') == constants.UNLIMITED_STAKE_AMOUNT):
raise OperationalException("`max_open_trades` and `stake_amount` cannot both be unlimited.")
@@ -101,13 +103,15 @@ def _validate_price_config(conf: Dict[str, Any]) -> None:
"""
When using market orders, price sides must be using the "other" side of the price
"""
if (conf.get('order_types', {}).get('buy') == 'market'
and conf.get('bid_strategy', {}).get('price_side') != 'ask'):
raise OperationalException('Market buy orders require bid_strategy.price_side = "ask".')
# TODO: The below could be an enforced setting when using market orders
if (conf.get('order_types', {}).get('entry') == 'market'
and conf.get('entry_pricing', {}).get('price_side') not in ('ask', 'other')):
raise OperationalException(
'Market entry orders require entry_pricing.price_side = "other".')
if (conf.get('order_types', {}).get('sell') == 'market'
and conf.get('ask_strategy', {}).get('price_side') != 'bid'):
raise OperationalException('Market sell orders require ask_strategy.price_side = "bid".')
if (conf.get('order_types', {}).get('exit') == 'market'
and conf.get('exit_pricing', {}).get('price_side') not in ('bid', 'other')):
raise OperationalException('Market exit orders require exit_pricing.price_side = "other".')
def _validate_trailing_stoploss(conf: Dict[str, Any]) -> None:
@@ -150,9 +154,9 @@ def _validate_edge(conf: Dict[str, Any]) -> None:
if not conf.get('edge', {}).get('enabled'):
return
if not conf.get('use_sell_signal', True):
if not conf.get('use_exit_signal', True):
raise OperationalException(
"Edge requires `use_sell_signal` to be True, otherwise no sells will happen."
"Edge requires `use_exit_signal` to be True, otherwise no sells will happen."
)
@@ -190,13 +194,13 @@ def _validate_protections(conf: Dict[str, Any]) -> None:
def _validate_ask_orderbook(conf: Dict[str, Any]) -> None:
ask_strategy = conf.get('ask_strategy', {})
ask_strategy = conf.get('exit_pricing', {})
ob_min = ask_strategy.get('order_book_min')
ob_max = ask_strategy.get('order_book_max')
if ob_min is not None and ob_max is not None and ask_strategy.get('use_order_book'):
if ob_min != ob_max:
raise OperationalException(
"Using order_book_max != order_book_min in ask_strategy is no longer supported."
"Using order_book_max != order_book_min in exit_pricing is no longer supported."
"Please pick one value and use `order_book_top` in the future."
)
else:
@@ -205,5 +209,121 @@ def _validate_ask_orderbook(conf: Dict[str, Any]) -> None:
logger.warning(
"DEPRECATED: "
"Please use `order_book_top` instead of `order_book_min` and `order_book_max` "
"for your `ask_strategy` configuration."
"for your `exit_pricing` configuration."
)
def validate_migrated_strategy_settings(conf: Dict[str, Any]) -> None:
_validate_time_in_force(conf)
_validate_order_types(conf)
_validate_unfilledtimeout(conf)
_validate_pricing_rules(conf)
_strategy_settings(conf)
def _validate_time_in_force(conf: Dict[str, Any]) -> None:
time_in_force = conf.get('order_time_in_force', {})
if 'buy' in time_in_force or 'sell' in time_in_force:
if conf.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
raise OperationalException(
"Please migrate your time_in_force settings to use 'entry' and 'exit'.")
else:
logger.warning(
"DEPRECATED: Using 'buy' and 'sell' for time_in_force is deprecated."
"Please migrate your time_in_force settings to use 'entry' and 'exit'."
)
process_deprecated_setting(
conf, 'order_time_in_force', 'buy', 'order_time_in_force', 'entry')
process_deprecated_setting(
conf, 'order_time_in_force', 'sell', 'order_time_in_force', 'exit')
def _validate_order_types(conf: Dict[str, Any]) -> None:
order_types = conf.get('order_types', {})
old_order_types = ['buy', 'sell', 'emergencysell', 'forcebuy',
'forcesell', 'emergencyexit', 'forceexit', 'forceentry']
if any(x in order_types for x in old_order_types):
if conf.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
raise OperationalException(
"Please migrate your order_types settings to use the new wording.")
else:
logger.warning(
"DEPRECATED: Using 'buy' and 'sell' for order_types is deprecated."
"Please migrate your order_types settings to use 'entry' and 'exit' wording."
)
for o, n in [
('buy', 'entry'),
('sell', 'exit'),
('emergencysell', 'emergency_exit'),
('forcesell', 'force_exit'),
('forcebuy', 'force_entry'),
('emergencyexit', 'emergency_exit'),
('forceexit', 'force_exit'),
('forceentry', 'force_entry'),
]:
process_deprecated_setting(conf, 'order_types', o, 'order_types', n)
def _validate_unfilledtimeout(conf: Dict[str, Any]) -> None:
unfilledtimeout = conf.get('unfilledtimeout', {})
if any(x in unfilledtimeout for x in ['buy', 'sell']):
if conf.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
raise OperationalException(
"Please migrate your unfilledtimeout settings to use the new wording.")
else:
logger.warning(
"DEPRECATED: Using 'buy' and 'sell' for unfilledtimeout is deprecated."
"Please migrate your unfilledtimeout settings to use 'entry' and 'exit' wording."
)
for o, n in [
('buy', 'entry'),
('sell', 'exit'),
]:
process_deprecated_setting(conf, 'unfilledtimeout', o, 'unfilledtimeout', n)
def _validate_pricing_rules(conf: Dict[str, Any]) -> None:
if conf.get('ask_strategy') or conf.get('bid_strategy'):
if conf.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
raise OperationalException(
"Please migrate your pricing settings to use the new wording.")
else:
logger.warning(
"DEPRECATED: Using 'ask_strategy' and 'bid_strategy' is deprecated."
"Please migrate your settings to use 'entry_pricing' and 'exit_pricing'."
)
conf['entry_pricing'] = {}
for obj in list(conf.get('bid_strategy', {}).keys()):
if obj == 'ask_last_balance':
process_deprecated_setting(conf, 'bid_strategy', obj,
'entry_pricing', 'price_last_balance')
else:
process_deprecated_setting(conf, 'bid_strategy', obj, 'entry_pricing', obj)
del conf['bid_strategy']
conf['exit_pricing'] = {}
for obj in list(conf.get('ask_strategy', {}).keys()):
if obj == 'bid_last_balance':
process_deprecated_setting(conf, 'ask_strategy', obj,
'exit_pricing', 'price_last_balance')
else:
process_deprecated_setting(conf, 'ask_strategy', obj, 'exit_pricing', obj)
del conf['ask_strategy']
def _strategy_settings(conf: Dict[str, Any]) -> None:
process_deprecated_setting(conf, None, 'use_sell_signal', None, 'use_exit_signal')
process_deprecated_setting(conf, None, 'sell_profit_only', None, 'exit_profit_only')
process_deprecated_setting(conf, None, 'sell_profit_offset', None, 'exit_profit_offset')
process_deprecated_setting(conf, None, 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_entry_signal')

View File

@@ -12,8 +12,8 @@ from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.deprecated_settings import process_temporary_deprecated_settings
from freqtrade.configuration.directory_operations import create_datadir, create_userdata_dir
from freqtrade.configuration.environment_vars import enironment_vars_to_dict
from freqtrade.configuration.load_config import load_config_file, load_file
from freqtrade.enums import NON_UTIL_MODES, TRADING_MODES, RunMode
from freqtrade.configuration.load_config import load_file, load_from_files
from freqtrade.enums import NON_UTIL_MODES, TRADING_MODES, CandleType, RunMode, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.loggers import setup_logging
from freqtrade.misc import deep_merge_dicts, parse_db_uri_for_logging
@@ -55,47 +55,28 @@ class Configuration:
:param files: List of file paths
:return: configuration dictionary
"""
# Keep this method as staticmethod, so it can be used from interactive environments
c = Configuration({'config': files}, RunMode.OTHER)
return c.get_config()
def load_from_files(self, files: List[str]) -> Dict[str, Any]:
# Keep this method as staticmethod, so it can be used from interactive environments
config: Dict[str, Any] = {}
if not files:
return deepcopy(constants.MINIMAL_CONFIG)
# We expect here a list of config filenames
for path in files:
logger.info(f'Using config: {path} ...')
# Merge config options, overwriting old values
config = deep_merge_dicts(load_config_file(path), config)
# Load environment variables
env_data = enironment_vars_to_dict()
config = deep_merge_dicts(env_data, config)
config['config_files'] = files
# Normalize config
if 'internals' not in config:
config['internals'] = {}
if 'ask_strategy' not in config:
config['ask_strategy'] = {}
if 'pairlists' not in config:
config['pairlists'] = []
return config
def load_config(self) -> Dict[str, Any]:
"""
Extract information for sys.argv and load the bot configuration
:return: Configuration dictionary
"""
# Load all configs
config: Dict[str, Any] = self.load_from_files(self.args.get("config", []))
config: Dict[str, Any] = load_from_files(self.args.get("config", []))
# Load environment variables
env_data = enironment_vars_to_dict()
config = deep_merge_dicts(env_data, config)
# Normalize config
if 'internals' not in config:
config['internals'] = {}
if 'pairlists' not in config:
config['pairlists'] = []
# Keep a copy of the original configuration file
config['original_config'] = deepcopy(config)
@@ -166,8 +147,8 @@ class Configuration:
config.update({'db_url': self.args['db_url']})
logger.info('Parameter --db-url detected ...')
if config.get('forcebuy_enable', False):
logger.warning('`forcebuy` RPC message enabled.')
if config.get('force_entry_enable', False):
logger.warning('`force_entry_enable` RPC message enabled.')
# Support for sd_notify
if 'sd_notify' in self.args and self.args['sd_notify']:
@@ -439,6 +420,13 @@ class Configuration:
def _process_data_options(self, config: Dict[str, Any]) -> None:
self._args_to_config(config, argname='new_pairs_days',
logstring='Detected --new-pairs-days: {}')
self._args_to_config(config, argname='trading_mode',
logstring='Detected --trading-mode: {}')
config['candle_type_def'] = CandleType.get_default(
config.get('trading_mode', 'spot') or 'spot')
config['trading_mode'] = TradingMode(config.get('trading_mode', 'spot') or 'spot')
self._args_to_config(config, argname='candle_types',
logstring='Detected --candle-types: {}')
def _process_runmode(self, config: Dict[str, Any]) -> None:

View File

@@ -12,14 +12,15 @@ logger = logging.getLogger(__name__)
def check_conflicting_settings(config: Dict[str, Any],
section_old: str, name_old: str,
section_old: Optional[str], name_old: str,
section_new: Optional[str], name_new: str) -> None:
section_new_config = config.get(section_new, {}) if section_new else config
section_old_config = config.get(section_old, {})
section_old_config = config.get(section_old, {}) if section_old else config
if name_new in section_new_config and name_old in section_old_config:
new_name = f"{section_new}.{name_new}" if section_new else f"{name_new}"
old_name = f"{section_old}.{name_old}" if section_old else f"{name_old}"
raise OperationalException(
f"Conflicting settings `{new_name}` and `{section_old}.{name_old}` "
f"Conflicting settings `{new_name}` and `{old_name}` "
"(DEPRECATED) detected in the configuration file. "
"This deprecated setting will be removed in the next versions of Freqtrade. "
f"Please delete it from your configuration and use the `{new_name}` "
@@ -47,23 +48,25 @@ def process_removed_setting(config: Dict[str, Any],
def process_deprecated_setting(config: Dict[str, Any],
section_old: str, name_old: str,
section_old: Optional[str], name_old: str,
section_new: Optional[str], name_new: str
) -> None:
check_conflicting_settings(config, section_old, name_old, section_new, name_new)
section_old_config = config.get(section_old, {})
section_old_config = config.get(section_old, {}) if section_old else config
if name_old in section_old_config:
section_1 = f"{section_old}.{name_old}" if section_old else f"{name_old}"
section_2 = f"{section_new}.{name_new}" if section_new else f"{name_new}"
logger.warning(
"DEPRECATED: "
f"The `{section_old}.{name_old}` setting is deprecated and "
f"The `{section_1}` setting is deprecated and "
"will be removed in the next versions of Freqtrade. "
f"Please use the `{section_2}` setting in your configuration instead."
)
section_new_config = config.get(section_new, {}) if section_new else config
section_new_config[name_new] = section_old_config[name_old]
del section_old_config[name_old]
def process_temporary_deprecated_settings(config: Dict[str, Any]) -> None:
@@ -71,25 +74,51 @@ def process_temporary_deprecated_settings(config: Dict[str, Any]) -> None:
# Kept for future deprecated / moved settings
# check_conflicting_settings(config, 'ask_strategy', 'use_sell_signal',
# 'experimental', 'use_sell_signal')
process_deprecated_setting(config, 'ask_strategy', 'use_sell_signal',
None, 'use_sell_signal')
process_deprecated_setting(config, 'ask_strategy', 'sell_profit_only',
None, 'sell_profit_only')
process_deprecated_setting(config, 'ask_strategy', 'sell_profit_offset',
None, 'sell_profit_offset')
process_deprecated_setting(config, 'ask_strategy', 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_buy_signal')
process_deprecated_setting(config, 'ask_strategy', 'ignore_buying_expired_candle_after',
None, 'ignore_buying_expired_candle_after')
# Legacy way - having them in experimental ...
process_removed_setting(config, 'experimental', 'use_sell_signal',
None, 'use_sell_signal')
process_removed_setting(config, 'experimental', 'sell_profit_only',
None, 'sell_profit_only')
process_removed_setting(config, 'experimental', 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_buy_signal')
process_deprecated_setting(config, None, 'forcebuy_enable', None, 'force_entry_enable')
# New settings
if config.get('telegram'):
process_deprecated_setting(config['telegram'], 'notification_settings', 'sell',
'notification_settings', 'exit')
process_deprecated_setting(config['telegram'], 'notification_settings', 'sell_fill',
'notification_settings', 'exit_fill')
process_deprecated_setting(config['telegram'], 'notification_settings', 'sell_cancel',
'notification_settings', 'exit_cancel')
process_deprecated_setting(config['telegram'], 'notification_settings', 'buy',
'notification_settings', 'entry')
process_deprecated_setting(config['telegram'], 'notification_settings', 'buy_fill',
'notification_settings', 'entry_fill')
process_deprecated_setting(config['telegram'], 'notification_settings', 'buy_cancel',
'notification_settings', 'entry_cancel')
if config.get('webhook'):
process_deprecated_setting(config, 'webhook', 'webhookbuy', 'webhook', 'webhookentry')
process_deprecated_setting(config, 'webhook', 'webhookbuycancel',
'webhook', 'webhookentrycancel')
process_deprecated_setting(config, 'webhook', 'webhookbuyfill',
'webhook', 'webhookentryfill')
process_deprecated_setting(config, 'webhook', 'webhooksell', 'webhook', 'webhookexit')
process_deprecated_setting(config, 'webhook', 'webhooksellcancel',
'webhook', 'webhookexitcancel')
process_deprecated_setting(config, 'webhook', 'webhooksellfill',
'webhook', 'webhookexitfill')
# Legacy way - having them in experimental ...
process_removed_setting(config, 'experimental', 'use_sell_signal', None, 'use_exit_signal')
process_removed_setting(config, 'experimental', 'sell_profit_only', None, 'exit_profit_only')
process_removed_setting(config, 'experimental', 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_entry_signal')
process_removed_setting(config, 'ask_strategy', 'use_sell_signal', None, 'exit_sell_signal')
process_removed_setting(config, 'ask_strategy', 'sell_profit_only', None, 'exit_profit_only')
process_removed_setting(config, 'ask_strategy', 'sell_profit_offset',
None, 'exit_profit_offset')
process_removed_setting(config, 'ask_strategy', 'ignore_roi_if_buy_signal',
None, 'ignore_roi_if_entry_signal')
if (config.get('edge', {}).get('enabled', False)
and 'capital_available_percentage' in config.get('edge', {})):
raise OperationalException(

View File

@@ -4,12 +4,15 @@ This module contain functions to load the configuration file
import logging
import re
import sys
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict
from typing import Any, Dict, List
import rapidjson
from freqtrade.constants import MINIMAL_CONFIG
from freqtrade.exceptions import OperationalException
from freqtrade.misc import deep_merge_dicts
logger = logging.getLogger(__name__)
@@ -28,7 +31,7 @@ def log_config_error_range(path: str, errmsg: str) -> str:
offset = int(offsetlist[0])
text = Path(path).read_text()
# Fetch an offset of 80 characters around the error line
subtext = text[offset-min(80, offset):offset+80]
subtext = text[offset - min(80, offset):offset + 80]
segments = subtext.split('\n')
if len(segments) > 3:
# Remove first and last lines, to avoid odd truncations
@@ -70,3 +73,43 @@ def load_config_file(path: str) -> Dict[str, Any]:
)
return config
def load_from_files(files: List[str], base_path: Path = None, level: int = 0) -> Dict[str, Any]:
"""
Recursively load configuration files if specified.
Sub-files are assumed to be relative to the initial config.
"""
config: Dict[str, Any] = {}
if level > 5:
raise OperationalException("Config loop detected.")
if not files:
return deepcopy(MINIMAL_CONFIG)
files_loaded = []
# We expect here a list of config filenames
for filename in files:
logger.info(f'Using config: {filename} ...')
if filename == '-':
# Immediately load stdin and return
return load_config_file(filename)
file = Path(filename)
if base_path:
# Prepend basepath to allow for relative assignments
file = base_path / file
config_tmp = load_config_file(str(file))
if 'add_config_files' in config_tmp:
config_sub = load_from_files(
config_tmp['add_config_files'], file.resolve().parent, level + 1)
files_loaded.extend(config_sub.get('config_files', []))
config_tmp = deep_merge_dicts(config_tmp, config_sub)
files_loaded.insert(0, str(file))
# Merge config options, overwriting prior values
config = deep_merge_dicts(config_tmp, config)
config['config_files'] = files_loaded
return config

View File

@@ -3,7 +3,9 @@
"""
bot constants
"""
from typing import List, Tuple
from typing import List, Literal, Tuple
from freqtrade.enums import CandleType
DEFAULT_CONFIG = 'config.json'
@@ -17,9 +19,9 @@ DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
DEFAULT_DB_DRYRUN_URL = 'sqlite:///tradesv3.dryrun.sqlite'
UNLIMITED_STAKE_AMOUNT = 'unlimited'
DEFAULT_AMOUNT_RESERVE_PERCENT = 0.05
REQUIRED_ORDERTIF = ['buy', 'sell']
REQUIRED_ORDERTYPES = ['buy', 'sell', 'stoploss', 'stoploss_on_exchange']
ORDERBOOK_SIDES = ['ask', 'bid']
REQUIRED_ORDERTIF = ['entry', 'exit']
REQUIRED_ORDERTYPES = ['entry', 'exit', 'stoploss', 'stoploss_on_exchange']
PRICING_SIDES = ['ask', 'bid', 'same', 'other']
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
@@ -43,6 +45,8 @@ DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
# Don't modify sequence of DEFAULT_TRADES_COLUMNS
# it has wide consequences for stored trades files
DEFAULT_TRADES_COLUMNS = ['timestamp', 'id', 'type', 'side', 'price', 'amount', 'cost']
TRADING_MODES = ['spot', 'margin', 'futures']
MARGIN_MODES = ['cross', 'isolated', '']
LAST_BT_RESULT_FN = '.last_result.json'
FTHYPT_FILEVERSION = 'fthypt_fileversion'
@@ -82,20 +86,19 @@ SUPPORTED_FIAT = [
"AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK",
"EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY",
"KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN",
"RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD",
"BTC", "ETH", "XRP", "LTC", "BCH"
"RUB", "UAH", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR",
"USD", "BTC", "ETH", "XRP", "LTC", "BCH"
]
MINIMAL_CONFIG = {
'stake_currency': '',
'dry_run': True,
'exchange': {
'name': '',
'key': '',
'secret': '',
'pair_whitelist': [],
'ccxt_async_config': {
'enableRateLimit': True,
"stake_currency": "",
"dry_run": True,
"exchange": {
"name": "",
"key": "",
"secret": "",
"pair_whitelist": [],
"ccxt_async_config": {
}
}
}
@@ -145,11 +148,14 @@ CONF_SCHEMA = {
'trailing_stop_positive': {'type': 'number', 'minimum': 0, 'maximum': 1},
'trailing_stop_positive_offset': {'type': 'number', 'minimum': 0, 'maximum': 1},
'trailing_only_offset_is_reached': {'type': 'boolean'},
'use_sell_signal': {'type': 'boolean'},
'sell_profit_only': {'type': 'boolean'},
'sell_profit_offset': {'type': 'number'},
'ignore_roi_if_buy_signal': {'type': 'boolean'},
'use_exit_signal': {'type': 'boolean'},
'exit_profit_only': {'type': 'boolean'},
'exit_profit_offset': {'type': 'number'},
'ignore_roi_if_entry_signal': {'type': 'boolean'},
'ignore_buying_expired_candle_after': {'type': 'number'},
'trading_mode': {'type': 'string', 'enum': TRADING_MODES},
'margin_mode': {'type': 'string', 'enum': MARGIN_MODES},
'liquidation_buffer': {'type': 'number', 'minimum': 0.0, 'maximum': 0.99},
'backtest_breakdown': {
'type': 'array',
'items': {'type': 'string', 'enum': BACKTEST_BREAKDOWNS}
@@ -158,22 +164,22 @@ CONF_SCHEMA = {
'unfilledtimeout': {
'type': 'object',
'properties': {
'buy': {'type': 'number', 'minimum': 1},
'sell': {'type': 'number', 'minimum': 1},
'entry': {'type': 'number', 'minimum': 1},
'exit': {'type': 'number', 'minimum': 1},
'exit_timeout_count': {'type': 'number', 'minimum': 0, 'default': 0},
'unit': {'type': 'string', 'enum': TIMEOUT_UNITS, 'default': 'minutes'}
}
},
'bid_strategy': {
'entry_pricing': {
'type': 'object',
'properties': {
'ask_last_balance': {
'price_last_balance': {
'type': 'number',
'minimum': 0,
'maximum': 1,
'exclusiveMaximum': False,
},
'price_side': {'type': 'string', 'enum': ORDERBOOK_SIDES, 'default': 'bid'},
'price_side': {'type': 'string', 'enum': PRICING_SIDES, 'default': 'same'},
'use_order_book': {'type': 'boolean'},
'order_book_top': {'type': 'integer', 'minimum': 1, 'maximum': 50, },
'check_depth_of_market': {
@@ -186,11 +192,11 @@ CONF_SCHEMA = {
},
'required': ['price_side']
},
'ask_strategy': {
'exit_pricing': {
'type': 'object',
'properties': {
'price_side': {'type': 'string', 'enum': ORDERBOOK_SIDES, 'default': 'ask'},
'bid_last_balance': {
'price_side': {'type': 'string', 'enum': PRICING_SIDES, 'default': 'same'},
'price_last_balance': {
'type': 'number',
'minimum': 0,
'maximum': 1,
@@ -207,11 +213,11 @@ CONF_SCHEMA = {
'order_types': {
'type': 'object',
'properties': {
'buy': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'sell': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'forcesell': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'forcebuy': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'emergencysell': {
'entry': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'exit': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'force_exit': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'force_entry': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'emergency_exit': {
'type': 'string',
'enum': ORDERTYPE_POSSIBILITIES,
'default': 'market'},
@@ -221,15 +227,15 @@ CONF_SCHEMA = {
'stoploss_on_exchange_limit_ratio': {'type': 'number', 'minimum': 0.0,
'maximum': 1.0}
},
'required': ['buy', 'sell', 'stoploss', 'stoploss_on_exchange']
'required': ['entry', 'exit', 'stoploss', 'stoploss_on_exchange']
},
'order_time_in_force': {
'type': 'object',
'properties': {
'buy': {'type': 'string', 'enum': ORDERTIF_POSSIBILITIES},
'sell': {'type': 'string', 'enum': ORDERTIF_POSSIBILITIES}
'entry': {'type': 'string', 'enum': ORDERTIF_POSSIBILITIES},
'exit': {'type': 'string', 'enum': ORDERTIF_POSSIBILITIES}
},
'required': ['buy', 'sell']
'required': REQUIRED_ORDERTIF
},
'exchange': {'$ref': '#/definitions/exchange'},
'edge': {'$ref': '#/definitions/edge'},
@@ -278,21 +284,21 @@ CONF_SCHEMA = {
'status': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'warning': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'startup': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'buy': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'buy_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'buy_fill': {'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS,
'default': 'off'
},
'sell': {
'entry': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'entry_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'entry_fill': {'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS,
'default': 'off'
},
'exit': {
'type': ['string', 'object'],
'additionalProperties': {
'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS
}
},
'sell_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'sell_fill': {
'exit_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
'exit_fill': {
'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS,
'default': 'off'
@@ -320,12 +326,12 @@ CONF_SCHEMA = {
'format': {'type': 'string', 'enum': WEBHOOK_FORMAT_OPTIONS, 'default': 'form'},
'retries': {'type': 'integer', 'minimum': 0},
'retry_delay': {'type': 'number', 'minimum': 0},
'webhookbuy': {'type': 'object'},
'webhookbuycancel': {'type': 'object'},
'webhookbuyfill': {'type': 'object'},
'webhooksell': {'type': 'object'},
'webhooksellcancel': {'type': 'object'},
'webhooksellfill': {'type': 'object'},
'webhookentry': {'type': 'object'},
'webhookentrycancel': {'type': 'object'},
'webhookentryfill': {'type': 'object'},
'webhookexit': {'type': 'object'},
'webhookexitcancel': {'type': 'object'},
'webhookexitfill': {'type': 'object'},
'webhookstatus': {'type': 'object'},
},
},
@@ -351,7 +357,7 @@ CONF_SCHEMA = {
'export': {'type': 'string', 'enum': EXPORT_OPTIONS, 'default': 'trades'},
'disableparamexport': {'type': 'boolean'},
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
'forcebuy_enable': {'type': 'boolean'},
'force_entry_enable': {'type': 'boolean'},
'disable_dataframe_checks': {'type': 'boolean'},
'internals': {
'type': 'object',
@@ -438,8 +444,8 @@ SCHEMA_TRADE_REQUIRED = [
'last_stake_amount_min_ratio',
'dry_run',
'dry_run_wallet',
'ask_strategy',
'bid_strategy',
'exit_pricing',
'entry_pricing',
'stoploss',
'minimal_roi',
'internals',
@@ -471,12 +477,15 @@ CANCEL_REASON = {
"FULLY_CANCELLED": "fully cancelled",
"ALL_CANCELLED": "cancelled (all unfilled and partially filled open orders cancelled)",
"CANCELLED_ON_EXCHANGE": "cancelled on exchange",
"FORCE_SELL": "forcesold",
"FORCE_EXIT": "forcesold",
}
# List of pairs with their timeframes
PairWithTimeframe = Tuple[str, str]
PairWithTimeframe = Tuple[str, str, CandleType]
ListPairsWithTimeframes = List[PairWithTimeframe]
# Type for trades list
TradeList = List[List]
LongShort = Literal['long', 'short']
EntryExit = Literal['entry', 'exit']

View File

@@ -22,9 +22,11 @@ logger = logging.getLogger(__name__)
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date',
'open_rate', 'close_rate',
'fee_open', 'fee_close', 'trade_duration',
'profit_ratio', 'profit_abs', 'sell_reason',
'profit_ratio', 'profit_abs', 'exit_reason',
'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs',
'stop_loss_ratio', 'min_rate', 'max_rate', 'is_open', 'buy_tag']
'stop_loss_ratio', 'min_rate', 'max_rate', 'is_open', 'enter_tag',
'is_short'
]
def get_latest_optimize_filename(directory: Union[Path, str], variant: str) -> str:
@@ -147,7 +149,14 @@ def load_backtest_stats(filename: Union[Path, str]) -> Dict[str, Any]:
return data
def _load_and_merge_backtest_result(strategy_name: str, filename: Path, results: Dict[str, Any]):
def load_and_merge_backtest_result(strategy_name: str, filename: Path, results: Dict[str, Any]):
"""
Load one strategy from multi-strategy result
and merge it with results
:param strategy_name: Name of the strategy contained in the result
:param filename: Backtest-result-filename to load
:param results: dict to merge the result to.
"""
bt_data = load_backtest_stats(filename)
for k in ('metadata', 'strategy'):
results[k][strategy_name] = bt_data[k][strategy_name]
@@ -158,6 +167,30 @@ def _load_and_merge_backtest_result(strategy_name: str, filename: Path, results:
break
def _get_backtest_files(dirname: Path) -> List[Path]:
return list(reversed(sorted(dirname.glob('backtest-result-*-[0-9][0-9].json'))))
def get_backtest_resultlist(dirname: Path):
"""
Get list of backtest results read from metadata files
"""
results = []
for filename in _get_backtest_files(dirname):
metadata = load_backtest_metadata(filename)
if not metadata:
continue
for s, v in metadata.items():
results.append({
'filename': filename.name,
'strategy': s,
'run_id': v['run_id'],
'backtest_start_time': v['backtest_start_time'],
})
return results
def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, str],
min_backtest_date: datetime = None) -> Dict[str, Any]:
"""
@@ -177,7 +210,7 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
}
# Weird glob expression here avoids including .meta.json files.
for filename in reversed(sorted(dirname.glob('backtest-result-*-[0-9][0-9].json'))):
for filename in _get_backtest_files(dirname):
metadata = load_backtest_metadata(filename)
if not metadata:
# Files are sorted from newest to oldest. When file without metadata is encountered it
@@ -191,14 +224,7 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
continue
if min_backtest_date is not None:
try:
backtest_date = strategy_metadata['backtest_start_time']
except KeyError:
# TODO: this can be removed starting from feb 2022
# The metadata-file without start_time was only available in develop
# and was never included in an official release.
# Older metadata format without backtest time, too old to consider.
return results
backtest_date = strategy_metadata['backtest_start_time']
backtest_date = datetime.fromtimestamp(backtest_date, tz=timezone.utc)
if backtest_date < min_backtest_date:
# Do not use a cached result for this strategy as first result is too old.
@@ -207,7 +233,7 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
if strategy_metadata['run_id'] == run_id:
del run_ids[strategy_name]
_load_and_merge_backtest_result(strategy_name, filename, results)
load_and_merge_backtest_result(strategy_name, filename, results)
if len(run_ids) == 0:
break
@@ -250,6 +276,13 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
utc=True,
infer_datetime_format=True
)
# Compatibility support for pre short Columns
if 'is_short' not in df.columns:
df['is_short'] = 0
if 'enter_tag' not in df.columns:
df['enter_tag'] = df['buy_tag']
df = df.drop(['buy_tag'], axis=1)
else:
# old format - only with lists.
raise OperationalException(

View File

@@ -11,6 +11,7 @@ import pandas as pd
from pandas import DataFrame, to_datetime
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TradeList
from freqtrade.enums import CandleType
logger = logging.getLogger(__name__)
@@ -261,13 +262,20 @@ def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to:
src.trades_purge(pair=pair)
def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
def convert_ohlcv_format(
config: Dict[str, Any],
convert_from: str,
convert_to: str,
erase: bool,
candle_type: CandleType
):
"""
Convert OHLCV from one format to another
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase source data (does not apply if source and target format are identical)
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
@@ -279,8 +287,11 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
config['pairs'] = []
# Check timeframes or fall back to timeframe.
for timeframe in timeframes:
config['pairs'].extend(src.ohlcv_get_pairs(config['datadir'],
timeframe))
config['pairs'].extend(src.ohlcv_get_pairs(
config['datadir'],
timeframe,
candle_type=candle_type
))
logger.info(f"Converting candle (OHLCV) data for {config['pairs']}")
for timeframe in timeframes:
@@ -289,10 +300,16 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
timerange=None,
fill_missing=False,
drop_incomplete=False,
startup_candles=0)
logger.info(f"Converting {len(data)} candles for {pair}")
startup_candles=0,
candle_type=candle_type)
logger.info(f"Converting {len(data)} {candle_type} candles for {pair}")
if len(data) > 0:
trg.ohlcv_store(pair=pair, timeframe=timeframe, data=data)
trg.ohlcv_store(
pair=pair,
timeframe=timeframe,
data=data,
candle_type=candle_type
)
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe)
src.ohlcv_purge(pair=pair, timeframe=timeframe, candle_type=candle_type)

View File

@@ -13,7 +13,7 @@ from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import ListPairsWithTimeframes, PairWithTimeframe
from freqtrade.data.history import load_pair_history
from freqtrade.enums import RunMode
from freqtrade.enums import CandleType, RunMode
from freqtrade.exceptions import ExchangeError, OperationalException
from freqtrade.exchange import Exchange, timeframe_to_seconds
@@ -41,7 +41,13 @@ class DataProvider:
"""
self.__slice_index = limit_index
def _set_cached_df(self, pair: str, timeframe: str, dataframe: DataFrame) -> None:
def _set_cached_df(
self,
pair: str,
timeframe: str,
dataframe: DataFrame,
candle_type: CandleType
) -> None:
"""
Store cached Dataframe.
Using private method as this should never be used by a user
@@ -49,8 +55,10 @@ class DataProvider:
:param pair: pair to get the data for
:param timeframe: Timeframe to get data for
:param dataframe: analyzed dataframe
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
self.__cached_pairs[(pair, timeframe)] = (dataframe, datetime.now(timezone.utc))
self.__cached_pairs[(pair, timeframe, candle_type)] = (
dataframe, datetime.now(timezone.utc))
def add_pairlisthandler(self, pairlists) -> None:
"""
@@ -58,13 +66,21 @@ class DataProvider:
"""
self._pairlists = pairlists
def historic_ohlcv(self, pair: str, timeframe: str = None) -> DataFrame:
def historic_ohlcv(
self,
pair: str,
timeframe: str = None,
candle_type: str = ''
) -> DataFrame:
"""
Get stored historical candle (OHLCV) data
:param pair: pair to get the data for
:param timeframe: timeframe to get data for
:param candle_type: '', mark, index, premiumIndex, or funding_rate
"""
saved_pair = (pair, str(timeframe))
_candle_type = CandleType.from_string(
candle_type) if candle_type != '' else self._config['candle_type_def']
saved_pair = (pair, str(timeframe), _candle_type)
if saved_pair not in self.__cached_pairs_backtesting:
timerange = TimeRange.parse_timerange(None if self._config.get(
'timerange') is None else str(self._config.get('timerange')))
@@ -77,26 +93,36 @@ class DataProvider:
timeframe=timeframe or self._config['timeframe'],
datadir=self._config['datadir'],
timerange=timerange,
data_format=self._config.get('dataformat_ohlcv', 'json')
data_format=self._config.get('dataformat_ohlcv', 'json'),
candle_type=_candle_type,
)
return self.__cached_pairs_backtesting[saved_pair].copy()
def get_pair_dataframe(self, pair: str, timeframe: str = None) -> DataFrame:
def get_pair_dataframe(
self,
pair: str,
timeframe: str = None,
candle_type: str = ''
) -> DataFrame:
"""
Return pair candle (OHLCV) data, either live or cached historical -- depending
on the runmode.
Only combinations in the pairlist or which have been specified as informative pairs
will be available.
:param pair: pair to get the data for
:param timeframe: timeframe to get data for
:return: Dataframe for this pair
:param candle_type: '', mark, index, premiumIndex, or funding_rate
"""
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
# Get live OHLCV data.
data = self.ohlcv(pair=pair, timeframe=timeframe)
data = self.ohlcv(pair=pair, timeframe=timeframe, candle_type=candle_type)
else:
# Get historical OHLCV data (cached on disk).
data = self.historic_ohlcv(pair=pair, timeframe=timeframe)
data = self.historic_ohlcv(pair=pair, timeframe=timeframe, candle_type=candle_type)
if len(data) == 0:
logger.warning(f"No data found for ({pair}, {timeframe}).")
logger.warning(f"No data found for ({pair}, {timeframe}, {candle_type}).")
return data
def get_analyzed_dataframe(self, pair: str, timeframe: str) -> Tuple[DataFrame, datetime]:
@@ -109,7 +135,7 @@ class DataProvider:
combination.
Returns empty dataframe and Epoch 0 (1970-01-01) if no dataframe was cached.
"""
pair_key = (pair, timeframe)
pair_key = (pair, timeframe, self._config.get('candle_type_def', CandleType.SPOT))
if pair_key in self.__cached_pairs:
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
df, date = self.__cached_pairs[pair_key]
@@ -177,20 +203,31 @@ class DataProvider:
raise OperationalException(NO_EXCHANGE_EXCEPTION)
return list(self._exchange._klines.keys())
def ohlcv(self, pair: str, timeframe: str = None, copy: bool = True) -> DataFrame:
def ohlcv(
self,
pair: str,
timeframe: str = None,
copy: bool = True,
candle_type: str = ''
) -> DataFrame:
"""
Get candle (OHLCV) data for the given pair as DataFrame
Please use the `available_pairs` method to verify which pairs are currently cached.
:param pair: pair to get the data for
:param timeframe: Timeframe to get data for
:param candle_type: '', mark, index, premiumIndex, or funding_rate
:param copy: copy dataframe before returning if True.
Use False only for read-only operations (where the dataframe is not modified)
"""
if self._exchange is None:
raise OperationalException(NO_EXCHANGE_EXCEPTION)
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
return self._exchange.klines((pair, timeframe or self._config['timeframe']),
copy=copy)
_candle_type = CandleType.from_string(
candle_type) if candle_type != '' else self._config['candle_type_def']
return self._exchange.klines(
(pair, timeframe or self._config['timeframe'], _candle_type),
copy=copy
)
else:
return DataFrame()

View File

@@ -9,6 +9,7 @@ import pandas as pd
from freqtrade.configuration import TimeRange
from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS,
ListPairsWithTimeframes, TradeList)
from freqtrade.enums import CandleType, TradingMode
from .idatahandler import IDataHandler
@@ -21,44 +22,63 @@ class HDF5DataHandler(IDataHandler):
_columns = DEFAULT_DATAFRAME_COLUMNS
@classmethod
def ohlcv_get_available_data(cls, datadir: Path) -> ListPairsWithTimeframes:
def ohlcv_get_available_data(
cls, datadir: Path, trading_mode: TradingMode) -> ListPairsWithTimeframes:
"""
Returns a list of all pairs with ohlcv data available in this datadir
:param datadir: Directory to search for ohlcv files
:param trading_mode: trading-mode to be used
:return: List of Tuples of (pair, timeframe)
"""
_tmp = [re.search(r'^([a-zA-Z_]+)\-(\d+\S+)(?=.h5)', p.name)
for p in datadir.glob("*.h5")]
return [(match[1].replace('_', '/'), match[2]) for match in _tmp
if match and len(match.groups()) > 1]
if trading_mode == TradingMode.FUTURES:
datadir = datadir.joinpath('futures')
_tmp = [
re.search(
cls._OHLCV_REGEX, p.name
) for p in datadir.glob("*.h5")
]
return [
(
cls.rebuild_pair_from_filename(match[1]),
match[2],
CandleType.from_string(match[3])
) for match in _tmp if match and len(match.groups()) > 1]
@classmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str, candle_type: CandleType) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: List of Pairs
"""
candle = ""
if candle_type != CandleType.SPOT:
datadir = datadir.joinpath('futures')
candle = f"-{candle_type}"
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + '.h5)', p.name)
for p in datadir.glob(f"*{timeframe}.h5")]
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + candle + '.h5)', p.name)
for p in datadir.glob(f"*{timeframe}{candle}.h5")]
# Check if regex found something and only return these results
return [match[0].replace('_', '/') for match in _tmp if match]
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
def ohlcv_store(self, pair: str, timeframe: str, data: pd.DataFrame) -> None:
def ohlcv_store(
self, pair: str, timeframe: str, data: pd.DataFrame, candle_type: CandleType) -> None:
"""
Store data in hdf5 file.
:param pair: Pair - used to generate filename
:param timeframe: Timeframe - used to generate filename
:param data: Dataframe containing OHLCV data
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: None
"""
key = self._pair_ohlcv_key(pair, timeframe)
_data = data.copy()
filename = self._pair_data_filename(self._datadir, pair, timeframe)
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type)
self.create_dir_if_needed(filename)
_data.loc[:, self._columns].to_hdf(
filename, key, mode='a', complevel=9, complib='blosc',
@@ -66,7 +86,8 @@ class HDF5DataHandler(IDataHandler):
)
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None) -> pd.DataFrame:
timerange: Optional[TimeRange], candle_type: CandleType
) -> pd.DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
@@ -76,10 +97,16 @@ class HDF5DataHandler(IDataHandler):
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: DataFrame with ohlcv data, or empty DataFrame
"""
key = self._pair_ohlcv_key(pair, timeframe)
filename = self._pair_data_filename(self._datadir, pair, timeframe)
filename = self._pair_data_filename(
self._datadir,
pair,
timeframe,
candle_type=candle_type
)
if not filename.exists():
return pd.DataFrame(columns=self._columns)
@@ -98,12 +125,19 @@ class HDF5DataHandler(IDataHandler):
'low': 'float', 'close': 'float', 'volume': 'float'})
return pairdata
def ohlcv_append(self, pair: str, timeframe: str, data: pd.DataFrame) -> None:
def ohlcv_append(
self,
pair: str,
timeframe: str,
data: pd.DataFrame,
candle_type: CandleType
) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
raise NotImplementedError()
@@ -117,7 +151,7 @@ class HDF5DataHandler(IDataHandler):
_tmp = [re.search(r'^(\S+)(?=\-trades.h5)', p.name)
for p in datadir.glob("*trades.h5")]
# Check if regex found something and only return these results to avoid exceptions.
return [match[0].replace('_', '/') for match in _tmp if match]
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
def trades_store(self, pair: str, data: TradeList) -> None:
"""
@@ -172,7 +206,9 @@ class HDF5DataHandler(IDataHandler):
@classmethod
def _pair_ohlcv_key(cls, pair: str, timeframe: str) -> str:
return f"{pair}/ohlcv/tf_{timeframe}"
# Escape futures pairs to avoid warnings
pair_esc = pair.replace(':', '_')
return f"{pair_esc}/ohlcv/tf_{timeframe}"
@classmethod
def _pair_trades_key(cls, pair: str) -> str:

View File

@@ -12,6 +12,7 @@ from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
from freqtrade.data.converter import (clean_ohlcv_dataframe, ohlcv_to_dataframe,
trades_remove_duplicates, trades_to_ohlcv)
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
from freqtrade.enums import CandleType
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
from freqtrade.misc import format_ms_time
@@ -29,6 +30,7 @@ def load_pair_history(pair: str,
startup_candles: int = 0,
data_format: str = None,
data_handler: IDataHandler = None,
candle_type: CandleType = CandleType.SPOT
) -> DataFrame:
"""
Load cached ohlcv history for the given pair.
@@ -43,6 +45,7 @@ def load_pair_history(pair: str,
:param startup_candles: Additional candles to load at the start of the period
:param data_handler: Initialized data-handler to use.
Will be initialized from data_format if not set
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: DataFrame with ohlcv data, or empty DataFrame
"""
data_handler = get_datahandler(datadir, data_format, data_handler)
@@ -53,6 +56,7 @@ def load_pair_history(pair: str,
fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete,
startup_candles=startup_candles,
candle_type=candle_type
)
@@ -64,6 +68,7 @@ def load_data(datadir: Path,
startup_candles: int = 0,
fail_without_data: bool = False,
data_format: str = 'json',
candle_type: CandleType = CandleType.SPOT
) -> Dict[str, DataFrame]:
"""
Load ohlcv history data for a list of pairs.
@@ -76,6 +81,7 @@ def load_data(datadir: Path,
:param startup_candles: Additional candles to load at the start of the period
:param fail_without_data: Raise OperationalException if no data is found.
:param data_format: Data format which should be used. Defaults to json
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: dict(<pair>:<Dataframe>)
"""
result: Dict[str, DataFrame] = {}
@@ -89,7 +95,8 @@ def load_data(datadir: Path,
datadir=datadir, timerange=timerange,
fill_up_missing=fill_up_missing,
startup_candles=startup_candles,
data_handler=data_handler
data_handler=data_handler,
candle_type=candle_type
)
if not hist.empty:
result[pair] = hist
@@ -99,12 +106,13 @@ def load_data(datadir: Path,
return result
def refresh_data(datadir: Path,
def refresh_data(*, datadir: Path,
timeframe: str,
pairs: List[str],
exchange: Exchange,
data_format: str = None,
timerange: Optional[TimeRange] = None,
candle_type: CandleType,
) -> None:
"""
Refresh ohlcv history data for a list of pairs.
@@ -115,17 +123,24 @@ def refresh_data(datadir: Path,
:param exchange: Exchange object
:param data_format: dataformat to use
:param timerange: Limit data to be loaded to this timerange
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
data_handler = get_datahandler(datadir, data_format)
for idx, pair in enumerate(pairs):
process = f'{idx}/{len(pairs)}'
_download_pair_history(pair=pair, process=process,
timeframe=timeframe, datadir=datadir,
timerange=timerange, exchange=exchange, data_handler=data_handler)
timerange=timerange, exchange=exchange, data_handler=data_handler,
candle_type=candle_type)
def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optional[TimeRange],
data_handler: IDataHandler) -> Tuple[DataFrame, Optional[int]]:
def _load_cached_data_for_updating(
pair: str,
timeframe: str,
timerange: Optional[TimeRange],
data_handler: IDataHandler,
candle_type: CandleType
) -> Tuple[DataFrame, Optional[int]]:
"""
Load cached data to download more data.
If timerange is passed in, checks whether data from an before the stored data will be
@@ -142,7 +157,8 @@ def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optiona
# Intentionally don't pass timerange in - since we need to load the full dataset.
data = data_handler.ohlcv_load(pair, timeframe=timeframe,
timerange=None, fill_missing=False,
drop_incomplete=True, warn_no_data=False)
drop_incomplete=True, warn_no_data=False,
candle_type=candle_type)
if not data.empty:
if start and start < data.iloc[0]['date']:
# Earlier data than existing data requested, redownload all
@@ -161,7 +177,10 @@ def _download_pair_history(pair: str, *,
process: str = '',
new_pairs_days: int = 30,
data_handler: IDataHandler = None,
timerange: Optional[TimeRange] = None) -> bool:
timerange: Optional[TimeRange] = None,
candle_type: CandleType,
erase: bool = False,
) -> bool:
"""
Download latest candles from the exchange for the pair and timeframe passed in parameters
The data is downloaded starting from the last correct data that
@@ -173,19 +192,25 @@ def _download_pair_history(pair: str, *,
:param pair: pair to download
:param timeframe: Timeframe (e.g "5m")
:param timerange: range of time to download
:param candle_type: Any of the enum CandleType (must match trading mode!)
:param erase: Erase existing data
:return: bool with success state
"""
data_handler = get_datahandler(datadir, data_handler=data_handler)
try:
if erase:
if data_handler.ohlcv_purge(pair, timeframe, candle_type=candle_type):
logger.info(f'Deleting existing data for pair {pair}, {timeframe}, {candle_type}.')
logger.info(
f'Download history data for pair: "{pair}" ({process}), timeframe: {timeframe} '
f'and store in {datadir}.'
f'Download history data for pair: "{pair}" ({process}), timeframe: {timeframe}, '
f'candle type: {candle_type} and store in {datadir}.'
)
# data, since_ms = _load_cached_data_for_updating_old(datadir, pair, timeframe, timerange)
data, since_ms = _load_cached_data_for_updating(pair, timeframe, timerange,
data_handler=data_handler)
data_handler=data_handler,
candle_type=candle_type)
logger.debug("Current Start: %s",
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
@@ -198,7 +223,8 @@ def _download_pair_history(pair: str, *,
since_ms=since_ms if since_ms else
arrow.utcnow().shift(
days=-new_pairs_days).int_timestamp * 1000,
is_new_pair=data.empty
is_new_pair=data.empty,
candle_type=candle_type,
)
# TODO: Maybe move parsing to exchange class (?)
new_dataframe = ohlcv_to_dataframe(new_data, timeframe, pair,
@@ -216,7 +242,7 @@ def _download_pair_history(pair: str, *,
logger.debug("New End: %s",
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
data_handler.ohlcv_store(pair, timeframe, data=data)
data_handler.ohlcv_store(pair, timeframe, data=data, candle_type=candle_type)
return True
except Exception:
@@ -227,9 +253,11 @@ def _download_pair_history(pair: str, *,
def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str],
datadir: Path, timerange: Optional[TimeRange] = None,
datadir: Path, trading_mode: str,
timerange: Optional[TimeRange] = None,
new_pairs_days: int = 30, erase: bool = False,
data_format: str = None) -> List[str]:
data_format: str = None,
) -> List[str]:
"""
Refresh stored ohlcv data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand.
@@ -237,6 +265,7 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
"""
pairs_not_available = []
data_handler = get_datahandler(datadir, data_format)
candle_type = CandleType.get_default(trading_mode)
for idx, pair in enumerate(pairs, start=1):
if pair not in exchange.markets:
pairs_not_available.append(pair)
@@ -244,17 +273,29 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
continue
for timeframe in timeframes:
if erase:
if data_handler.ohlcv_purge(pair, timeframe):
logger.info(
f'Deleting existing data for pair {pair}, interval {timeframe}.')
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
process = f'{idx}/{len(pairs)}'
_download_pair_history(pair=pair, process=process,
datadir=datadir, exchange=exchange,
timerange=timerange, data_handler=data_handler,
timeframe=str(timeframe), new_pairs_days=new_pairs_days)
timeframe=str(timeframe), new_pairs_days=new_pairs_days,
candle_type=candle_type,
erase=erase)
if trading_mode == 'futures':
# Predefined candletype (and timeframe) depending on exchange
# Downloads what is necessary to backtest based on futures data.
tf_mark = exchange._ft_has['mark_ohlcv_timeframe']
fr_candle_type = CandleType.from_string(exchange._ft_has['mark_ohlcv_price'])
# All exchanges need FundingRate for futures trading.
# The timeframe is aligned to the mark-price timeframe.
for funding_candle_type in (CandleType.FUNDING_RATE, fr_candle_type):
_download_pair_history(pair=pair, process=process,
datadir=datadir, exchange=exchange,
timerange=timerange, data_handler=data_handler,
timeframe=str(tf_mark), new_pairs_days=new_pairs_days,
candle_type=funding_candle_type,
erase=erase)
return pairs_not_available
@@ -353,10 +394,16 @@ def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir:
return pairs_not_available
def convert_trades_to_ohlcv(pairs: List[str], timeframes: List[str],
datadir: Path, timerange: TimeRange, erase: bool = False,
data_format_ohlcv: str = 'json',
data_format_trades: str = 'jsongz') -> None:
def convert_trades_to_ohlcv(
pairs: List[str],
timeframes: List[str],
datadir: Path,
timerange: TimeRange,
erase: bool = False,
data_format_ohlcv: str = 'json',
data_format_trades: str = 'jsongz',
candle_type: CandleType = CandleType.SPOT
) -> None:
"""
Convert stored trades data to ohlcv data
"""
@@ -367,12 +414,12 @@ def convert_trades_to_ohlcv(pairs: List[str], timeframes: List[str],
trades = data_handler_trades.trades_load(pair)
for timeframe in timeframes:
if erase:
if data_handler_ohlcv.ohlcv_purge(pair, timeframe):
if data_handler_ohlcv.ohlcv_purge(pair, timeframe, candle_type=candle_type):
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
try:
ohlcv = trades_to_ohlcv(trades, timeframe)
# Store ohlcv
data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv)
data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv, candle_type=candle_type)
except ValueError:
logger.exception(f'Could not convert {pair} to OHLCV.')

View File

@@ -4,6 +4,7 @@ It's subclasses handle and storing data from disk.
"""
import logging
import re
from abc import ABC, abstractclassmethod, abstractmethod
from copy import deepcopy
from datetime import datetime, timezone
@@ -16,6 +17,7 @@ from freqtrade import misc
from freqtrade.configuration import TimeRange
from freqtrade.constants import ListPairsWithTimeframes, TradeList
from freqtrade.data.converter import clean_ohlcv_dataframe, trades_remove_duplicates, trim_dataframe
from freqtrade.enums import CandleType, TradingMode
from freqtrade.exchange import timeframe_to_seconds
@@ -24,6 +26,8 @@ logger = logging.getLogger(__name__)
class IDataHandler(ABC):
_OHLCV_REGEX = r'^([a-zA-Z_-]+)\-(\d+\S)\-?([a-zA-Z_]*)?(?=\.)'
def __init__(self, datadir: Path) -> None:
self._datadir = datadir
@@ -35,36 +39,41 @@ class IDataHandler(ABC):
raise NotImplementedError()
@abstractclassmethod
def ohlcv_get_available_data(cls, datadir: Path) -> ListPairsWithTimeframes:
def ohlcv_get_available_data(
cls, datadir: Path, trading_mode: TradingMode) -> ListPairsWithTimeframes:
"""
Returns a list of all pairs with ohlcv data available in this datadir
:param datadir: Directory to search for ohlcv files
:param trading_mode: trading-mode to be used
:return: List of Tuples of (pair, timeframe)
"""
@abstractclassmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str, candle_type: CandleType) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: List of Pairs
"""
@abstractmethod
def ohlcv_store(self, pair: str, timeframe: str, data: DataFrame) -> None:
def ohlcv_store(
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType) -> None:
"""
Store ohlcv data.
:param pair: Pair - used to generate filename
:param timeframe: Timeframe - used to generate filename
:param data: Dataframe containing OHLCV data
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: None
"""
@abstractmethod
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None,
def _ohlcv_load(self, pair: str, timeframe: str, timerange: Optional[TimeRange],
candle_type: CandleType
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
@@ -75,29 +84,38 @@ class IDataHandler(ABC):
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: DataFrame with ohlcv data, or empty DataFrame
"""
def ohlcv_purge(self, pair: str, timeframe: str) -> bool:
def ohlcv_purge(self, pair: str, timeframe: str, candle_type: CandleType) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Timeframe (e.g. "5m")
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type)
if filename.exists():
filename.unlink()
return True
return False
@abstractmethod
def ohlcv_append(self, pair: str, timeframe: str, data: DataFrame) -> None:
def ohlcv_append(
self,
pair: str,
timeframe: str,
data: DataFrame,
candle_type: CandleType
) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
@abstractclassmethod
@@ -158,9 +176,29 @@ class IDataHandler(ABC):
return trades_remove_duplicates(self._trades_load(pair, timerange=timerange))
@classmethod
def _pair_data_filename(cls, datadir: Path, pair: str, timeframe: str) -> Path:
def create_dir_if_needed(cls, datadir: Path):
"""
Creates datadir if necessary
should only create directories for "futures" mode at the moment.
"""
if not datadir.parent.is_dir():
datadir.parent.mkdir()
@classmethod
def _pair_data_filename(
cls,
datadir: Path,
pair: str,
timeframe: str,
candle_type: CandleType
) -> Path:
pair_s = misc.pair_to_filename(pair)
filename = datadir.joinpath(f'{pair_s}-{timeframe}.{cls._get_file_extension()}')
candle = ""
if candle_type != CandleType.SPOT:
datadir = datadir.joinpath('futures')
candle = f"-{candle_type}"
filename = datadir.joinpath(
f'{pair_s}-{timeframe}{candle}.{cls._get_file_extension()}')
return filename
@classmethod
@@ -169,12 +207,23 @@ class IDataHandler(ABC):
filename = datadir.joinpath(f'{pair_s}-trades.{cls._get_file_extension()}')
return filename
@staticmethod
def rebuild_pair_from_filename(pair: str) -> str:
"""
Rebuild pair name from filename
Assumes a asset name of max. 7 length to also support BTC-PERP and BTC-PERP:USD names.
"""
res = re.sub(r'^(([A-Za-z]{1,10})|^([A-Za-z\-]{1,6}))(_)', r'\g<1>/', pair, 1)
res = re.sub('_', ':', res, 1)
return res
def ohlcv_load(self, pair, timeframe: str,
candle_type: CandleType,
timerange: Optional[TimeRange] = None,
fill_missing: bool = True,
drop_incomplete: bool = True,
startup_candles: int = 0,
warn_no_data: bool = True
warn_no_data: bool = True,
) -> DataFrame:
"""
Load cached candle (OHLCV) data for the given pair.
@@ -186,6 +235,7 @@ class IDataHandler(ABC):
:param drop_incomplete: Drop last candle assuming it may be incomplete.
:param startup_candles: Additional candles to load at the start of the period
:param warn_no_data: Log a warning message when no data is found
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: DataFrame with ohlcv data, or empty DataFrame
"""
# Fix startup period
@@ -193,17 +243,21 @@ class IDataHandler(ABC):
if startup_candles > 0 and timerange_startup:
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
pairdf = self._ohlcv_load(pair, timeframe,
timerange=timerange_startup)
if self._check_empty_df(pairdf, pair, timeframe, warn_no_data):
pairdf = self._ohlcv_load(
pair,
timeframe,
timerange=timerange_startup,
candle_type=candle_type
)
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
return pairdf
else:
enddate = pairdf.iloc[-1]['date']
if timerange_startup:
self._validate_pairdata(pair, pairdf, timeframe, timerange_startup)
self._validate_pairdata(pair, pairdf, timeframe, candle_type, timerange_startup)
pairdf = trim_dataframe(pairdf, timerange_startup)
if self._check_empty_df(pairdf, pair, timeframe, warn_no_data):
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
return pairdf
# incomplete candles should only be dropped if we didn't trim the end beforehand.
@@ -212,23 +266,25 @@ class IDataHandler(ABC):
fill_missing=fill_missing,
drop_incomplete=(drop_incomplete and
enddate == pairdf.iloc[-1]['date']))
self._check_empty_df(pairdf, pair, timeframe, warn_no_data)
self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data)
return pairdf
def _check_empty_df(self, pairdf: DataFrame, pair: str, timeframe: str, warn_no_data: bool):
def _check_empty_df(self, pairdf: DataFrame, pair: str, timeframe: str,
candle_type: CandleType, warn_no_data: bool):
"""
Warn on empty dataframe
"""
if pairdf.empty:
if warn_no_data:
logger.warning(
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data'
f"No history for {pair}, {candle_type}, {timeframe} found. "
"Use `freqtrade download-data` to download the data"
)
return True
return False
def _validate_pairdata(self, pair, pairdata: DataFrame, timeframe: str, timerange: TimeRange):
def _validate_pairdata(self, pair, pairdata: DataFrame, timeframe: str,
candle_type: CandleType, timerange: TimeRange):
"""
Validates pairdata for missing data at start end end and logs warnings.
:param pairdata: Dataframe to validate
@@ -238,12 +294,12 @@ class IDataHandler(ABC):
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
if pairdata.iloc[0]['date'] > start:
logger.warning(f"Missing data at start for pair {pair} at {timeframe}, "
logger.warning(f"{pair}, {candle_type}, {timeframe}, "
f"data starts at {pairdata.iloc[0]['date']:%Y-%m-%d %H:%M:%S}")
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
if pairdata.iloc[-1]['date'] < stop:
logger.warning(f"Missing data at end for pair {pair} at {timeframe}, "
logger.warning(f"{pair}, {candle_type}, {timeframe}, "
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")

View File

@@ -10,6 +10,7 @@ from freqtrade import misc
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, ListPairsWithTimeframes, TradeList
from freqtrade.data.converter import trades_dict_to_list
from freqtrade.enums import CandleType, TradingMode
from .idatahandler import IDataHandler
@@ -23,33 +24,49 @@ class JsonDataHandler(IDataHandler):
_columns = DEFAULT_DATAFRAME_COLUMNS
@classmethod
def ohlcv_get_available_data(cls, datadir: Path) -> ListPairsWithTimeframes:
def ohlcv_get_available_data(
cls, datadir: Path, trading_mode: TradingMode) -> ListPairsWithTimeframes:
"""
Returns a list of all pairs with ohlcv data available in this datadir
:param datadir: Directory to search for ohlcv files
:param trading_mode: trading-mode to be used
:return: List of Tuples of (pair, timeframe)
"""
_tmp = [re.search(r'^([a-zA-Z_]+)\-(\d+\S+)(?=.json)', p.name)
for p in datadir.glob(f"*.{cls._get_file_extension()}")]
return [(match[1].replace('_', '/'), match[2]) for match in _tmp
if match and len(match.groups()) > 1]
if trading_mode == 'futures':
datadir = datadir.joinpath('futures')
_tmp = [
re.search(
cls._OHLCV_REGEX, p.name
) for p in datadir.glob(f"*.{cls._get_file_extension()}")]
return [
(
cls.rebuild_pair_from_filename(match[1]),
match[2],
CandleType.from_string(match[3])
) for match in _tmp if match and len(match.groups()) > 1]
@classmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str, candle_type: CandleType) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: List of Pairs
"""
candle = ""
if candle_type != CandleType.SPOT:
datadir = datadir.joinpath('futures')
candle = f"-{candle_type}"
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + '.json)', p.name)
for p in datadir.glob(f"*{timeframe}.{cls._get_file_extension()}")]
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + candle + '.json)', p.name)
for p in datadir.glob(f"*{timeframe}{candle}.{cls._get_file_extension()}")]
# Check if regex found something and only return these results
return [match[0].replace('_', '/') for match in _tmp if match]
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
def ohlcv_store(self, pair: str, timeframe: str, data: DataFrame) -> None:
def ohlcv_store(
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType) -> None:
"""
Store data in json format "values".
format looks as follows:
@@ -57,9 +74,11 @@ class JsonDataHandler(IDataHandler):
:param pair: Pair - used to generate filename
:param timeframe: Timeframe - used to generate filename
:param data: Dataframe containing OHLCV data
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: None
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type)
self.create_dir_if_needed(filename)
_data = data.copy()
# Convert date to int
_data['date'] = _data['date'].view(np.int64) // 1000 // 1000
@@ -70,7 +89,7 @@ class JsonDataHandler(IDataHandler):
compression='gzip' if self._use_zip else None)
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None,
timerange: Optional[TimeRange], candle_type: CandleType
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
@@ -81,9 +100,10 @@ class JsonDataHandler(IDataHandler):
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
:param candle_type: Any of the enum CandleType (must match trading mode!)
:return: DataFrame with ohlcv data, or empty DataFrame
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type=candle_type)
if not filename.exists():
return DataFrame(columns=self._columns)
try:
@@ -100,25 +120,19 @@ class JsonDataHandler(IDataHandler):
infer_datetime_format=True)
return pairdata
def ohlcv_purge(self, pair: str, timeframe: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Timeframe (e.g. "5m")
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
if filename.exists():
filename.unlink()
return True
return False
def ohlcv_append(self, pair: str, timeframe: str, data: DataFrame) -> None:
def ohlcv_append(
self,
pair: str,
timeframe: str,
data: DataFrame,
candle_type: CandleType
) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
raise NotImplementedError()
@@ -132,7 +146,7 @@ class JsonDataHandler(IDataHandler):
_tmp = [re.search(r'^(\S+)(?=\-trades.json)', p.name)
for p in datadir.glob(f"*trades.{cls._get_file_extension()}")]
# Check if regex found something and only return these results to avoid exceptions.
return [match[0].replace('_', '/') for match in _tmp if match]
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
def trades_store(self, pair: str, data: TradeList) -> None:
"""

View File

@@ -13,7 +13,7 @@ from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import DATETIME_PRINT_FORMAT, UNLIMITED_STAKE_AMOUNT
from freqtrade.data.history import get_timerange, load_data, refresh_data
from freqtrade.enums import RunMode, SellType
from freqtrade.enums import CandleType, ExitType, RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange.exchange import timeframe_to_seconds
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
@@ -116,11 +116,12 @@ class Edge:
timeframe=self.strategy.timeframe,
timerange=timerange_startup,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=self.config.get('candle_type_def', CandleType.SPOT),
)
# Download informative pairs too
res = defaultdict(list)
for p, t in self.strategy.gather_informative_pairs():
res[t].append(p)
for pair, timeframe, _ in self.strategy.gather_informative_pairs():
res[timeframe].append(pair)
for timeframe, inf_pairs in res.items():
timerange_startup = deepcopy(self._timerange)
timerange_startup.subtract_start(timeframe_to_seconds(
@@ -132,6 +133,7 @@ class Edge:
timeframe=timeframe,
timerange=timerange_startup,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=self.config.get('candle_type_def', CandleType.SPOT),
)
data = load_data(
@@ -141,6 +143,7 @@ class Edge:
timerange=self._timerange,
startup_candles=self.strategy.startup_candle_count,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=self.config.get('candle_type_def', CandleType.SPOT),
)
if not data:
@@ -159,7 +162,9 @@ class Edge:
logger.info(f'Measuring data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(max_date - min_date).days} days)..')
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
# TODO: Should edge support shorts? needs to be investigated further
# * (add enter_short exit_short)
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long']
trades: list = []
for pair, pair_data in preprocessed.items():
@@ -167,8 +172,13 @@ class Edge:
pair_data = pair_data.sort_values(by=['date'])
pair_data = pair_data.reset_index(drop=True)
df_analyzed = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
df_analyzed = self.strategy.advise_exit(
dataframe=self.strategy.advise_entry(
dataframe=pair_data,
metadata={'pair': pair}
),
metadata={'pair': pair}
)[headers].copy()
trades += self._find_trades_for_stoploss_range(df_analyzed, pair, self._stoploss_range)
@@ -384,8 +394,8 @@ class Edge:
return final
def _find_trades_for_stoploss_range(self, df, pair, stoploss_range):
buy_column = df['buy'].values
sell_column = df['sell'].values
buy_column = df['enter_long'].values
sell_column = df['exit_long'].values
date_column = df['date'].values
ohlc_columns = df[['open', 'high', 'low', 'close']].values
@@ -450,7 +460,7 @@ class Edge:
if stop_index <= sell_index:
exit_index = open_trade_index + stop_index
exit_type = SellType.STOP_LOSS
exit_type = ExitType.STOP_LOSS
exit_price = stop_price
elif stop_index > sell_index:
# If exit is SELL then we exit at the next candle
@@ -460,7 +470,7 @@ class Edge:
if len(ohlc_columns) - 1 < exit_index:
break
exit_type = SellType.SELL_SIGNAL
exit_type = ExitType.EXIT_SIGNAL
exit_price = ohlc_columns[exit_index, 0]
trade = {'pair': pair,

View File

@@ -1,8 +1,12 @@
# flake8: noqa: F401
from freqtrade.enums.backteststate import BacktestState
from freqtrade.enums.candletype import CandleType
from freqtrade.enums.exitchecktuple import ExitCheckTuple
from freqtrade.enums.exittype import ExitType
from freqtrade.enums.marginmode import MarginMode
from freqtrade.enums.ordertypevalue import OrderTypeValues
from freqtrade.enums.rpcmessagetype import RPCMessageType
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
from freqtrade.enums.selltype import SellType
from freqtrade.enums.signaltype import SignalTagType, SignalType
from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType
from freqtrade.enums.state import State
from freqtrade.enums.tradingmode import TradingMode

View File

@@ -0,0 +1,27 @@
from enum import Enum
class CandleType(str, Enum):
"""Enum to distinguish candle types"""
SPOT = "spot"
FUTURES = "futures"
MARK = "mark"
INDEX = "index"
PREMIUMINDEX = "premiumIndex"
# TODO: Could take up less memory if these weren't a CandleType
FUNDING_RATE = "funding_rate"
# BORROW_RATE = "borrow_rate" # * unimplemented
@staticmethod
def from_string(value: str) -> 'CandleType':
if not value:
# Default to spot
return CandleType.SPOT
return CandleType(value)
@staticmethod
def get_default(trading_mode: str) -> 'CandleType':
if trading_mode == 'futures':
return CandleType.FUTURES
return CandleType.SPOT

View File

@@ -0,0 +1,17 @@
from freqtrade.enums.exittype import ExitType
class ExitCheckTuple:
"""
NamedTuple for Exit type + reason
"""
exit_type: ExitType
exit_reason: str = ''
def __init__(self, exit_type: ExitType, exit_reason: str = ''):
self.exit_type = exit_type
self.exit_reason = exit_reason or exit_type.value
@property
def exit_flag(self):
return self.exit_type != ExitType.NONE

View File

@@ -1,18 +1,18 @@
from enum import Enum
class SellType(Enum):
class ExitType(Enum):
"""
Enum to distinguish between sell reasons
Enum to distinguish between exit reasons
"""
ROI = "roi"
STOP_LOSS = "stop_loss"
STOPLOSS_ON_EXCHANGE = "stoploss_on_exchange"
TRAILING_STOP_LOSS = "trailing_stop_loss"
SELL_SIGNAL = "sell_signal"
FORCE_SELL = "force_sell"
EMERGENCY_SELL = "emergency_sell"
CUSTOM_SELL = "custom_sell"
EXIT_SIGNAL = "exit_signal"
FORCE_EXIT = "force_exit"
EMERGENCY_EXIT = "emergency_exit"
CUSTOM_EXIT = "custom_exit"
NONE = ""
def __str__(self):

View File

@@ -0,0 +1,12 @@
from enum import Enum
class MarginMode(Enum):
"""
Enum to distinguish between
cross margin/futures margin_mode and
isolated margin/futures margin_mode
"""
CROSS = "cross"
ISOLATED = "isolated"
NONE = ''

View File

@@ -5,12 +5,15 @@ class RPCMessageType(Enum):
STATUS = 'status'
WARNING = 'warning'
STARTUP = 'startup'
BUY = 'buy'
BUY_FILL = 'buy_fill'
BUY_CANCEL = 'buy_cancel'
SELL = 'sell'
SELL_FILL = 'sell_fill'
SELL_CANCEL = 'sell_cancel'
ENTRY = 'entry'
ENTRY_FILL = 'entry_fill'
ENTRY_CANCEL = 'entry_cancel'
EXIT = 'exit'
EXIT_FILL = 'exit_fill'
EXIT_CANCEL = 'exit_cancel'
PROTECTION_TRIGGER = 'protection_trigger'
PROTECTION_TRIGGER_GLOBAL = 'protection_trigger_global'

View File

@@ -3,15 +3,22 @@ from enum import Enum
class SignalType(Enum):
"""
Enum to distinguish between buy and sell signals
Enum to distinguish between enter and exit signals
"""
BUY = "buy"
SELL = "sell"
ENTER_LONG = "enter_long"
EXIT_LONG = "exit_long"
ENTER_SHORT = "enter_short"
EXIT_SHORT = "exit_short"
class SignalTagType(Enum):
"""
Enum for signal columns
"""
BUY_TAG = "buy_tag"
ENTER_TAG = "enter_tag"
EXIT_TAG = "exit_tag"
class SignalDirection(str, Enum):
LONG = 'long'
SHORT = 'short'

View File

@@ -0,0 +1,11 @@
from enum import Enum
class TradingMode(str, Enum):
"""
Enum to distinguish between
spot, margin, futures or any other trading method
"""
SPOT = "spot"
MARGIN = "margin"
FUTURES = "futures"

View File

@@ -20,4 +20,9 @@ class Bibox(Exchange):
# fetchCurrencies API point requires authentication for Bibox,
# so switch it off for Freqtrade load_markets()
_ccxt_config: Dict = {"has": {"fetchCurrencies": False}}
@property
def _ccxt_config(self) -> Dict:
# Parameters to add directly to ccxt sync/async initialization.
config = {"has": {"fetchCurrencies": False}}
config.update(super()._ccxt_config)
return config

View File

@@ -1,10 +1,18 @@
""" Binance exchange subclass """
import json
import logging
from typing import Dict, List, Tuple
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import arrow
import ccxt
from freqtrade.enums import CandleType, MarginMode, TradingMode
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier
from freqtrade.misc import deep_merge_dicts
logger = logging.getLogger(__name__)
@@ -21,30 +29,179 @@ class Binance(Exchange):
"trades_pagination": "id",
"trades_pagination_arg": "fromId",
"l2_limit_range": [5, 10, 20, 50, 100, 500, 1000],
"ccxt_futures_name": "future"
}
_ft_has_futures: Dict = {
"stoploss_order_types": {"limit": "stop"},
"tickers_have_price": False,
}
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
# TradingMode.SPOT always supported and not required in this list
# (TradingMode.MARGIN, MarginMode.CROSS),
# (TradingMode.FUTURES, MarginMode.CROSS),
(TradingMode.FUTURES, MarginMode.ISOLATED)
]
def stoploss_adjust(self, stop_loss: float, order: Dict, side: str) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
:param side: "buy" or "sell"
"""
return order['type'] == 'stop_loss_limit' and stop_loss > float(order['info']['stopPrice'])
ordertype = 'stop' if self.trading_mode == TradingMode.FUTURES else 'stop_loss_limit'
return order['type'] == ordertype and (
(side == "sell" and stop_loss > float(order['info']['stopPrice'])) or
(side == "buy" and stop_loss < float(order['info']['stopPrice']))
)
def get_tickers(self, symbols: List[str] = None, cached: bool = False) -> Dict:
tickers = super().get_tickers(symbols=symbols, cached=cached)
if self.trading_mode == TradingMode.FUTURES:
# Binance's future result has no bid/ask values.
# Therefore we must fetch that from fetch_bids_asks and combine the two results.
bidsasks = self.fetch_bids_asks(symbols, cached)
tickers = deep_merge_dicts(bidsasks, tickers, allow_null_overrides=False)
return tickers
@retrier
def _set_leverage(
self,
leverage: float,
pair: Optional[str] = None,
trading_mode: Optional[TradingMode] = None
):
"""
Set's the leverage before making a trade, in order to not
have the same leverage on every trade
"""
trading_mode = trading_mode or self.trading_mode
if self._config['dry_run'] or trading_mode != TradingMode.FUTURES:
return
try:
self._api.set_leverage(symbol=pair, leverage=round(leverage))
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
async def _async_get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int, is_new_pair: bool = False,
raise_: bool = False
) -> Tuple[str, str, List]:
since_ms: int, candle_type: CandleType,
is_new_pair: bool = False, raise_: bool = False,
) -> Tuple[str, str, str, List]:
"""
Overwrite to introduce "fast new pair" functionality by detecting the pair's listing date
Does not work for other exchanges, which don't return the earliest data when called with "0"
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
if is_new_pair:
x = await self._async_get_candle_history(pair, timeframe, 0)
if x and x[2] and x[2][0] and x[2][0][0] > since_ms:
x = await self._async_get_candle_history(pair, timeframe, candle_type, 0)
if x and x[3] and x[3][0] and x[3][0][0] > since_ms:
# Set starting date to first available candle.
since_ms = x[2][0][0]
since_ms = x[3][0][0]
logger.info(f"Candle-data for {pair} available starting with "
f"{arrow.get(since_ms // 1000).isoformat()}.")
return await super()._async_get_historic_ohlcv(
pair=pair, timeframe=timeframe, since_ms=since_ms, is_new_pair=is_new_pair,
raise_=raise_)
pair=pair,
timeframe=timeframe,
since_ms=since_ms,
is_new_pair=is_new_pair,
raise_=raise_,
candle_type=candle_type
)
def funding_fee_cutoff(self, open_date: datetime):
"""
:param open_date: The open date for a trade
:return: The cutoff open time for when a funding fee is charged
"""
return open_date.minute > 0 or (open_date.minute == 0 and open_date.second > 15)
def dry_run_liquidation_price(
self,
pair: str,
open_rate: float, # Entry price of position
is_short: bool,
position: float, # Absolute value of position size
wallet_balance: float, # Or margin balance
mm_ex_1: float = 0.0, # (Binance) Cross only
upnl_ex_1: float = 0.0, # (Binance) Cross only
) -> Optional[float]:
"""
MARGIN: https://www.binance.com/en/support/faq/f6b010588e55413aa58b7d63ee0125ed
PERPETUAL: https://www.binance.com/en/support/faq/b3c689c1f50a44cabb3a84e663b81d93
:param exchange_name:
:param open_rate: (EP1) Entry price of position
:param is_short: True if the trade is a short, false otherwise
:param position: Absolute value of position size (in base currency)
:param wallet_balance: (WB)
Cross-Margin Mode: crossWalletBalance
Isolated-Margin Mode: isolatedWalletBalance
:param maintenance_amt:
# * Only required for Cross
:param mm_ex_1: (TMM)
Cross-Margin Mode: Maintenance Margin of all other contracts, excluding Contract 1
Isolated-Margin Mode: 0
:param upnl_ex_1: (UPNL)
Cross-Margin Mode: Unrealized PNL of all other contracts, excluding Contract 1.
Isolated-Margin Mode: 0
"""
side_1 = -1 if is_short else 1
position = abs(position)
cross_vars = upnl_ex_1 - mm_ex_1 if self.margin_mode == MarginMode.CROSS else 0.0
# mm_ratio: Binance's formula specifies maintenance margin rate which is mm_ratio * 100%
# maintenance_amt: (CUM) Maintenance Amount of position
mm_ratio, maintenance_amt = self.get_maintenance_ratio_and_amt(pair, position)
if (maintenance_amt is None):
raise OperationalException(
"Parameter maintenance_amt is required by Binance.liquidation_price"
f"for {self.trading_mode.value}"
)
if self.trading_mode == TradingMode.FUTURES:
return (
(
(wallet_balance + cross_vars + maintenance_amt) -
(side_1 * position * open_rate)
) / (
(position * mm_ratio) - (side_1 * position)
)
)
else:
raise OperationalException(
"Freqtrade only supports isolated futures for leverage trading")
@retrier
def load_leverage_tiers(self) -> Dict[str, List[Dict]]:
if self.trading_mode == TradingMode.FUTURES:
if self._config['dry_run']:
leverage_tiers_path = (
Path(__file__).parent / 'binance_leverage_tiers.json'
)
with open(leverage_tiers_path) as json_file:
return json.load(json_file)
else:
try:
return self._api.fetch_leverage_tiers()
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(f'Could not fetch leverage amounts due to'
f'{e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
else:
return {}

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,8 @@
""" Bybit exchange subclass """
import logging
from typing import Dict
from typing import Dict, List, Tuple
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.exchange import Exchange
@@ -20,4 +21,11 @@ class Bybit(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 200,
"ccxt_futures_name": "linear"
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
# TradingMode.SPOT always supported and not required in this list
# (TradingMode.FUTURES, MarginMode.CROSS),
# (TradingMode.FUTURES, MarginMode.ISOLATED)
]

View File

@@ -35,9 +35,19 @@ BAD_EXCHANGES = {
MAP_EXCHANGE_CHILDCLASS = {
'binanceus': 'binance',
'binanceje': 'binance',
'binanceusdm': 'binance',
'okex': 'okx',
}
SUPPORTED_EXCHANGES = [
'binance',
'bittrex',
'ftx',
'gateio',
'huobi',
'kraken',
'okx',
]
EXCHANGE_HAS_REQUIRED = [
# Required / private
@@ -55,10 +65,17 @@ EXCHANGE_HAS_REQUIRED = [
EXCHANGE_HAS_OPTIONAL = [
# Private
'fetchMyTrades', # Trades for order - fee detection
# 'setLeverage', # Margin/Futures trading
# 'setMarginMode', # Margin/Futures trading
# 'fetchFundingHistory', # Futures trading
# Public
'fetchOrderBook', 'fetchL2OrderBook', 'fetchTicker', # OR for pricing
'fetchTickers', # For volumepairlist?
'fetchTrades', # Downloading trades data
# 'fetchFundingRateHistory', # Futures trading
# 'fetchPositions', # Futures trading
# 'fetchLeverageTiers', # Futures initialization
# 'fetchMarketLeverageTiers', # Futures initialization
]
@@ -85,7 +102,7 @@ def calculate_backoff(retrycount, max_retries):
def retrier_async(f):
async def wrapper(*args, **kwargs):
count = kwargs.pop('count', API_RETRY_COUNT)
kucoin = args[0].name == "Kucoin" # Check if the exchange is KuCoin.
kucoin = args[0].name == "KuCoin" # Check if the exchange is KuCoin.
try:
return await f(*args, **kwargs)
except TemporaryError as ex:

File diff suppressed because it is too large Load Diff

View File

@@ -1,9 +1,10 @@
""" FTX exchange subclass """
import logging
from typing import Any, Dict
from typing import Any, Dict, List, Tuple
import ccxt
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, InvalidOrderException,
OperationalException, TemporaryError)
from freqtrade.exchange import Exchange
@@ -20,27 +21,29 @@ class Ftx(Exchange):
"stoploss_on_exchange": True,
"ohlcv_candle_limit": 1500,
"ohlcv_volume_currency": "quote",
"mark_ohlcv_price": "index",
"mark_ohlcv_timeframe": "1h",
}
def market_is_tradable(self, market: Dict[str, Any]) -> bool:
"""
Check if the market symbol is tradable by Freqtrade.
Default checks + check if pair is spot pair (no futures trading yet).
"""
parent_check = super().market_is_tradable(market)
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
# TradingMode.SPOT always supported and not required in this list
# (TradingMode.MARGIN, MarginMode.CROSS),
# (TradingMode.FUTURES, MarginMode.CROSS)
]
return (parent_check and
market.get('spot', False) is True)
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
def stoploss_adjust(self, stop_loss: float, order: Dict, side: str) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
return order['type'] == 'stop' and stop_loss > float(order['price'])
return order['type'] == 'stop' and (
side == "sell" and stop_loss > float(order['price']) or
side == "buy" and stop_loss < float(order['price'])
)
@retrier(retries=0)
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
def stoploss(self, pair: str, amount: float, stop_price: float,
order_types: Dict, side: str, leverage: float) -> Dict:
"""
Creates a stoploss order.
depending on order_types.stoploss configuration, uses 'market' or limit order.
@@ -48,7 +51,10 @@ class Ftx(Exchange):
Limit orders are defined by having orderPrice set, otherwise a market order is used.
"""
limit_price_pct = order_types.get('stoploss_on_exchange_limit_ratio', 0.99)
limit_rate = stop_price * limit_price_pct
if side == "sell":
limit_rate = stop_price * limit_price_pct
else:
limit_rate = stop_price * (2 - limit_price_pct)
ordertype = "stop"
@@ -56,7 +62,7 @@ class Ftx(Exchange):
if self._config['dry_run']:
dry_order = self.create_dry_run_order(
pair, ordertype, "sell", amount, stop_price, stop_loss=True)
pair, ordertype, side, amount, stop_price, leverage, stop_loss=True)
return dry_order
try:
@@ -64,11 +70,14 @@ class Ftx(Exchange):
if order_types.get('stoploss', 'market') == 'limit':
# set orderPrice to place limit order, otherwise it's a market order
params['orderPrice'] = limit_rate
if self.trading_mode == TradingMode.FUTURES:
params.update({'reduceOnly': True})
params['stopPrice'] = stop_price
amount = self.amount_to_precision(pair, amount)
order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
self._lev_prep(pair, leverage, side)
order = self._api.create_order(symbol=pair, type=ordertype, side=side,
amount=amount, params=params)
self._log_exchange_response('create_stoploss_order', order)
logger.info('stoploss order added for %s. '
@@ -76,19 +85,19 @@ class Ftx(Exchange):
return order
except ccxt.InsufficientFunds as e:
raise InsufficientFundsError(
f'Insufficient funds to create {ordertype} sell order on market {pair}. '
f'Insufficient funds to create {ordertype} {side} order on market {pair}. '
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
f'Message: {e}') from e
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Could not create {ordertype} sell order on market {pair}. '
f'Could not create {ordertype} {side} order on market {pair}. '
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
f'Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}') from e
f'Could not place {side} order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e

View File

@@ -1,7 +1,9 @@
""" Gate.io exchange subclass """
import logging
from typing import Dict
from datetime import datetime
from typing import Dict, List, Optional, Tuple
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
@@ -26,12 +28,48 @@ class Gateio(Exchange):
"stoploss_on_exchange": True,
}
_ft_has_futures: Dict = {
"needs_trading_fees": True
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
# TradingMode.SPOT always supported and not required in this list
# (TradingMode.MARGIN, MarginMode.CROSS),
# (TradingMode.FUTURES, MarginMode.CROSS),
(TradingMode.FUTURES, MarginMode.ISOLATED)
]
def validate_ordertypes(self, order_types: Dict) -> None:
super().validate_ordertypes(order_types)
if any(v == 'market' for k, v in order_types.items()):
raise OperationalException(
f'Exchange {self.name} does not support market orders.')
if self.trading_mode != TradingMode.FUTURES:
if any(v == 'market' for k, v in order_types.items()):
raise OperationalException(
f'Exchange {self.name} does not support market orders.')
def get_trades_for_order(self, order_id: str, pair: str, since: datetime,
params: Optional[Dict] = None) -> List:
trades = super().get_trades_for_order(order_id, pair, since, params)
if self.trading_mode == TradingMode.FUTURES:
# Futures usually don't contain fees in the response.
# As such, futures orders on gateio will not contain a fee, which causes
# a repeated "update fee" cycle and wrong calculations.
# Therefore we patch the response with fees if it's not available.
# An alternative also contianing fees would be
# privateFuturesGetSettleAccountBook({"settle": "usdt"})
pair_fees = self._trading_fees.get(pair, {})
if pair_fees:
for idx, trade in enumerate(trades):
if trade.get('fee', {}).get('cost') is None:
takerOrMaker = trade.get('takerOrMaker', 'taker')
if pair_fees.get(takerOrMaker) is not None:
trades[idx]['fee'] = {
'currency': self.get_pair_quote_currency(pair),
'cost': trade['cost'] * pair_fees[takerOrMaker],
'rate': pair_fees[takerOrMaker],
}
return trades
def fetch_stoploss_order(self, order_id: str, pair: str, params={}) -> Dict:
return self.fetch_order(
@@ -47,9 +85,10 @@ class Gateio(Exchange):
params={'stop': True}
)
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
def stoploss_adjust(self, stop_loss: float, order: Dict, side: str) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
return stop_loss > float(order['stopPrice'])
return ((side == "sell" and stop_loss > float(order['stopPrice'])) or
(side == "buy" and stop_loss < float(order['stopPrice'])))

View File

@@ -22,7 +22,7 @@ class Huobi(Exchange):
"l2_limit_range_required": False,
}
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
def stoploss_adjust(self, stop_loss: float, order: Dict, side: str) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.

View File

@@ -1,9 +1,12 @@
""" Kraken exchange subclass """
import logging
from typing import Any, Dict, List
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
import ccxt
from pandas import DataFrame
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, InvalidOrderException,
OperationalException, TemporaryError)
from freqtrade.exchange import Exchange
@@ -21,8 +24,15 @@ class Kraken(Exchange):
"ohlcv_candle_limit": 720,
"trades_pagination": "id",
"trades_pagination_arg": "since",
"mark_ohlcv_timeframe": "4h",
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
# TradingMode.SPOT always supported and not required in this list
# (TradingMode.MARGIN, MarginMode.CROSS),
# (TradingMode.FUTURES, MarginMode.CROSS)
]
def market_is_tradable(self, market: Dict[str, Any]) -> bool:
"""
Check if the market symbol is tradable by Freqtrade.
@@ -73,16 +83,19 @@ class Kraken(Exchange):
except ccxt.BaseError as e:
raise OperationalException(e) from e
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
def stoploss_adjust(self, stop_loss: float, order: Dict, side: str) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
return (order['type'] in ('stop-loss', 'stop-loss-limit')
and stop_loss > float(order['price']))
return (order['type'] in ('stop-loss', 'stop-loss-limit') and (
(side == "sell" and stop_loss > float(order['price'])) or
(side == "buy" and stop_loss < float(order['price']))
))
@retrier(retries=0)
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
def stoploss(self, pair: str, amount: float, stop_price: float,
order_types: Dict, side: str, leverage: float) -> Dict:
"""
Creates a stoploss market order.
Stoploss market orders is the only stoploss type supported by kraken.
@@ -90,11 +103,16 @@ class Kraken(Exchange):
(careful, prices are reversed)
"""
params = self._params.copy()
if self.trading_mode == TradingMode.FUTURES:
params.update({'reduceOnly': True})
if order_types.get('stoploss', 'market') == 'limit':
ordertype = "stop-loss-limit"
limit_price_pct = order_types.get('stoploss_on_exchange_limit_ratio', 0.99)
limit_rate = stop_price * limit_price_pct
if side == "sell":
limit_rate = stop_price * limit_price_pct
else:
limit_rate = stop_price * (2 - limit_price_pct)
params['price2'] = self.price_to_precision(pair, limit_rate)
else:
ordertype = "stop-loss"
@@ -103,13 +121,13 @@ class Kraken(Exchange):
if self._config['dry_run']:
dry_order = self.create_dry_run_order(
pair, ordertype, "sell", amount, stop_price, stop_loss=True)
pair, ordertype, side, amount, stop_price, leverage, stop_loss=True)
return dry_order
try:
amount = self.amount_to_precision(pair, amount)
order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
order = self._api.create_order(symbol=pair, type=ordertype, side=side,
amount=amount, price=stop_price, params=params)
self._log_exchange_response('create_stoploss_order', order)
logger.info('stoploss order added for %s. '
@@ -117,18 +135,81 @@ class Kraken(Exchange):
return order
except ccxt.InsufficientFunds as e:
raise InsufficientFundsError(
f'Insufficient funds to create {ordertype} sell order on market {pair}. '
f'Insufficient funds to create {ordertype} {side} order on market {pair}. '
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
f'Message: {e}') from e
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Could not create {ordertype} sell order on market {pair}. '
f'Could not create {ordertype} {side} order on market {pair}. '
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
f'Message: {e}') from e
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}') from e
f'Could not place {side} order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def _set_leverage(
self,
leverage: float,
pair: Optional[str] = None,
trading_mode: Optional[TradingMode] = None
):
"""
Kraken set's the leverage as an option in the order object, so we need to
add it to params
"""
return
def _get_params(
self,
ordertype: str,
leverage: float,
reduceOnly: bool,
time_in_force: str = 'gtc'
) -> Dict:
params = super()._get_params(
ordertype=ordertype,
leverage=leverage,
reduceOnly=reduceOnly,
time_in_force=time_in_force,
)
if leverage > 1.0:
params['leverage'] = round(leverage)
return params
def calculate_funding_fees(
self,
df: DataFrame,
amount: float,
is_short: bool,
open_date: datetime,
close_date: Optional[datetime] = None,
time_in_ratio: Optional[float] = None
) -> float:
"""
# ! This method will always error when run by Freqtrade because time_in_ratio is never
# ! passed to _get_funding_fee. For kraken futures to work in dry run and backtesting
# ! functionality must be added that passes the parameter time_in_ratio to
# ! _get_funding_fee when using Kraken
calculates the sum of all funding fees that occurred for a pair during a futures trade
:param df: Dataframe containing combined funding and mark rates
as `open_fund` and `open_mark`.
:param amount: The quantity of the trade
:param is_short: trade direction
:param open_date: The date and time that the trade started
:param close_date: The date and time that the trade ended
:param time_in_ratio: Not used by most exchange classes
"""
if not time_in_ratio:
raise OperationalException(
f"time_in_ratio is required for {self.name}._get_funding_fee")
fees: float = 0
if not df.empty:
df = df[(df['date'] >= open_date) & (df['date'] <= close_date)]
fees = sum(df['open_fund'] * df['open_mark'] * amount * time_in_ratio)
return fees if is_short else -fees

View File

@@ -28,7 +28,7 @@ class Kucoin(Exchange):
"ohlcv_candle_limit": 1500,
}
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
def stoploss_adjust(self, stop_loss: float, order: Dict, side: str) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.

View File

@@ -1,7 +1,12 @@
import logging
from typing import Dict
from typing import Dict, List, Tuple
import ccxt
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier
logger = logging.getLogger(__name__)
@@ -15,4 +20,69 @@ class Okx(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 300,
"mark_ohlcv_timeframe": "4h",
"funding_fee_timeframe": "8h",
}
_ft_has_futures: Dict = {
"tickers_have_quoteVolume": False,
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
# TradingMode.SPOT always supported and not required in this list
# (TradingMode.MARGIN, MarginMode.CROSS),
# (TradingMode.FUTURES, MarginMode.CROSS),
(TradingMode.FUTURES, MarginMode.ISOLATED),
]
def _get_params(
self,
ordertype: str,
leverage: float,
reduceOnly: bool,
time_in_force: str = 'gtc',
) -> Dict:
params = super()._get_params(
ordertype=ordertype,
leverage=leverage,
reduceOnly=reduceOnly,
time_in_force=time_in_force,
)
if self.trading_mode == TradingMode.FUTURES and self.margin_mode:
params['tdMode'] = self.margin_mode.value
return params
@retrier
def _lev_prep(self, pair: str, leverage: float, side: str):
if self.trading_mode != TradingMode.SPOT and self.margin_mode is not None:
try:
# TODO-lev: Test me properly (check mgnMode passed)
self._api.set_leverage(
leverage=leverage,
symbol=pair,
params={
"mgnMode": self.margin_mode.value,
# "posSide": "net"",
})
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def get_max_pair_stake_amount(
self,
pair: str,
price: float,
leverage: float = 1.0
) -> float:
if self.trading_mode == TradingMode.SPOT:
return float('inf') # Not actually inf, but this probably won't matter for SPOT
if pair not in self._leverage_tiers:
return float('inf')
pair_tiers = self._leverage_tiers[pair]
return pair_tiers[-1]['max'] / leverage

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,2 @@
# flake8: noqa: F401
from freqtrade.leverage.interest import interest

View File

@@ -0,0 +1,43 @@
from decimal import Decimal
from math import ceil
from freqtrade.exceptions import OperationalException
one = Decimal(1.0)
four = Decimal(4.0)
twenty_four = Decimal(24.0)
def interest(
exchange_name: str,
borrowed: Decimal,
rate: Decimal,
hours: Decimal
) -> Decimal:
"""
Equation to calculate interest on margin trades
:param exchange_name: The exchanged being trading on
:param borrowed: The amount of currency being borrowed
:param rate: The rate of interest (i.e daily interest rate)
:param hours: The time in hours that the currency has been borrowed for
Raises:
OperationalException: Raised if freqtrade does
not support margin trading for this exchange
Returns: The amount of interest owed (currency matches borrowed)
"""
exchange_name = exchange_name.lower()
if exchange_name == "binance":
return borrowed * rate * ceil(hours) / twenty_four
elif exchange_name == "kraken":
# Rounded based on https://kraken-fees-calculator.github.io/
return borrowed * rate * (one + ceil(hours / four))
elif exchange_name == "ftx":
# As Explained under #Interest rates section in
# https://help.ftx.com/hc/en-us/articles/360053007671-Spot-Margin-Trading-Explainer
return borrowed * rate * ceil(hours) / twenty_four
else:
raise OperationalException(f"Leverage not available on {exchange_name} with freqtrade")

View File

@@ -116,7 +116,7 @@ def file_load_json(file):
def pair_to_filename(pair: str) -> str:
for ch in ['/', '-', ' ', '.', '@', '$', '+', ':']:
for ch in ['/', ' ', '.', '@', '$', '+', ':']:
pair = pair.replace(ch, '_')
return pair
@@ -126,10 +126,10 @@ def format_ms_time(date: int) -> str:
convert MS date to readable format.
: epoch-string in ms
"""
return datetime.fromtimestamp(date/1000.0).strftime('%Y-%m-%dT%H:%M:%S')
return datetime.fromtimestamp(date / 1000.0).strftime('%Y-%m-%dT%H:%M:%S')
def deep_merge_dicts(source, destination):
def deep_merge_dicts(source, destination, allow_null_overrides: bool = True):
"""
Values from Source override destination, destination is returned (and modified!!)
Sample:
@@ -142,8 +142,8 @@ def deep_merge_dicts(source, destination):
if isinstance(value, dict):
# get node or create one
node = destination.setdefault(key, {})
deep_merge_dicts(value, node)
else:
deep_merge_dicts(value, node, allow_null_overrides)
elif value is not None or allow_null_overrides:
destination[key] = value
return destination

View File

@@ -9,16 +9,17 @@ from copy import deepcopy
from datetime import datetime, timedelta, timezone
from typing import Any, Dict, List, Optional, Tuple
from numpy import nan
from pandas import DataFrame
from freqtrade import constants
from freqtrade.configuration import TimeRange, validate_config_consistency
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.constants import DATETIME_PRINT_FORMAT, LongShort
from freqtrade.data import history
from freqtrade.data.btanalysis import find_existing_backtest_stats, trade_list_to_dataframe
from freqtrade.data.converter import trim_dataframe, trim_dataframes
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import BacktestState, SellType
from freqtrade.enums import BacktestState, CandleType, ExitCheckTuple, ExitType, TradingMode
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.misc import get_strategy_run_id
@@ -30,7 +31,7 @@ from freqtrade.persistence import LocalTrade, Order, PairLocks, Trade
from freqtrade.plugins.pairlistmanager import PairListManager
from freqtrade.plugins.protectionmanager import ProtectionManager
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.strategy.interface import IStrategy, SellCheckTuple
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.wallets import Wallets
@@ -39,14 +40,16 @@ logger = logging.getLogger(__name__)
# Indexes for backtest tuples
DATE_IDX = 0
BUY_IDX = 1
OPEN_IDX = 2
CLOSE_IDX = 3
SELL_IDX = 4
LOW_IDX = 5
HIGH_IDX = 6
BUY_TAG_IDX = 7
EXIT_TAG_IDX = 8
OPEN_IDX = 1
HIGH_IDX = 2
LOW_IDX = 3
CLOSE_IDX = 4
LONG_IDX = 5
ELONG_IDX = 6 # Exit long
SHORT_IDX = 7
ESHORT_IDX = 8 # Exit short
ENTER_TAG_IDX = 9
EXIT_TAG_IDX = 10
class Backtesting:
@@ -70,8 +73,8 @@ class Backtesting:
self.run_ids: Dict[str, str] = {}
self.strategylist: List[IStrategy] = []
self.all_results: Dict[str, Dict] = {}
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
self._exchange_name = self.config['exchange']['name']
self.exchange = ExchangeResolver.load_exchange(self._exchange_name, self.config)
self.dataprovider = DataProvider(self.config, self.exchange)
if self.config.get('strategy_list', None):
@@ -123,6 +126,11 @@ class Backtesting:
# Add maximum startup candle count to configuration for informative pairs support
self.config['startup_candle_count'] = self.required_startup
self.exchange.validate_required_startup_candles(self.required_startup, self.timeframe)
self.trading_mode: TradingMode = config.get('trading_mode', TradingMode.SPOT)
# strategies which define "can_short=True" will fail to load in Spot mode.
self._can_short = self.trading_mode != TradingMode.SPOT
self.init_backtest()
def __del__(self):
@@ -146,6 +154,7 @@ class Backtesting:
else:
self.timeframe_detail_min = 0
self.detail_data: Dict[str, DataFrame] = {}
self.futures_data: Dict[str, DataFrame] = {}
def init_backtest(self):
@@ -192,6 +201,7 @@ class Backtesting:
startup_candles=self.required_startup,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=self.config.get('candle_type_def', CandleType.SPOT)
)
min_date, max_date = history.get_timerange(data)
@@ -220,9 +230,41 @@ class Backtesting:
startup_candles=0,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=self.config.get('candle_type_def', CandleType.SPOT)
)
else:
self.detail_data = {}
if self.trading_mode == TradingMode.FUTURES:
# Load additional futures data.
funding_rates_dict = history.load_data(
datadir=self.config['datadir'],
pairs=self.pairlists.whitelist,
timeframe=self.exchange._ft_has['mark_ohlcv_timeframe'],
timerange=self.timerange,
startup_candles=0,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=CandleType.FUNDING_RATE
)
# For simplicity, assign to CandleType.Mark (might contian index candles!)
mark_rates_dict = history.load_data(
datadir=self.config['datadir'],
pairs=self.pairlists.whitelist,
timeframe=self.exchange._ft_has['mark_ohlcv_timeframe'],
timerange=self.timerange,
startup_candles=0,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
candle_type=CandleType.from_string(self.exchange._ft_has["mark_ohlcv_price"])
)
# Combine data to avoid combining the data per trade.
for pair in self.pairlists.whitelist:
self.futures_data[pair] = funding_rates_dict[pair].merge(
mark_rates_dict[pair], on='date', how="inner", suffixes=["_fund", "_mark"])
else:
self.futures_data = {}
def prepare_backtest(self, enable_protections):
"""
@@ -260,7 +302,8 @@ class Backtesting:
"""
# Every change to this headers list must evaluate further usages of the resulting tuple
# and eventually change the constants for indexes at the top
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high', 'buy_tag', 'exit_tag']
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
'enter_short', 'exit_short', 'enter_tag', 'exit_tag']
data: Dict = {}
self.progress.init_step(BacktestState.CONVERT, len(processed))
@@ -269,19 +312,21 @@ class Backtesting:
pair_data = processed[pair]
self.check_abort()
self.progress.increment()
if not pair_data.empty:
pair_data.loc[:, 'buy'] = 0 # cleanup if buy_signal is exist
pair_data.loc[:, 'sell'] = 0 # cleanup if sell_signal is exist
pair_data.loc[:, 'buy_tag'] = None # cleanup if buy_tag is exist
pair_data.loc[:, 'exit_tag'] = None # cleanup if exit_tag is exist
df_analyzed = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair}).copy()
if not pair_data.empty:
# Cleanup from prior runs
pair_data.drop(headers[5:] + ['buy', 'sell'], axis=1, errors='ignore')
df_analyzed = self.strategy.advise_exit(
self.strategy.advise_entry(pair_data, {'pair': pair}),
{'pair': pair}
).copy()
# Trim startup period from analyzed dataframe
df_analyzed = processed[pair] = pair_data = trim_dataframe(
df_analyzed, self.timerange, startup_candles=self.required_startup)
# Update dataprovider cache
self.dataprovider._set_cached_df(pair, self.timeframe, df_analyzed)
self.dataprovider._set_cached_df(
pair, self.timeframe, df_analyzed, self.config['candle_type_def'])
# Create a copy of the dataframe before shifting, that way the buy signal/tag
# remains on the correct candle for callbacks.
@@ -289,112 +334,158 @@ class Backtesting:
# To avoid using data from future, we use buy/sell signals shifted
# from the previous candle
df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1)
df_analyzed.loc[:, 'buy_tag'] = df_analyzed.loc[:, 'buy_tag'].shift(1)
df_analyzed.loc[:, 'exit_tag'] = df_analyzed.loc[:, 'exit_tag'].shift(1)
for col in headers[5:]:
tag_col = col in ('enter_tag', 'exit_tag')
if col in df_analyzed.columns:
df_analyzed.loc[:, col] = df_analyzed.loc[:, col].replace(
[nan], [0 if not tag_col else None]).shift(1)
elif not df_analyzed.empty:
df_analyzed.loc[:, col] = 0 if not tag_col else None
df_analyzed = df_analyzed.drop(df_analyzed.head(1).index)
# Convert from Pandas to list for performance reasons
# (Looping Pandas is slow.)
data[pair] = df_analyzed[headers].values.tolist()
data[pair] = df_analyzed[headers].values.tolist() if not df_analyzed.empty else []
return data
def _get_close_rate(self, sell_row: Tuple, trade: LocalTrade, sell: SellCheckTuple,
def _get_close_rate(self, row: Tuple, trade: LocalTrade, sell: ExitCheckTuple,
trade_dur: int) -> float:
"""
Get close rate for backtesting result
"""
# Special handling if high or low hit STOP_LOSS or ROI
if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
if trade.stop_loss > sell_row[HIGH_IDX]:
# our stoploss was already higher than candle high,
# possibly due to a cancelled trade exit.
# sell at open price.
return sell_row[OPEN_IDX]
# Special case: trailing triggers within same candle as trade opened. Assume most
# pessimistic price movement, which is moving just enough to arm stoploss and
# immediately going down to stop price.
if sell.sell_type == SellType.TRAILING_STOP_LOSS and trade_dur == 0:
if (
not self.strategy.use_custom_stoploss and self.strategy.trailing_stop
and self.strategy.trailing_only_offset_is_reached
and self.strategy.trailing_stop_positive_offset is not None
and self.strategy.trailing_stop_positive
):
# Worst case: price reaches stop_positive_offset and dives down.
stop_rate = (sell_row[OPEN_IDX] *
(1 + abs(self.strategy.trailing_stop_positive_offset) -
abs(self.strategy.trailing_stop_positive)))
else:
# Worst case: price ticks tiny bit above open and dives down.
stop_rate = sell_row[OPEN_IDX] * (1 - abs(trade.stop_loss_pct))
assert stop_rate < sell_row[HIGH_IDX]
# Limit lower-end to candle low to avoid sells below the low.
# This still remains "worst case" - but "worst realistic case".
return max(sell_row[LOW_IDX], stop_rate)
# Set close_rate to stoploss
return trade.stop_loss
elif sell.sell_type == (SellType.ROI):
roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur)
if roi is not None and roi_entry is not None:
if roi == -1 and roi_entry % self.timeframe_min == 0:
# When forceselling with ROI=-1, the roi time will always be equal to trade_dur.
# If that entry is a multiple of the timeframe (so on candle open)
# - we'll use open instead of close
return sell_row[OPEN_IDX]
# - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
close_rate = - (trade.open_rate * roi + trade.open_rate *
(1 + trade.fee_open)) / (trade.fee_close - 1)
if (trade_dur > 0 and trade_dur == roi_entry
and roi_entry % self.timeframe_min == 0
and sell_row[OPEN_IDX] > close_rate):
# new ROI entry came into effect.
# use Open rate if open_rate > calculated sell rate
return sell_row[OPEN_IDX]
if (
trade_dur == 0
# Red candle (for longs), TODO: green candle (for shorts)
and sell_row[OPEN_IDX] > sell_row[CLOSE_IDX] # Red candle
and trade.open_rate < sell_row[OPEN_IDX] # trade-open below open_rate
and close_rate > sell_row[CLOSE_IDX]
):
# ROI on opening candles with custom pricing can only
# trigger if the entry was at Open or lower.
# details: https: // github.com/freqtrade/freqtrade/issues/6261
# If open_rate is < open, only allow sells below the close on red candles.
raise ValueError("Opening candle ROI on red candles.")
# Use the maximum between close_rate and low as we
# cannot sell outside of a candle.
# Applies when a new ROI setting comes in place and the whole candle is above that.
return min(max(close_rate, sell_row[LOW_IDX]), sell_row[HIGH_IDX])
else:
# This should not be reached...
return sell_row[OPEN_IDX]
if sell.exit_type in (ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS):
return self._get_close_rate_for_stoploss(row, trade, sell, trade_dur)
elif sell.exit_type == (ExitType.ROI):
return self._get_close_rate_for_roi(row, trade, sell, trade_dur)
else:
return sell_row[OPEN_IDX]
return row[OPEN_IDX]
def _get_close_rate_for_stoploss(self, row: Tuple, trade: LocalTrade, sell: ExitCheckTuple,
trade_dur: int) -> float:
# our stoploss was already lower than candle high,
# possibly due to a cancelled trade exit.
# sell at open price.
is_short = trade.is_short or False
leverage = trade.leverage or 1.0
side_1 = -1 if is_short else 1
if is_short:
if trade.stop_loss < row[LOW_IDX]:
return row[OPEN_IDX]
else:
if trade.stop_loss > row[HIGH_IDX]:
return row[OPEN_IDX]
# Special case: trailing triggers within same candle as trade opened. Assume most
# pessimistic price movement, which is moving just enough to arm stoploss and
# immediately going down to stop price.
if sell.exit_type == ExitType.TRAILING_STOP_LOSS and trade_dur == 0:
if (
not self.strategy.use_custom_stoploss and self.strategy.trailing_stop
and self.strategy.trailing_only_offset_is_reached
and self.strategy.trailing_stop_positive_offset is not None
and self.strategy.trailing_stop_positive
):
# Worst case: price reaches stop_positive_offset and dives down.
stop_rate = (row[OPEN_IDX] *
(1 + side_1 * abs(self.strategy.trailing_stop_positive_offset) -
side_1 * abs(self.strategy.trailing_stop_positive / leverage)))
else:
# Worst case: price ticks tiny bit above open and dives down.
stop_rate = row[OPEN_IDX] * (1 - side_1 * abs(trade.stop_loss_pct / leverage))
if is_short:
assert stop_rate > row[LOW_IDX]
else:
assert stop_rate < row[HIGH_IDX]
# Limit lower-end to candle low to avoid sells below the low.
# This still remains "worst case" - but "worst realistic case".
if is_short:
return min(row[HIGH_IDX], stop_rate)
else:
return max(row[LOW_IDX], stop_rate)
# Set close_rate to stoploss
return trade.stop_loss
def _get_close_rate_for_roi(self, row: Tuple, trade: LocalTrade, sell: ExitCheckTuple,
trade_dur: int) -> float:
is_short = trade.is_short or False
leverage = trade.leverage or 1.0
side_1 = -1 if is_short else 1
roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur)
if roi is not None and roi_entry is not None:
if roi == -1 and roi_entry % self.timeframe_min == 0:
# When force_exiting with ROI=-1, the roi time will always be equal to trade_dur.
# If that entry is a multiple of the timeframe (so on candle open)
# - we'll use open instead of close
return row[OPEN_IDX]
# - (Expected abs profit - open_rate - open_fee) / (fee_close -1)
roi_rate = trade.open_rate * roi / leverage
open_fee_rate = side_1 * trade.open_rate * (1 + side_1 * trade.fee_open)
close_rate = -(roi_rate + open_fee_rate) / (trade.fee_close - side_1 * 1)
if is_short:
is_new_roi = row[OPEN_IDX] < close_rate
else:
is_new_roi = row[OPEN_IDX] > close_rate
if (trade_dur > 0 and trade_dur == roi_entry
and roi_entry % self.timeframe_min == 0
and is_new_roi):
# new ROI entry came into effect.
# use Open rate if open_rate > calculated sell rate
return row[OPEN_IDX]
if (trade_dur == 0 and (
(
is_short
# Red candle (for longs)
and row[OPEN_IDX] < row[CLOSE_IDX] # Red candle
and trade.open_rate > row[OPEN_IDX] # trade-open above open_rate
and close_rate < row[CLOSE_IDX] # closes below close
)
or
(
not is_short
# green candle (for shorts)
and row[OPEN_IDX] > row[CLOSE_IDX] # green candle
and trade.open_rate < row[OPEN_IDX] # trade-open below open_rate
and close_rate > row[CLOSE_IDX] # closes above close
)
)):
# ROI on opening candles with custom pricing can only
# trigger if the entry was at Open or lower wick.
# details: https: // github.com/freqtrade/freqtrade/issues/6261
# If open_rate is < open, only allow sells below the close on red candles.
raise ValueError("Opening candle ROI on red candles.")
# Use the maximum between close_rate and low as we
# cannot sell outside of a candle.
# Applies when a new ROI setting comes in place and the whole candle is above that.
return min(max(close_rate, row[LOW_IDX]), row[HIGH_IDX])
else:
# This should not be reached...
return row[OPEN_IDX]
def _get_adjust_trade_entry_for_candle(self, trade: LocalTrade, row: Tuple
) -> LocalTrade:
current_profit = trade.calc_profit_ratio(row[OPEN_IDX])
min_stake = self.exchange.get_min_pair_stake_amount(trade.pair, row[OPEN_IDX], -0.1)
max_stake = self.wallets.get_available_stake_amount()
max_stake = self.exchange.get_max_pair_stake_amount(trade.pair, row[OPEN_IDX])
stake_available = self.wallets.get_available_stake_amount()
stake_amount = strategy_safe_wrapper(self.strategy.adjust_trade_position,
default_retval=None)(
trade=trade, current_time=row[DATE_IDX].to_pydatetime(), current_rate=row[OPEN_IDX],
current_profit=current_profit, min_stake=min_stake, max_stake=max_stake)
current_profit=current_profit, min_stake=min_stake,
max_stake=min(max_stake, stake_available))
# Check if we should increase our position
if stake_amount is not None and stake_amount > 0.0:
pos_trade = self._enter_trade(trade.pair, row, stake_amount, trade)
pos_trade = self._enter_trade(
trade.pair, row, 'short' if trade.is_short else 'long', stake_amount, trade)
if pos_trade is not None:
self.wallets.update()
return pos_trade
@@ -406,35 +497,38 @@ class Backtesting:
return row[LOW_IDX] <= rate <= row[HIGH_IDX]
def _get_sell_trade_entry_for_candle(self, trade: LocalTrade,
sell_row: Tuple) -> Optional[LocalTrade]:
row: Tuple) -> Optional[LocalTrade]:
# Check if we need to adjust our current positions
if self.strategy.position_adjustment_enable:
check_adjust_buy = True
check_adjust_entry = True
if self.strategy.max_entry_position_adjustment > -1:
count_of_buys = trade.nr_of_successful_buys
check_adjust_buy = (count_of_buys <= self.strategy.max_entry_position_adjustment)
if check_adjust_buy:
trade = self._get_adjust_trade_entry_for_candle(trade, sell_row)
entry_count = trade.nr_of_successful_entries
check_adjust_entry = (entry_count <= self.strategy.max_entry_position_adjustment)
if check_adjust_entry:
trade = self._get_adjust_trade_entry_for_candle(trade, row)
sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], # type: ignore
sell_candle_time, sell_row[BUY_IDX],
sell_row[SELL_IDX],
low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX])
sell_candle_time: datetime = row[DATE_IDX].to_pydatetime()
enter = row[SHORT_IDX] if trade.is_short else row[LONG_IDX]
exit_ = row[ESHORT_IDX] if trade.is_short else row[ELONG_IDX]
sell = self.strategy.should_exit(
trade, row[OPEN_IDX], sell_candle_time, # type: ignore
enter=enter, exit_=exit_,
low=row[LOW_IDX], high=row[HIGH_IDX]
)
if sell.sell_flag:
if sell.exit_flag:
trade.close_date = sell_candle_time
trade_dur = int((trade.close_date_utc - trade.open_date_utc).total_seconds() // 60)
try:
closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)
closerate = self._get_close_rate(row, trade, sell, trade_dur)
except ValueError:
return None
# call the custom exit price,with default value as previous closerate
current_profit = trade.calc_profit_ratio(closerate)
order_type = self.strategy.order_types['sell']
if sell.sell_type in (SellType.SELL_SIGNAL, SellType.CUSTOM_SELL):
order_type = self.strategy.order_types['exit']
if sell.exit_type in (ExitType.EXIT_SIGNAL, ExitType.CUSTOM_EXIT):
# Custom exit pricing only for sell-signals
if order_type == 'limit':
closerate = strategy_safe_wrapper(self.strategy.custom_exit_price,
@@ -444,28 +538,32 @@ class Backtesting:
proposed_rate=closerate, current_profit=current_profit)
# We can't place orders lower than current low.
# freqtrade does not support this in live, and the order would fill immediately
closerate = max(closerate, sell_row[LOW_IDX])
if trade.is_short:
closerate = min(closerate, row[HIGH_IDX])
else:
closerate = max(closerate, row[LOW_IDX])
# Confirm trade exit:
time_in_force = self.strategy.order_time_in_force['sell']
time_in_force = self.strategy.order_time_in_force['exit']
if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)(
pair=trade.pair, trade=trade, order_type='limit', amount=trade.amount,
rate=closerate,
time_in_force=time_in_force,
sell_reason=sell.sell_reason,
sell_reason=sell.exit_reason, # deprecated
exit_reason=sell.exit_reason,
current_time=sell_candle_time):
return None
trade.sell_reason = sell.sell_reason
trade.exit_reason = sell.exit_reason
# Checks and adds an exit tag, after checking that the length of the
# sell_row has the length for an exit tag column
# row has the length for an exit tag column
if(
len(sell_row) > EXIT_TAG_IDX
and sell_row[EXIT_TAG_IDX] is not None
and len(sell_row[EXIT_TAG_IDX]) > 0
len(row) > EXIT_TAG_IDX
and row[EXIT_TAG_IDX] is not None
and len(row[EXIT_TAG_IDX]) > 0
):
trade.sell_reason = sell_row[EXIT_TAG_IDX]
trade.exit_reason = row[EXIT_TAG_IDX]
self.order_id_counter += 1
order = Order(
@@ -477,8 +575,8 @@ class Backtesting:
ft_pair=trade.pair,
order_id=str(self.order_id_counter),
symbol=trade.pair,
ft_order_side="sell",
side="sell",
ft_order_side=trade.exit_side,
side=trade.exit_side,
order_type=order_type,
status="open",
price=closerate,
@@ -493,9 +591,19 @@ class Backtesting:
return None
def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]:
def _get_sell_trade_entry(self, trade: LocalTrade, row: Tuple) -> Optional[LocalTrade]:
sell_candle_time: datetime = row[DATE_IDX].to_pydatetime()
if self.trading_mode == TradingMode.FUTURES:
trade.funding_fees = self.exchange.calculate_funding_fees(
self.futures_data[trade.pair],
amount=trade.amount,
is_short=trade.is_short,
open_date=trade.open_date_utc,
close_date=sell_candle_time,
)
if self.timeframe_detail and trade.pair in self.detail_data:
sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
sell_candle_end = sell_candle_time + timedelta(minutes=self.timeframe_min)
detail_data = self.detail_data[trade.pair]
@@ -505,12 +613,15 @@ class Backtesting:
].copy()
if len(detail_data) == 0:
# Fall back to "regular" data if no detail data was found for this candle
return self._get_sell_trade_entry_for_candle(trade, sell_row)
detail_data.loc[:, 'buy'] = sell_row[BUY_IDX]
detail_data.loc[:, 'sell'] = sell_row[SELL_IDX]
detail_data.loc[:, 'buy_tag'] = sell_row[BUY_TAG_IDX]
detail_data.loc[:, 'exit_tag'] = sell_row[EXIT_TAG_IDX]
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high', 'buy_tag', 'exit_tag']
return self._get_sell_trade_entry_for_candle(trade, row)
detail_data.loc[:, 'enter_long'] = row[LONG_IDX]
detail_data.loc[:, 'exit_long'] = row[ELONG_IDX]
detail_data.loc[:, 'enter_short'] = row[SHORT_IDX]
detail_data.loc[:, 'exit_short'] = row[ESHORT_IDX]
detail_data.loc[:, 'enter_tag'] = row[ENTER_TAG_IDX]
detail_data.loc[:, 'exit_tag'] = row[EXIT_TAG_IDX]
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
'enter_short', 'exit_short', 'enter_tag', 'exit_tag']
for det_row in detail_data[headers].values.tolist():
res = self._get_sell_trade_entry_for_candle(trade, det_row)
if res:
@@ -519,60 +630,108 @@ class Backtesting:
return None
else:
return self._get_sell_trade_entry_for_candle(trade, sell_row)
return self._get_sell_trade_entry_for_candle(trade, row)
def _enter_trade(self, pair: str, row: Tuple, stake_amount: Optional[float] = None,
trade: Optional[LocalTrade] = None) -> Optional[LocalTrade]:
def get_valid_price_and_stake(
self, pair: str, row: Tuple, propose_rate: float, stake_amount: Optional[float],
direction: LongShort, current_time: datetime, entry_tag: Optional[str],
trade: Optional[LocalTrade], order_type: str
) -> Tuple[float, float, float, float]:
current_time = row[DATE_IDX].to_pydatetime()
entry_tag = row[BUY_TAG_IDX] if len(row) >= BUY_TAG_IDX + 1 else None
# let's call the custom entry price, using the open price as default price
order_type = self.strategy.order_types['buy']
propose_rate = row[OPEN_IDX]
if order_type == 'limit':
propose_rate = strategy_safe_wrapper(self.strategy.custom_entry_price,
default_retval=row[OPEN_IDX])(
default_retval=propose_rate)(
pair=pair, current_time=current_time,
proposed_rate=propose_rate, entry_tag=entry_tag) # default value is the open rate
proposed_rate=propose_rate, entry_tag=entry_tag,
side=direction,
) # default value is the open rate
# We can't place orders higher than current high (otherwise it'd be a stop limit buy)
# which freqtrade does not support in live.
propose_rate = min(propose_rate, row[HIGH_IDX])
min_stake_amount = self.exchange.get_min_pair_stake_amount(pair, propose_rate, -0.05) or 0
max_stake_amount = self.wallets.get_available_stake_amount()
if direction == "short":
propose_rate = max(propose_rate, row[LOW_IDX])
else:
propose_rate = min(propose_rate, row[HIGH_IDX])
pos_adjust = trade is not None
leverage = trade.leverage if trade else 1.0
if not pos_adjust:
try:
stake_amount = self.wallets.get_trade_stake_amount(pair, None, update=False)
except DependencyException:
return None
return 0, 0, 0, 0
max_leverage = self.exchange.get_max_leverage(pair, stake_amount)
leverage = strategy_safe_wrapper(self.strategy.leverage, default_retval=1.0)(
pair=pair,
current_time=current_time,
current_rate=row[OPEN_IDX],
proposed_leverage=1.0,
max_leverage=max_leverage,
side=direction,
) if self._can_short else 1.0
# Cap leverage between 1.0 and max_leverage.
leverage = min(max(leverage, 1.0), max_leverage)
min_stake_amount = self.exchange.get_min_pair_stake_amount(
pair, propose_rate, -0.05, leverage=leverage) or 0
max_stake_amount = self.exchange.get_max_pair_stake_amount(
pair, propose_rate, leverage=leverage)
stake_available = self.wallets.get_available_stake_amount()
if not pos_adjust:
stake_amount = strategy_safe_wrapper(self.strategy.custom_stake_amount,
default_retval=stake_amount)(
pair=pair, current_time=current_time, current_rate=propose_rate,
proposed_stake=stake_amount, min_stake=min_stake_amount, max_stake=max_stake_amount,
entry_tag=entry_tag)
proposed_stake=stake_amount, min_stake=min_stake_amount,
max_stake=min(stake_available, max_stake_amount),
entry_tag=entry_tag, side=direction)
stake_amount = self.wallets.validate_stake_amount(pair, stake_amount, min_stake_amount)
stake_amount_val = self.wallets.validate_stake_amount(
pair=pair,
stake_amount=stake_amount,
min_stake_amount=min_stake_amount,
max_stake_amount=max_stake_amount,
)
return propose_rate, stake_amount_val, leverage, min_stake_amount
def _enter_trade(self, pair: str, row: Tuple, direction: LongShort,
stake_amount: Optional[float] = None,
trade: Optional[LocalTrade] = None) -> Optional[LocalTrade]:
current_time = row[DATE_IDX].to_pydatetime()
entry_tag = row[ENTER_TAG_IDX] if len(row) >= ENTER_TAG_IDX + 1 else None
# let's call the custom entry price, using the open price as default price
order_type = self.strategy.order_types['entry']
pos_adjust = trade is not None
propose_rate, stake_amount, leverage, min_stake_amount = self.get_valid_price_and_stake(
pair, row, row[OPEN_IDX], stake_amount, direction, current_time, entry_tag, trade,
order_type
)
if not stake_amount:
# In case of pos adjust, still return the original trade
# If not pos adjust, trade is None
return trade
time_in_force = self.strategy.order_time_in_force['entry']
time_in_force = self.strategy.order_time_in_force['buy']
# Confirm trade entry:
if not pos_adjust:
# Confirm trade entry:
if not strategy_safe_wrapper(self.strategy.confirm_trade_entry, default_retval=True)(
pair=pair, order_type=order_type, amount=stake_amount, rate=propose_rate,
time_in_force=time_in_force, current_time=current_time,
entry_tag=entry_tag):
return None
entry_tag=entry_tag, side=direction):
return trade
if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount):
self.order_id_counter += 1
amount = round(stake_amount / propose_rate, 8)
base_currency = self.exchange.get_pair_base_currency(pair)
amount = round((stake_amount / propose_rate) * leverage, 8)
is_short = (direction == 'short')
# Necessary for Margin trading. Disabled until support is enabled.
# interest_rate = self.exchange.get_interest_rate()
if trade is None:
# Enter trade
self.trade_id_counter += 1
@@ -580,6 +739,8 @@ class Backtesting:
id=self.trade_id_counter,
open_order_id=self.order_id_counter,
pair=pair,
base_currency=base_currency,
stake_currency=self.config['stake_currency'],
open_rate=propose_rate,
open_rate_requested=propose_rate,
open_date=current_time,
@@ -589,13 +750,25 @@ class Backtesting:
fee_open=self.fee,
fee_close=self.fee,
is_open=True,
buy_tag=entry_tag,
exchange='backtesting',
orders=[]
enter_tag=entry_tag,
exchange=self._exchange_name,
is_short=is_short,
trading_mode=self.trading_mode,
leverage=leverage,
# interest_rate=interest_rate,
orders=[],
)
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
trade.set_isolated_liq(self.exchange.get_liquidation_price(
pair=pair,
open_rate=propose_rate,
amount=amount,
leverage=leverage,
is_short=is_short,
))
order = Order(
id=self.order_id_counter,
ft_trade_id=trade.id,
@@ -603,8 +776,8 @@ class Backtesting:
ft_pair=trade.pair,
order_id=str(self.order_id_counter),
symbol=trade.pair,
ft_order_side="buy",
side="buy",
ft_order_side=trade.entry_side,
side=trade.entry_side,
order_type=order_type,
status="open",
order_date=current_time,
@@ -635,13 +808,13 @@ class Backtesting:
for pair in open_trades.keys():
if len(open_trades[pair]) > 0:
for trade in open_trades[pair]:
if trade.open_order_id and trade.nr_of_successful_buys == 0:
if trade.open_order_id and trade.nr_of_successful_entries == 0:
# Ignore trade if buy-order did not fill yet
continue
sell_row = data[pair][-1]
trade.close_date = sell_row[DATE_IDX].to_pydatetime()
trade.sell_reason = SellType.FORCE_SELL.value
trade.exit_reason = ExitType.FORCE_EXIT.value
trade.close(sell_row[OPEN_IDX], show_msg=False)
LocalTrade.close_bt_trade(trade)
# Deepcopy object to have wallets update correctly
@@ -658,6 +831,20 @@ class Backtesting:
self.rejected_trades += 1
return False
def check_for_trade_entry(self, row) -> Optional[LongShort]:
enter_long = row[LONG_IDX] == 1
exit_long = row[ELONG_IDX] == 1
enter_short = self._can_short and row[SHORT_IDX] == 1
exit_short = self._can_short and row[ESHORT_IDX] == 1
if enter_long == 1 and not any([exit_long, enter_short]):
# Long
return 'long'
if enter_short == 1 and not any([exit_short, enter_long]):
# Short
return 'short'
return None
def run_protections(self, enable_protections, pair: str, current_time: datetime):
if enable_protections:
self.protections.stop_per_pair(pair, current_time)
@@ -670,19 +857,19 @@ class Backtesting:
"""
for order in [o for o in trade.orders if o.ft_is_open]:
timedout = self.strategy.ft_check_timed_out(order.side, trade, order, current_time)
timedout = self.strategy.ft_check_timed_out(trade, order, current_time)
if timedout:
if order.side == 'buy':
if order.side == trade.entry_side:
self.timedout_entry_orders += 1
if trade.nr_of_successful_buys == 0:
# Remove trade due to buy timeout expiration.
if trade.nr_of_successful_entries == 0:
# Remove trade due to entry timeout expiration.
return True
else:
# Close additional buy order
del trade.orders[trade.orders.index(order)]
if order.side == 'sell':
if order.side == trade.exit_side:
self.timedout_exit_orders += 1
# Close sell order and retry selling on next signal.
# Close exit order and retry exiting on next signal.
del trade.orders[trade.orders.index(order)]
return False
@@ -755,19 +942,27 @@ class Backtesting:
indexes[pair] = row_index
self.dataprovider._set_dataframe_max_index(row_index)
# 1. Process buys.
for t in list(open_trades[pair]):
# 1. Cancel expired buy/sell orders.
if self.check_order_cancel(t, current_time):
# Close trade due to buy timeout expiration.
open_trade_count -= 1
open_trades[pair].remove(t)
self.wallets.update()
# 2. Process buys.
# without positionstacking, we can only have one open trade per pair.
# max_open_trades must be respected
# don't open on the last row
trade_dir = self.check_for_trade_entry(row)
if (
(position_stacking or len(open_trades[pair]) == 0)
and self.trade_slot_available(max_open_trades, open_trade_count_start)
and current_time != end_date
and row[BUY_IDX] == 1
and row[SELL_IDX] != 1
and trade_dir is not None
and not PairLocks.is_pair_locked(pair, row[DATE_IDX])
):
trade = self._enter_trade(pair, row)
trade = self._enter_trade(pair, row, trade_dir)
if trade:
# TODO: hacky workaround to avoid opening > max_open_trades
# This emulates previous behavior - not sure if this is correct
@@ -778,20 +973,20 @@ class Backtesting:
open_trades[pair].append(trade)
for trade in list(open_trades[pair]):
# 2. Process buy orders.
order = trade.select_order('buy', is_open=True)
# 3. Process entry orders.
order = trade.select_order(trade.entry_side, is_open=True)
if order and self._get_order_filled(order.price, row):
order.close_bt_order(current_time)
trade.open_order_id = None
LocalTrade.add_bt_trade(trade)
self.wallets.update()
# 3. Create sell orders (if any)
# 4. Create sell orders (if any)
if not trade.open_order_id:
self._get_sell_trade_entry(trade, row) # Place sell order if necessary
# 4. Process sell orders.
order = trade.select_order('sell', is_open=True)
# 5. Process sell orders.
order = trade.select_order(trade.exit_side, is_open=True)
if order and self._get_order_filled(order.price, row):
trade.open_order_id = None
trade.close_date = current_time
@@ -805,13 +1000,6 @@ class Backtesting:
self.wallets.update()
self.run_protections(enable_protections, pair, current_time)
# 5. Cancel expired buy/sell orders.
if self.check_order_cancel(trade, current_time):
# Close trade due to buy timeout expiration.
open_trade_count -= 1
open_trades[pair].remove(trade)
self.wallets.update()
# Move time one configured time_interval ahead.
self.progress.increment()
current_time += timedelta(minutes=self.timeframe_min)

View File

@@ -114,10 +114,8 @@ class Hyperopt:
self.position_stacking = self.config.get('position_stacking', False)
if HyperoptTools.has_space(self.config, 'sell'):
# Make sure use_sell_signal is enabled
if 'ask_strategy' not in self.config:
self.config['ask_strategy'] = {}
self.config['ask_strategy']['use_sell_signal'] = True
# Make sure use_exit_signal is enabled
self.config['use_exit_signal'] = True
self.print_all = self.config.get('print_all', False)
self.hyperopt_table_header = 0
@@ -396,6 +394,7 @@ class Hyperopt:
def prepare_hyperopt_data(self) -> None:
data, timerange = self.backtesting.load_bt_data()
self.backtesting.load_bt_data_detail()
logger.info("Dataload complete. Calculating indicators")
preprocessed = self.backtesting.strategy.advise_all_indicators(data)

View File

@@ -391,8 +391,8 @@ class HyperoptTools():
lambda x: '{} {}'.format(
round_coin_value(x['Total profit'], stake_currency, keep_trailing_zeros=True),
f"({x['Profit']:,.2%})".rjust(10, ' ')
).rjust(25+len(stake_currency))
if x['Total profit'] != 0.0 else '--'.rjust(25+len(stake_currency)),
).rjust(25 + len(stake_currency))
if x['Total profit'] != 0.0 else '--'.rjust(25 + len(stake_currency)),
axis=1
)
trials = trials.drop(columns=['Total profit'])
@@ -400,11 +400,11 @@ class HyperoptTools():
if print_colorized:
for i in range(len(trials)):
if trials.loc[i]['is_profit']:
for j in range(len(trials.loc[i])-3):
for j in range(len(trials.loc[i]) - 3):
trials.iat[i, j] = "{}{}{}".format(Fore.GREEN,
str(trials.loc[i][j]), Fore.RESET)
if trials.loc[i]['is_best'] and highlight_best:
for j in range(len(trials.loc[i])-3):
for j in range(len(trials.loc[i]) - 3):
trials.iat[i, j] = "{}{}{}".format(Style.BRIGHT,
str(trials.loc[i][j]), Style.RESET_ALL)
@@ -460,7 +460,7 @@ class HyperoptTools():
'loss', 'is_initial_point', 'is_best']
perc_multi = 100
param_metrics = [("params_dict."+param) for param in results[0]['params_dict'].keys()]
param_metrics = [("params_dict." + param) for param in results[0]['params_dict'].keys()]
trials = trials[base_metrics + param_metrics]
base_columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Median profit', 'Total profit',

View File

@@ -166,7 +166,7 @@ def generate_tag_metrics(tag_type: str,
return []
def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
def generate_exit_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
"""
Generate small table outlining Backtest results
:param max_open_trades: Max_open_trades parameter
@@ -175,8 +175,8 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
"""
tabular_data = []
for reason, count in results['sell_reason'].value_counts().iteritems():
result = results.loc[results['sell_reason'] == reason]
for reason, count in results['exit_reason'].value_counts().iteritems():
result = results.loc[results['exit_reason'] == reason]
profit_mean = result['profit_ratio'].mean()
profit_sum = result['profit_ratio'].sum()
@@ -184,7 +184,7 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
tabular_data.append(
{
'sell_reason': reason,
'exit_reason': reason,
'trades': count,
'wins': len(result[result['profit_abs'] > 0]),
'draws': len(result[result['profit_abs'] == 0]),
@@ -372,20 +372,20 @@ def generate_strategy_stats(pairlist: List[str],
return {}
config = content['config']
max_open_trades = min(config['max_open_trades'], len(pairlist))
starting_balance = config['dry_run_wallet']
start_balance = config['dry_run_wallet']
stake_currency = config['stake_currency']
pair_results = generate_pair_metrics(pairlist, stake_currency=stake_currency,
starting_balance=starting_balance,
starting_balance=start_balance,
results=results, skip_nan=False)
buy_tag_results = generate_tag_metrics("buy_tag", starting_balance=starting_balance,
results=results, skip_nan=False)
enter_tag_results = generate_tag_metrics("enter_tag", starting_balance=start_balance,
results=results, skip_nan=False)
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
exit_reason_stats = generate_exit_reason_stats(max_open_trades=max_open_trades,
results=results)
left_open_results = generate_pair_metrics(pairlist, stake_currency=stake_currency,
starting_balance=starting_balance,
starting_balance=start_balance,
results=results.loc[results['is_open']],
skip_nan=True)
daily_stats = generate_daily_stats(results)
@@ -405,18 +405,24 @@ def generate_strategy_stats(pairlist: List[str],
'best_pair': best_pair,
'worst_pair': worst_pair,
'results_per_pair': pair_results,
'results_per_buy_tag': buy_tag_results,
'sell_reason_summary': sell_reason_stats,
'results_per_enter_tag': enter_tag_results,
'exit_reason_summary': exit_reason_stats,
'left_open_trades': left_open_results,
# 'days_breakdown_stats': days_breakdown_stats,
'total_trades': len(results),
'trade_count_long': len(results.loc[~results['is_short']]),
'trade_count_short': len(results.loc[results['is_short']]),
'total_volume': float(results['stake_amount'].sum()),
'avg_stake_amount': results['stake_amount'].mean() if len(results) > 0 else 0,
'profit_mean': results['profit_ratio'].mean() if len(results) > 0 else 0,
'profit_median': results['profit_ratio'].median() if len(results) > 0 else 0,
'profit_total': results['profit_abs'].sum() / starting_balance,
'profit_total': results['profit_abs'].sum() / start_balance,
'profit_total_long': results.loc[~results['is_short'], 'profit_abs'].sum() / start_balance,
'profit_total_short': results.loc[results['is_short'], 'profit_abs'].sum() / start_balance,
'profit_total_abs': results['profit_abs'].sum(),
'profit_total_long_abs': results.loc[~results['is_short'], 'profit_abs'].sum(),
'profit_total_short_abs': results.loc[results['is_short'], 'profit_abs'].sum(),
'backtest_start': min_date.strftime(DATETIME_PRINT_FORMAT),
'backtest_start_ts': int(min_date.timestamp() * 1000),
'backtest_end': max_date.strftime(DATETIME_PRINT_FORMAT),
@@ -432,8 +438,8 @@ def generate_strategy_stats(pairlist: List[str],
'stake_amount': config['stake_amount'],
'stake_currency': config['stake_currency'],
'stake_currency_decimals': decimals_per_coin(config['stake_currency']),
'starting_balance': starting_balance,
'dry_run_wallet': starting_balance,
'starting_balance': start_balance,
'dry_run_wallet': start_balance,
'final_balance': content['final_balance'],
'rejected_signals': content['rejected_signals'],
'timedout_entry_orders': content['timedout_entry_orders'],
@@ -454,10 +460,10 @@ def generate_strategy_stats(pairlist: List[str],
'trailing_only_offset_is_reached': config.get('trailing_only_offset_is_reached', False),
'use_custom_stoploss': config.get('use_custom_stoploss', False),
'minimal_roi': config['minimal_roi'],
'use_sell_signal': config['use_sell_signal'],
'sell_profit_only': config['sell_profit_only'],
'sell_profit_offset': config['sell_profit_offset'],
'ignore_roi_if_buy_signal': config['ignore_roi_if_buy_signal'],
'use_exit_signal': config['use_exit_signal'],
'exit_profit_only': config['exit_profit_only'],
'exit_profit_offset': config['exit_profit_offset'],
'ignore_roi_if_entry_signal': config['ignore_roi_if_entry_signal'],
**daily_stats,
**trade_stats
}
@@ -467,7 +473,7 @@ def generate_strategy_stats(pairlist: List[str],
results, value_col='profit_ratio')
(drawdown_abs, drawdown_start, drawdown_end, high_val, low_val,
max_drawdown) = calculate_max_drawdown(
results, value_col='profit_abs', starting_balance=starting_balance)
results, value_col='profit_abs', starting_balance=start_balance)
strat_stats.update({
'max_drawdown': max_drawdown_legacy, # Deprecated - do not use
'max_drawdown_account': max_drawdown,
@@ -481,7 +487,7 @@ def generate_strategy_stats(pairlist: List[str],
'max_drawdown_high': high_val,
})
csum_min, csum_max = calculate_csum(results, starting_balance)
csum_min, csum_max = calculate_csum(results, start_balance)
strat_stats.update({
'csum_min': csum_min,
'csum_max': csum_max
@@ -566,16 +572,16 @@ def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: st
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
def text_table_exit_reason(exit_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
"""
Generate small table outlining Backtest results
:param sell_reason_stats: Sell reason metrics
:param sell_reason_stats: Exit reason metrics
:param stake_currency: Stakecurrency used
:return: pretty printed table with tabulate as string
"""
headers = [
'Sell Reason',
'Sells',
'Exit Reason',
'Exits',
'Win Draws Loss Win%',
'Avg Profit %',
'Cum Profit %',
@@ -584,12 +590,12 @@ def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_curren
]
output = [[
t['sell_reason'], t['trades'],
t.get('exit_reason', t.get('sell_reason')), t['trades'],
_generate_wins_draws_losses(t['wins'], t['draws'], t['losses']),
t['profit_mean_pct'], t['profit_sum_pct'],
round_coin_value(t['profit_total_abs'], stake_currency, False),
t['profit_total_pct'],
] for t in sell_reason_stats]
] for t in exit_reason_stats]
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
@@ -600,7 +606,7 @@ def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_curr
:param stake_currency: stake-currency - used to correctly name headers
:return: pretty printed table with tabulate as string
"""
if(tag_type == "buy_tag"):
if(tag_type == "enter_tag"):
headers = _get_line_header("TAG", stake_currency)
else:
headers = _get_line_header("TAG", stake_currency, 'Sells')
@@ -686,6 +692,19 @@ def text_table_add_metrics(strat_results: Dict) -> str:
best_trade = max(strat_results['trades'], key=lambda x: x['profit_ratio'])
worst_trade = min(strat_results['trades'], key=lambda x: x['profit_ratio'])
short_metrics = [
('', ''), # Empty line to improve readability
('Long / Short',
f"{strat_results.get('trade_count_long', 'total_trades')} / "
f"{strat_results.get('trade_count_short', 0)}"),
('Total profit Long %', f"{strat_results['profit_total_long']:.2%}"),
('Total profit Short %', f"{strat_results['profit_total_short']:.2%}"),
('Absolute profit Long', round_coin_value(strat_results['profit_total_long_abs'],
strat_results['stake_currency'])),
('Absolute profit Short', round_coin_value(strat_results['profit_total_short_abs'],
strat_results['stake_currency'])),
] if strat_results.get('trade_count_short', 0) > 0 else []
# Newly added fields should be ignored if they are missing in strat_results. hyperopt-show
# command stores these results and newer version of freqtrade must be able to handle old
# results with missing new fields.
@@ -696,6 +715,7 @@ def text_table_add_metrics(strat_results: Dict) -> str:
('', ''), # Empty line to improve readability
('Total/Daily Avg Trades',
f"{strat_results['total_trades']} / {strat_results['trades_per_day']}"),
('Starting balance', round_coin_value(strat_results['starting_balance'],
strat_results['stake_currency'])),
('Final balance', round_coin_value(strat_results['final_balance'],
@@ -710,6 +730,7 @@ def text_table_add_metrics(strat_results: Dict) -> str:
strat_results['stake_currency'])),
('Total trade volume', round_coin_value(strat_results['total_volume'],
strat_results['stake_currency'])),
*short_metrics,
('', ''), # Empty line to improve readability
('Best Pair', f"{strat_results['best_pair']['key']} "
f"{strat_results['best_pair']['profit_sum']:.2%}"),
@@ -727,7 +748,7 @@ def text_table_add_metrics(strat_results: Dict) -> str:
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
('Rejected Buy signals', strat_results.get('rejected_signals', 'N/A')),
('Rejected Entry signals', strat_results.get('rejected_signals', 'N/A')),
('Entry/Exit Timeouts',
f"{strat_results.get('timedout_entry_orders', 'N/A')} / "
f"{strat_results.get('timedout_exit_orders', 'N/A')}"),
@@ -780,20 +801,23 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
if results.get('results_per_buy_tag') is not None:
if (results.get('results_per_enter_tag') is not None
or results.get('results_per_buy_tag') is not None):
# results_per_buy_tag is deprecated and should be removed 2 versions after short golive.
table = text_table_tags(
"buy_tag",
results['results_per_buy_tag'],
"enter_tag",
results.get('results_per_enter_tag', results.get('results_per_buy_tag')),
stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' BUY TAG STATS '.center(len(table.splitlines()[0]), '='))
print(' ENTER TAG STATS '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_sell_reason(sell_reason_stats=results['sell_reason_summary'],
exit_reasons = results.get('exit_reason_summary', results.get('sell_reason_summary'))
table = text_table_exit_reason(exit_reason_stats=exit_reasons,
stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
print(' EXIT REASON STATS '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)

View File

@@ -3,6 +3,8 @@ from typing import List
from sqlalchemy import inspect, text
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
@@ -58,6 +60,8 @@ def migrate_trades_and_orders_table(
decl_base, inspector, engine,
trade_back_name: str, cols: List,
order_back_name: str, cols_order: List):
base_currency = get_column_def(cols, 'base_currency', 'null')
stake_currency = get_column_def(cols, 'stake_currency', 'null')
fee_open = get_column_def(cols, 'fee_open', 'fee')
fee_open_cost = get_column_def(cols, 'fee_open_cost', 'null')
fee_open_currency = get_column_def(cols, 'fee_open_currency', 'null')
@@ -74,9 +78,25 @@ def migrate_trades_and_orders_table(
stoploss_last_update = get_column_def(cols, 'stoploss_last_update', 'null')
max_rate = get_column_def(cols, 'max_rate', '0.0')
min_rate = get_column_def(cols, 'min_rate', 'null')
sell_reason = get_column_def(cols, 'sell_reason', 'null')
exit_reason = get_column_def(cols, 'sell_reason', get_column_def(cols, 'exit_reason', 'null'))
strategy = get_column_def(cols, 'strategy', 'null')
buy_tag = get_column_def(cols, 'buy_tag', 'null')
enter_tag = get_column_def(cols, 'buy_tag', get_column_def(cols, 'enter_tag', 'null'))
trading_mode = get_column_def(cols, 'trading_mode', 'null')
# Leverage Properties
leverage = get_column_def(cols, 'leverage', '1.0')
liquidation_price = get_column_def(cols, 'liquidation_price',
get_column_def(cols, 'isolated_liq', 'null'))
# sqlite does not support literals for booleans
is_short = get_column_def(cols, 'is_short', '0')
# Margin Properties
interest_rate = get_column_def(cols, 'interest_rate', '0.0')
# Futures properties
funding_fees = get_column_def(cols, 'funding_fees', '0.0')
# If ticker-interval existed use that, else null.
if has_column(cols, 'ticker_interval'):
timeframe = get_column_def(cols, 'timeframe', 'ticker_interval')
@@ -88,7 +108,8 @@ def migrate_trades_and_orders_table(
close_profit_abs = get_column_def(
cols, 'close_profit_abs',
f"(amount * close_rate * (1 - {fee_close})) - {open_trade_value}")
sell_order_status = get_column_def(cols, 'sell_order_status', 'null')
exit_order_status = get_column_def(cols, 'exit_order_status',
get_column_def(cols, 'sell_order_status', 'null'))
amount_requested = get_column_def(cols, 'amount_requested', 'amount')
# Schema migration necessary
@@ -113,17 +134,20 @@ def migrate_trades_and_orders_table(
# Copy data back - following the correct schema
with engine.begin() as connection:
connection.execute(text(f"""insert into trades
(id, exchange, pair, is_open,
(id, exchange, pair, base_currency, stake_currency, is_open,
fee_open, fee_open_cost, fee_open_currency,
fee_close, fee_close_cost, fee_close_currency, open_rate,
open_rate_requested, close_rate, close_rate_requested, close_profit,
stake_amount, amount, amount_requested, open_date, close_date, open_order_id,
stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct,
stoploss_order_id, stoploss_last_update,
max_rate, min_rate, sell_reason, sell_order_status, strategy, buy_tag,
timeframe, open_trade_value, close_profit_abs
max_rate, min_rate, exit_reason, exit_order_status, strategy, enter_tag,
timeframe, open_trade_value, close_profit_abs,
trading_mode, leverage, liquidation_price, is_short,
interest_rate, funding_fees
)
select id, lower(exchange), pair,
select id, lower(exchange), pair, {base_currency} base_currency,
{stake_currency} stake_currency,
is_open, {fee_open} fee_open, {fee_open_cost} fee_open_cost,
{fee_open_currency} fee_open_currency, {fee_close} fee_close,
{fee_close_cost} fee_close_cost, {fee_close_currency} fee_close_currency,
@@ -134,10 +158,19 @@ def migrate_trades_and_orders_table(
{initial_stop_loss} initial_stop_loss,
{initial_stop_loss_pct} initial_stop_loss_pct,
{stoploss_order_id} stoploss_order_id, {stoploss_last_update} stoploss_last_update,
{max_rate} max_rate, {min_rate} min_rate, {sell_reason} sell_reason,
{sell_order_status} sell_order_status,
{strategy} strategy, {buy_tag} buy_tag, {timeframe} timeframe,
{open_trade_value} open_trade_value, {close_profit_abs} close_profit_abs
{max_rate} max_rate, {min_rate} min_rate,
case when {exit_reason} = 'sell_signal' then 'exit_signal'
when {exit_reason} = 'custom_sell' then 'custom_exit'
when {exit_reason} = 'force_sell' then 'force_exit'
when {exit_reason} = 'emergency_sell' then 'emergency_exit'
else {exit_reason}
end exit_reason,
{exit_order_status} exit_order_status,
{strategy} strategy, {enter_tag} enter_tag, {timeframe} timeframe,
{open_trade_value} open_trade_value, {close_profit_abs} close_profit_abs,
{trading_mode} trading_mode, {leverage} leverage, {liquidation_price} liquidation_price,
{is_short} is_short, {interest_rate} interest_rate,
{funding_fees} funding_fees
from {trade_back_name}
"""))
@@ -145,23 +178,6 @@ def migrate_trades_and_orders_table(
set_sequence_ids(engine, order_id, trade_id)
def migrate_open_orders_to_trades(engine):
with engine.begin() as connection:
connection.execute(text("""
insert into orders (ft_trade_id, ft_pair, order_id, ft_order_side, ft_is_open)
select id ft_trade_id, pair ft_pair, open_order_id,
case when close_rate_requested is null then 'buy'
else 'sell' end ft_order_side, 1 ft_is_open
from trades
where open_order_id is not null
union all
select id ft_trade_id, pair ft_pair, stoploss_order_id order_id,
'stoploss' ft_order_side, 1 ft_is_open
from trades
where stoploss_order_id is not null
"""))
def drop_orders_table(engine, table_back_name: str):
# Drop and recreate orders table as backup
# This drops foreign keys, too.
@@ -176,12 +192,12 @@ def migrate_orders_table(engine, table_back_name: str, cols_order: List):
ft_fee_base = get_column_def(cols_order, 'ft_fee_base', 'null')
average = get_column_def(cols_order, 'average', 'null')
# let SQLAlchemy create the schema as required
# sqlite does not support literals for booleans
with engine.begin() as connection:
connection.execute(text(f"""
insert into orders ( id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
status, symbol, order_type, side, price, amount, filled, average, remaining,
cost, order_date, order_filled_date, order_update_date, ft_fee_base)
insert into orders (id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
status, symbol, order_type, side, price, amount, filled, average, remaining, cost,
order_date, order_filled_date, order_update_date, ft_fee_base)
select id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
status, symbol, order_type, side, price, amount, filled, {average} average, remaining,
cost, order_date, order_filled_date, order_update_date, {ft_fee_base} ft_fee_base
@@ -202,7 +218,7 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
"""
inspector = inspect(engine)
cols = inspector.get_columns('trades')
cols_trades = inspector.get_columns('trades')
cols_orders = inspector.get_columns('orders')
tabs = get_table_names_for_table(inspector, 'trades')
table_back_name = get_backup_name(tabs, 'trades_bak')
@@ -211,14 +227,19 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
# Check if migration necessary
# Migrates both trades and orders table!
# if not has_column(cols, 'buy_tag'):
if 'orders' not in previous_tables or not has_column(cols_orders, 'ft_fee_base'):
# if ('orders' not in previous_tables
# or not has_column(cols_orders, 'leverage')):
if not has_column(cols_trades, 'base_currency'):
logger.info(f"Running database migration for trades - "
f"backup: {table_back_name}, {order_table_bak_name}")
migrate_trades_and_orders_table(
decl_base, inspector, engine, table_back_name, cols, order_table_bak_name, cols_orders)
decl_base, inspector, engine, table_back_name, cols_trades,
order_table_bak_name, cols_orders)
if 'orders' not in previous_tables and 'trades' in previous_tables:
logger.info('Moving open orders to Orders table.')
migrate_open_orders_to_trades(engine)
raise OperationalException(
"Your database seems to be very old. "
"Please update to freqtrade 2022.3 to migrate this database or "
"start with a fresh database.")
set_sqlite_to_wal(engine)

View File

@@ -6,7 +6,7 @@ from datetime import datetime, timedelta, timezone
from decimal import Decimal
from typing import Any, Dict, List, Optional
from sqlalchemy import (Boolean, Column, DateTime, Float, ForeignKey, Integer, String,
from sqlalchemy import (Boolean, Column, DateTime, Enum, Float, ForeignKey, Integer, String,
create_engine, desc, func, inspect)
from sqlalchemy.exc import NoSuchModuleError
from sqlalchemy.orm import Query, declarative_base, relationship, scoped_session, sessionmaker
@@ -14,8 +14,9 @@ from sqlalchemy.pool import StaticPool
from sqlalchemy.sql.schema import UniqueConstraint
from freqtrade.constants import DATETIME_PRINT_FORMAT, NON_OPEN_EXCHANGE_STATES
from freqtrade.enums import SellType
from freqtrade.enums import ExitType, TradingMode
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.leverage import interest
from freqtrade.persistence.migrations import check_migrate
@@ -181,6 +182,7 @@ class Order(_DECL_BASE):
self.average = order.get('average', self.average)
self.remaining = order.get('remaining', self.remaining)
self.cost = order.get('cost', self.cost)
if 'timestamp' in order and order['timestamp'] is not None:
self.order_date = datetime.fromtimestamp(order['timestamp'] / 1000, tz=timezone.utc)
@@ -191,7 +193,7 @@ class Order(_DECL_BASE):
self.order_filled_date = datetime.now(timezone.utc)
self.order_update_date = datetime.now(timezone.utc)
def to_json(self) -> Dict[str, Any]:
def to_json(self, entry_side: str) -> Dict[str, Any]:
return {
'pair': self.ft_pair,
'order_id': self.order_id,
@@ -213,6 +215,7 @@ class Order(_DECL_BASE):
tzinfo=timezone.utc).timestamp() * 1000) if self.order_filled_date else None,
'order_type': self.order_type,
'price': self.price,
'ft_is_entry': self.ft_order_side == entry_side,
'remaining': self.remaining,
}
@@ -276,6 +279,8 @@ class LocalTrade():
exchange: str = ''
pair: str = ''
base_currency: str = ''
stake_currency: str = ''
is_open: bool = True
fee_open: float = 0.0
fee_open_cost: Optional[float] = None
@@ -313,22 +318,51 @@ class LocalTrade():
max_rate: float = 0.0
# Lowest price reached
min_rate: float = 0.0
sell_reason: str = ''
sell_order_status: str = ''
exit_reason: str = ''
exit_order_status: str = ''
strategy: str = ''
buy_tag: Optional[str] = None
enter_tag: Optional[str] = None
timeframe: Optional[int] = None
def __init__(self, **kwargs):
for key in kwargs:
setattr(self, key, kwargs[key])
self.recalc_open_trade_value()
trading_mode: TradingMode = TradingMode.SPOT
def __repr__(self):
open_since = self.open_date.strftime(DATETIME_PRINT_FORMAT) if self.is_open else 'closed'
# Leverage trading properties
liquidation_price: Optional[float] = None
is_short: bool = False
leverage: float = 1.0
return (f'Trade(id={self.id}, pair={self.pair}, amount={self.amount:.8f}, '
f'open_rate={self.open_rate:.8f}, open_since={open_since})')
# Margin trading properties
interest_rate: float = 0.0
# Futures properties
funding_fees: Optional[float] = None
@property
def buy_tag(self) -> Optional[str]:
"""
Compatibility between buy_tag (old) and enter_tag (new)
Consider buy_tag deprecated
"""
return self.enter_tag
@property
def has_no_leverage(self) -> bool:
"""Returns true if this is a non-leverage, non-short trade"""
return ((self.leverage == 1.0 or self.leverage is None) and not self.is_short)
@property
def borrowed(self) -> float:
"""
The amount of currency borrowed from the exchange for leverage trades
If a long trade, the amount is in base currency
If a short trade, the amount is in the other currency being traded
"""
if self.has_no_leverage:
return 0.0
elif not self.is_short:
return (self.amount * self.open_rate) * ((self.leverage - 1) / self.leverage)
else:
return self.amount
@property
def open_date_utc(self):
@@ -338,20 +372,89 @@ class LocalTrade():
def close_date_utc(self):
return self.close_date.replace(tzinfo=timezone.utc)
@property
def enter_side(self) -> str:
""" DEPRECATED, please use entry_side instead"""
# TODO: Please remove me after 2022.5
return self.entry_side
@property
def entry_side(self) -> str:
if self.is_short:
return "sell"
else:
return "buy"
@property
def exit_side(self) -> str:
if self.is_short:
return "buy"
else:
return "sell"
@property
def trade_direction(self) -> str:
if self.is_short:
return "short"
else:
return "long"
@property
def safe_base_currency(self) -> str:
"""
Compatibility layer for asset - which can be empty for old trades.
"""
try:
return self.base_currency or self.pair.split('/')[0]
except IndexError:
return ''
@property
def safe_quote_currency(self) -> str:
"""
Compatibility layer for asset - which can be empty for old trades.
"""
try:
return self.stake_currency or self.pair.split('/')[1].split(':')[0]
except IndexError:
return ''
def __init__(self, **kwargs):
for key in kwargs:
setattr(self, key, kwargs[key])
self.recalc_open_trade_value()
if self.trading_mode == TradingMode.MARGIN and self.interest_rate is None:
raise OperationalException(
f"{self.trading_mode.value} trading requires param interest_rate on trades")
def __repr__(self):
open_since = self.open_date.strftime(DATETIME_PRINT_FORMAT) if self.is_open else 'closed'
leverage = self.leverage or 1.0
is_short = self.is_short or False
return (
f'Trade(id={self.id}, pair={self.pair}, amount={self.amount:.8f}, '
f'is_short={is_short}, leverage={leverage}, '
f'open_rate={self.open_rate:.8f}, open_since={open_since})'
)
def to_json(self) -> Dict[str, Any]:
filled_orders = self.select_filled_orders()
orders = [order.to_json() for order in filled_orders]
orders = [order.to_json(self.entry_side) for order in filled_orders]
return {
'trade_id': self.id,
'pair': self.pair,
'base_currency': self.safe_base_currency,
'quote_currency': self.safe_quote_currency,
'is_open': self.is_open,
'exchange': self.exchange,
'amount': round(self.amount, 8),
'amount_requested': round(self.amount_requested, 8) if self.amount_requested else None,
'stake_amount': round(self.stake_amount, 8),
'strategy': self.strategy,
'buy_tag': self.buy_tag,
'buy_tag': self.enter_tag,
'enter_tag': self.enter_tag,
'timeframe': self.timeframe,
'fee_open': self.fee_open,
@@ -386,8 +489,9 @@ class LocalTrade():
'profit_pct': round(self.close_profit * 100, 2) if self.close_profit else None,
'profit_abs': self.close_profit_abs,
'sell_reason': self.sell_reason,
'sell_order_status': self.sell_order_status,
'sell_reason': self.exit_reason, # Deprecated
'exit_reason': self.exit_reason,
'exit_order_status': self.exit_order_status,
'stop_loss_abs': self.stop_loss,
'stop_loss_ratio': self.stop_loss_pct if self.stop_loss_pct else None,
'stop_loss_pct': (self.stop_loss_pct * 100) if self.stop_loss_pct else None,
@@ -404,6 +508,12 @@ class LocalTrade():
'min_rate': self.min_rate,
'max_rate': self.max_rate,
'leverage': self.leverage,
'interest_rate': self.interest_rate,
'liquidation_price': self.liquidation_price,
'is_short': self.is_short,
'trading_mode': self.trading_mode,
'funding_fees': self.funding_fees,
'open_order_id': self.open_order_id,
'orders': orders,
}
@@ -424,10 +534,33 @@ class LocalTrade():
self.max_rate = max(current_price, self.max_rate or self.open_rate)
self.min_rate = min(current_price_low, self.min_rate or self.open_rate)
def _set_new_stoploss(self, new_loss: float, stoploss: float):
"""Assign new stop value"""
self.stop_loss = new_loss
self.stop_loss_pct = -1 * abs(stoploss)
def set_isolated_liq(self, liquidation_price: Optional[float]):
"""
Method you should use to set self.liquidation price.
Assures stop_loss is not passed the liquidation price
"""
if not liquidation_price:
return
self.liquidation_price = liquidation_price
def _set_stop_loss(self, stop_loss: float, percent: float):
"""
Method you should use to set self.stop_loss.
Assures stop_loss is not passed the liquidation price
"""
if self.liquidation_price is not None:
if self.is_short:
sl = min(stop_loss, self.liquidation_price)
else:
sl = max(stop_loss, self.liquidation_price)
else:
sl = stop_loss
if not self.stop_loss:
self.initial_stop_loss = sl
self.stop_loss = sl
self.stop_loss_pct = -1 * abs(percent)
self.stoploss_last_update = datetime.utcnow()
def adjust_stop_loss(self, current_price: float, stoploss: float,
@@ -443,27 +576,43 @@ class LocalTrade():
# Don't modify if called with initial and nothing to do
return
new_loss = float(current_price * (1 - abs(stoploss)))
leverage = self.leverage or 1.0
if self.is_short:
new_loss = float(current_price * (1 + abs(stoploss / leverage)))
# If trading with leverage, don't set the stoploss below the liquidation price
if self.liquidation_price:
new_loss = min(self.liquidation_price, new_loss)
else:
new_loss = float(current_price * (1 - abs(stoploss / leverage)))
# If trading with leverage, don't set the stoploss below the liquidation price
if self.liquidation_price:
new_loss = max(self.liquidation_price, new_loss)
# no stop loss assigned yet
# if not self.stop_loss:
if self.initial_stop_loss_pct is None:
logger.debug(f"{self.pair} - Assigning new stoploss...")
self._set_new_stoploss(new_loss, stoploss)
self._set_stop_loss(new_loss, stoploss)
self.initial_stop_loss = new_loss
self.initial_stop_loss_pct = -1 * abs(stoploss)
# evaluate if the stop loss needs to be updated
else:
if new_loss > self.stop_loss: # stop losses only walk up, never down!
higher_stop = new_loss > self.stop_loss
lower_stop = new_loss < self.stop_loss
# stop losses only walk up, never down!,
# ? But adding more to a leveraged trade would create a lower liquidation price,
# ? decreasing the minimum stoploss
if (higher_stop and not self.is_short) or (lower_stop and self.is_short):
logger.debug(f"{self.pair} - Adjusting stoploss...")
self._set_new_stoploss(new_loss, stoploss)
self._set_stop_loss(new_loss, stoploss)
else:
logger.debug(f"{self.pair} - Keeping current stoploss...")
logger.debug(
f"{self.pair} - Stoploss adjusted. current_price={current_price:.8f}, "
f"open_rate={self.open_rate:.8f}, max_rate={self.max_rate:.8f}, "
f"open_rate={self.open_rate:.8f}, max_rate={self.max_rate or self.open_rate:.8f}, "
f"initial_stop_loss={self.initial_stop_loss:.8f}, "
f"stop_loss={self.stop_loss:.8f}. "
f"Trailing stoploss saved us: "
@@ -475,28 +624,32 @@ class LocalTrade():
:param order: order retrieved by exchange.fetch_order()
:return: None
"""
# Ignore open and cancelled orders
if order.status == 'open' or order.safe_price is None:
return
logger.info(f'Updating trade (id={self.id}) ...')
if order.ft_order_side == 'buy':
if order.ft_order_side == self.entry_side:
# Update open rate and actual amount
self.open_rate = order.safe_price
self.amount = order.safe_amount_after_fee
if self.is_open:
logger.info(f'{order.order_type.upper()}_BUY has been fulfilled for {self}.')
payment = "SELL" if self.is_short else "BUY"
logger.info(f'{order.order_type.upper()}_{payment} has been fulfilled for {self}.')
self.open_order_id = None
self.recalc_trade_from_orders()
elif order.ft_order_side == 'sell':
elif order.ft_order_side == self.exit_side:
if self.is_open:
logger.info(f'{order.order_type.upper()}_SELL has been fulfilled for {self}.')
payment = "BUY" if self.is_short else "SELL"
# * On margin shorts, you buy a little bit more than the amount (amount + interest)
logger.info(f'{order.order_type.upper()}_{payment} has been fulfilled for {self}.')
self.close(order.safe_price)
elif order.ft_order_side == 'stoploss':
self.stoploss_order_id = None
self.close_rate_requested = self.stop_loss
self.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
self.exit_reason = ExitType.STOPLOSS_ON_EXCHANGE.value
if self.is_open:
logger.info(f'{order.order_type.upper()} is hit for {self}.')
self.close(order.safe_price)
@@ -510,11 +663,11 @@ class LocalTrade():
and marks trade as closed
"""
self.close_rate = rate
self.close_date = self.close_date or datetime.utcnow()
self.close_profit = self.calc_profit_ratio()
self.close_profit_abs = self.calc_profit()
self.close_date = self.close_date or datetime.utcnow()
self.is_open = False
self.sell_order_status = 'closed'
self.exit_order_status = 'closed'
self.open_order_id = None
if show_msg:
logger.info(
@@ -527,14 +680,14 @@ class LocalTrade():
"""
Update Fee parameters. Only acts once per side
"""
if side == 'buy' and self.fee_open_currency is None:
if self.entry_side == side and self.fee_open_currency is None:
self.fee_open_cost = fee_cost
self.fee_open_currency = fee_currency
if fee_rate is not None:
self.fee_open = fee_rate
# Assume close-fee will fall into the same fee category and take an educated guess
self.fee_close = fee_rate
elif side == 'sell' and self.fee_close_currency is None:
elif self.exit_side == side and self.fee_close_currency is None:
self.fee_close_cost = fee_cost
self.fee_close_currency = fee_currency
if fee_rate is not None:
@@ -544,9 +697,9 @@ class LocalTrade():
"""
Verify if this side (buy / sell) has already been updated
"""
if side == 'buy':
if self.entry_side == side:
return self.fee_open_currency is not None
elif side == 'sell':
elif self.exit_side == side:
return self.fee_close_currency is not None
else:
return False
@@ -559,79 +712,167 @@ class LocalTrade():
Get amount of failed exiting orders
assumes full exits.
"""
return len([o for o in self.orders if o.ft_order_side == 'sell'])
return len([o for o in self.orders if o.ft_order_side == self.exit_side])
def _calc_open_trade_value(self) -> float:
"""
Calculate the open_rate including open_fee.
:return: Price in of the open trade incl. Fees
"""
buy_trade = Decimal(self.amount) * Decimal(self.open_rate)
fees = buy_trade * Decimal(self.fee_open)
return float(buy_trade + fees)
open_trade = Decimal(self.amount) * Decimal(self.open_rate)
fees = open_trade * Decimal(self.fee_open)
if self.is_short:
return float(open_trade - fees)
else:
return float(open_trade + fees)
def recalc_open_trade_value(self) -> None:
"""
Recalculate open_trade_value.
Must be called whenever open_rate or fee_open is changed.
Must be called whenever open_rate, fee_open or is_short is changed.
"""
self.open_trade_value = self._calc_open_trade_value()
def calculate_interest(self, interest_rate: Optional[float] = None) -> Decimal:
"""
:param interest_rate: interest_charge for borrowing this coin(optional).
If interest_rate is not set self.interest_rate will be used
"""
zero = Decimal(0.0)
# If nothing was borrowed
if self.trading_mode != TradingMode.MARGIN or self.has_no_leverage:
return zero
open_date = self.open_date.replace(tzinfo=None)
now = (self.close_date or datetime.now(timezone.utc)).replace(tzinfo=None)
sec_per_hour = Decimal(3600)
total_seconds = Decimal((now - open_date).total_seconds())
hours = total_seconds / sec_per_hour or zero
rate = Decimal(interest_rate or self.interest_rate)
borrowed = Decimal(self.borrowed)
return interest(exchange_name=self.exchange, borrowed=borrowed, rate=rate, hours=hours)
def _calc_base_close(self, amount: Decimal, rate: Optional[float] = None,
fee: Optional[float] = None) -> Decimal:
close_trade = Decimal(amount) * Decimal(rate or self.close_rate) # type: ignore
fees = close_trade * Decimal(fee or self.fee_close)
if self.is_short:
return close_trade + fees
else:
return close_trade - fees
def calc_close_trade_value(self, rate: Optional[float] = None,
fee: Optional[float] = None) -> float:
fee: Optional[float] = None,
interest_rate: Optional[float] = None) -> float:
"""
Calculate the close_rate including fee
:param fee: fee to use on the close rate (optional).
If rate is not set self.fee will be used
:param rate: rate to compare with (optional).
If rate is not set self.close_rate will be used
:param interest_rate: interest_charge for borrowing this coin (optional).
If interest_rate is not set self.interest_rate will be used
:return: Price in BTC of the open trade
"""
if rate is None and not self.close_rate:
return 0.0
sell_trade = Decimal(self.amount) * Decimal(rate or self.close_rate) # type: ignore
fees = sell_trade * Decimal(fee or self.fee_close)
return float(sell_trade - fees)
amount = Decimal(self.amount)
trading_mode = self.trading_mode or TradingMode.SPOT
if trading_mode == TradingMode.SPOT:
return float(self._calc_base_close(amount, rate, fee))
elif (trading_mode == TradingMode.MARGIN):
total_interest = self.calculate_interest(interest_rate)
if self.is_short:
amount = amount + total_interest
return float(self._calc_base_close(amount, rate, fee))
else:
# Currency already owned for longs, no need to purchase
return float(self._calc_base_close(amount, rate, fee) - total_interest)
elif (trading_mode == TradingMode.FUTURES):
funding_fees = self.funding_fees or 0.0
# Positive funding_fees -> Trade has gained from fees.
# Negative funding_fees -> Trade had to pay the fees.
if self.is_short:
return float(self._calc_base_close(amount, rate, fee)) - funding_fees
else:
return float(self._calc_base_close(amount, rate, fee)) + funding_fees
else:
raise OperationalException(
f"{self.trading_mode.value} trading is not yet available using freqtrade")
def calc_profit(self, rate: Optional[float] = None,
fee: Optional[float] = None) -> float:
fee: Optional[float] = None,
interest_rate: Optional[float] = None) -> float:
"""
Calculate the absolute profit in stake currency between Close and Open trade
:param fee: fee to use on the close rate (optional).
If rate is not set self.fee will be used
If fee is not set self.fee will be used
:param rate: close rate to compare with (optional).
If rate is not set self.close_rate will be used
:param interest_rate: interest_charge for borrowing this coin (optional).
If interest_rate is not set self.interest_rate will be used
:return: profit in stake currency as float
"""
close_trade_value = self.calc_close_trade_value(
rate=(rate or self.close_rate),
fee=(fee or self.fee_close)
fee=(fee or self.fee_close),
interest_rate=(interest_rate or self.interest_rate)
)
profit = close_trade_value - self.open_trade_value
if self.is_short:
profit = self.open_trade_value - close_trade_value
else:
profit = close_trade_value - self.open_trade_value
return float(f"{profit:.8f}")
def calc_profit_ratio(self, rate: Optional[float] = None,
fee: Optional[float] = None) -> float:
fee: Optional[float] = None,
interest_rate: Optional[float] = None) -> float:
"""
Calculates the profit as ratio (including fee).
:param rate: rate to compare with (optional).
If rate is not set self.close_rate will be used
:param fee: fee to use on the close rate (optional).
:param interest_rate: interest_charge for borrowing this coin (optional).
If interest_rate is not set self.interest_rate will be used
:return: profit ratio as float
"""
close_trade_value = self.calc_close_trade_value(
rate=(rate or self.close_rate),
fee=(fee or self.fee_close)
fee=(fee or self.fee_close),
interest_rate=(interest_rate or self.interest_rate)
)
if self.open_trade_value == 0.0:
short_close_zero = (self.is_short and close_trade_value == 0.0)
long_close_zero = (not self.is_short and self.open_trade_value == 0.0)
leverage = self.leverage or 1.0
if (short_close_zero or long_close_zero):
return 0.0
profit_ratio = (close_trade_value / self.open_trade_value) - 1
else:
if self.is_short:
profit_ratio = (1 - (close_trade_value / self.open_trade_value)) * leverage
else:
profit_ratio = ((close_trade_value / self.open_trade_value) - 1) * leverage
return float(f"{profit_ratio:.8f}")
def recalc_trade_from_orders(self):
# We need at least 2 entry orders for averaging amounts and rates.
if len(self.select_filled_orders('buy')) < 2:
# TODO: this condition could probably be removed
if len(self.select_filled_orders(self.entry_side)) < 2:
self.stake_amount = self.amount * self.open_rate / self.leverage
# Just in case, still recalc open trade value
self.recalc_open_trade_value()
return
@@ -640,7 +881,7 @@ class LocalTrade():
total_stake = 0.0
for o in self.orders:
if (o.ft_is_open or
(o.ft_order_side != 'buy') or
(o.ft_order_side != self.entry_side) or
(o.status not in NON_OPEN_EXCHANGE_STATES)):
continue
@@ -653,8 +894,9 @@ class LocalTrade():
total_stake += tmp_price * tmp_amount
if total_amount > 0:
# Leverage not updated, as we don't allow changing leverage through DCA at the moment.
self.open_rate = total_stake / total_amount
self.stake_amount = total_stake
self.stake_amount = total_stake / (self.leverage or 1.0)
self.amount = total_amount
self.fee_open_cost = self.fee_open * self.stake_amount
self.recalc_open_trade_value()
@@ -700,10 +942,28 @@ class LocalTrade():
(o.filled or 0) > 0 and
o.status in NON_OPEN_EXCHANGE_STATES]
@property
def nr_of_successful_entries(self) -> int:
"""
Helper function to count the number of entry orders that have been filled.
:return: int count of entry orders that have been filled for this trade.
"""
return len(self.select_filled_orders(self.entry_side))
@property
def nr_of_successful_exits(self) -> int:
"""
Helper function to count the number of exit orders that have been filled.
:return: int count of exit orders that have been filled for this trade.
"""
return len(self.select_filled_orders(self.exit_side))
@property
def nr_of_successful_buys(self) -> int:
"""
Helper function to count the number of buy orders that have been filled.
WARNING: Please use nr_of_successful_entries for short support.
:return: int count of buy orders that have been filled for this trade.
"""
@@ -713,10 +973,16 @@ class LocalTrade():
def nr_of_successful_sells(self) -> int:
"""
Helper function to count the number of sell orders that have been filled.
WARNING: Please use nr_of_successful_exits for short support.
:return: int count of sell orders that have been filled for this trade.
"""
return len(self.select_filled_orders('sell'))
@property
def sell_reason(self) -> str:
""" DEPRECATED! Please use exit_reason instead."""
return self.exit_reason
@staticmethod
def get_trades_proxy(*, pair: str = None, is_open: bool = None,
open_date: datetime = None, close_date: datetime = None,
@@ -809,6 +1075,8 @@ class Trade(_DECL_BASE, LocalTrade):
exchange = Column(String(25), nullable=False)
pair = Column(String(25), nullable=False, index=True)
base_currency = Column(String(25), nullable=True)
stake_currency = Column(String(25), nullable=True)
is_open = Column(Boolean, nullable=False, default=True, index=True)
fee_open = Column(Float, nullable=False, default=0.0)
fee_open_cost = Column(Float, nullable=True)
@@ -846,12 +1114,25 @@ class Trade(_DECL_BASE, LocalTrade):
max_rate = Column(Float, nullable=True, default=0.0)
# Lowest price reached
min_rate = Column(Float, nullable=True)
sell_reason = Column(String(100), nullable=True)
sell_order_status = Column(String(100), nullable=True)
exit_reason = Column(String(100), nullable=True)
exit_order_status = Column(String(100), nullable=True)
strategy = Column(String(100), nullable=True)
buy_tag = Column(String(100), nullable=True)
enter_tag = Column(String(100), nullable=True)
timeframe = Column(Integer, nullable=True)
trading_mode = Column(Enum(TradingMode), nullable=True)
# Leverage trading properties
leverage = Column(Float, nullable=True, default=1.0)
is_short = Column(Boolean, nullable=False, default=False)
liquidation_price = Column(Float, nullable=True)
# Margin Trading Properties
interest_rate = Column(Float, nullable=False, default=0.0)
# Futures properties
funding_fees = Column(Float, nullable=True, default=None)
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.recalc_open_trade_value()
@@ -938,7 +1219,7 @@ class Trade(_DECL_BASE, LocalTrade):
]).all()
@staticmethod
def get_sold_trades_without_assigned_fees():
def get_closed_trades_without_assigned_fees():
"""
Returns all closed trades which don't have fees set correctly
NOTE: Not supported in Backtesting.
@@ -1007,7 +1288,7 @@ class Trade(_DECL_BASE, LocalTrade):
]
@staticmethod
def get_buy_tag_performance(pair: Optional[str]) -> List[Dict[str, Any]]:
def get_enter_tag_performance(pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, based on buy tag performance
Can either be average for all pairs or a specific pair provided
@@ -1018,31 +1299,31 @@ class Trade(_DECL_BASE, LocalTrade):
if(pair is not None):
filters.append(Trade.pair == pair)
buy_tag_perf = Trade.query.with_entities(
Trade.buy_tag,
enter_tag_perf = Trade.query.with_entities(
Trade.enter_tag,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
).filter(*filters)\
.group_by(Trade.buy_tag) \
.group_by(Trade.enter_tag) \
.order_by(desc('profit_sum_abs')) \
.all()
return [
{
'buy_tag': buy_tag if buy_tag is not None else "Other",
'enter_tag': enter_tag if enter_tag is not None else "Other",
'profit_ratio': profit,
'profit_pct': round(profit * 100, 2),
'profit_abs': profit_abs,
'count': count
}
for buy_tag, profit, profit_abs, count in buy_tag_perf
for enter_tag, profit, profit_abs, count in enter_tag_perf
]
@staticmethod
def get_sell_reason_performance(pair: Optional[str]) -> List[Dict[str, Any]]:
def get_exit_reason_performance(pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, based on sell reason performance
Returns List of dicts containing all Trades, based on exit reason performance
Can either be average for all pairs or a specific pair provided
NOTE: Not supported in Backtesting.
"""
@@ -1052,30 +1333,30 @@ class Trade(_DECL_BASE, LocalTrade):
filters.append(Trade.pair == pair)
sell_tag_perf = Trade.query.with_entities(
Trade.sell_reason,
Trade.exit_reason,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
).filter(*filters)\
.group_by(Trade.sell_reason) \
.group_by(Trade.exit_reason) \
.order_by(desc('profit_sum_abs')) \
.all()
return [
{
'sell_reason': sell_reason if sell_reason is not None else "Other",
'exit_reason': exit_reason if exit_reason is not None else "Other",
'profit_ratio': profit,
'profit_pct': round(profit * 100, 2),
'profit_abs': profit_abs,
'count': count
}
for sell_reason, profit, profit_abs, count in sell_tag_perf
for exit_reason, profit, profit_abs, count in sell_tag_perf
]
@staticmethod
def get_mix_tag_performance(pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, based on buy_tag + sell_reason performance
Returns List of dicts containing all Trades, based on entry_tag + exit_reason performance
Can either be average for all pairs or a specific pair provided
NOTE: Not supported in Backtesting.
"""
@@ -1086,8 +1367,8 @@ class Trade(_DECL_BASE, LocalTrade):
mix_tag_perf = Trade.query.with_entities(
Trade.id,
Trade.buy_tag,
Trade.sell_reason,
Trade.enter_tag,
Trade.exit_reason,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
@@ -1097,12 +1378,12 @@ class Trade(_DECL_BASE, LocalTrade):
.all()
return_list: List[Dict] = []
for id, buy_tag, sell_reason, profit, profit_abs, count in mix_tag_perf:
buy_tag = buy_tag if buy_tag is not None else "Other"
sell_reason = sell_reason if sell_reason is not None else "Other"
for id, enter_tag, exit_reason, profit, profit_abs, count in mix_tag_perf:
enter_tag = enter_tag if enter_tag is not None else "Other"
exit_reason = exit_reason if exit_reason is not None else "Other"
if(sell_reason is not None and buy_tag is not None):
mix_tag = buy_tag + " " + sell_reason
if(exit_reason is not None and enter_tag is not None):
mix_tag = enter_tag + " " + exit_reason
i = 0
if not any(item["mix_tag"] == mix_tag for item in return_list):
return_list.append({'mix_tag': mix_tag,

View File

@@ -1,6 +1,6 @@
import logging
from pathlib import Path
from typing import Any, Dict, List
from typing import Any, Dict, List, Optional
import pandas as pd
@@ -11,6 +11,7 @@ from freqtrade.data.btanalysis import (analyze_trade_parallelism, calculate_max_
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import get_timerange, load_data
from freqtrade.enums import CandleType
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_prev_date, timeframe_to_seconds
from freqtrade.misc import pair_to_filename
@@ -52,6 +53,7 @@ def init_plotscript(config, markets: List, startup_candles: int = 0):
timerange=timerange,
startup_candles=startup_candles,
data_format=config.get('dataformat_ohlcv', 'json'),
candle_type=config.get('candle_type_def', CandleType.SPOT)
)
if startup_candles and data:
@@ -237,8 +239,8 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
# Create description for sell summarizing the trade
trades['desc'] = trades.apply(
lambda row: f"{row['profit_ratio']:.2%}, " +
(f"{row['buy_tag']}, " if row['buy_tag'] is not None else "") +
f"{row['sell_reason']}, " +
(f"{row['enter_tag']}, " if row['enter_tag'] is not None else "") +
f"{row['exit_reason']}, " +
f"{row['trade_duration']} min",
axis=1)
trade_buys = go.Scatter(
@@ -385,6 +387,35 @@ def add_areas(fig, row: int, data: pd.DataFrame, indicators) -> make_subplots:
return fig
def create_scatter(
data,
column_name,
color,
direction
) -> Optional[go.Scatter]:
if column_name in data.columns:
df_short = data[data[column_name] == 1]
if len(df_short) > 0:
shorts = go.Scatter(
x=df_short.date,
y=df_short.close,
mode='markers',
name=column_name,
marker=dict(
symbol=f"triangle-{direction}-dot",
size=9,
line=dict(width=1),
color=color,
)
)
return shorts
else:
logger.warning(f"No {column_name}-signals found.")
return None
def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFrame = None, *,
indicators1: List[str] = [],
indicators2: List[str] = [],
@@ -431,43 +462,15 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
)
fig.add_trace(candles, 1, 1)
if 'buy' in data.columns:
df_buy = data[data['buy'] == 1]
if len(df_buy) > 0:
buys = go.Scatter(
x=df_buy.date,
y=df_buy.close,
mode='markers',
name='buy',
marker=dict(
symbol='triangle-up-dot',
size=9,
line=dict(width=1),
color='green',
)
)
fig.add_trace(buys, 1, 1)
else:
logger.warning("No buy-signals found.")
longs = create_scatter(data, 'enter_long', 'green', 'up')
exit_longs = create_scatter(data, 'exit_long', 'red', 'down')
shorts = create_scatter(data, 'enter_short', 'blue', 'down')
exit_shorts = create_scatter(data, 'exit_short', 'violet', 'up')
for scatter in [longs, exit_longs, shorts, exit_shorts]:
if scatter:
fig.add_trace(scatter, 1, 1)
if 'sell' in data.columns:
df_sell = data[data['sell'] == 1]
if len(df_sell) > 0:
sells = go.Scatter(
x=df_sell.date,
y=df_sell.close,
mode='markers',
name='sell',
marker=dict(
symbol='triangle-down-dot',
size=9,
line=dict(width=1),
color='red',
)
)
fig.add_trace(sells, 1, 1)
else:
logger.warning("No sell-signals found.")
# Add Bollinger Bands
fig = plot_area(fig, 1, data, 'bb_lowerband', 'bb_upperband',
label="Bollinger Band")
@@ -536,7 +539,7 @@ def generate_profit_graph(pairs: str, data: Dict[str, pd.DataFrame],
"Profit per pair",
"Parallelism",
"Underwater",
])
])
fig['layout'].update(title="Freqtrade Profit plot")
fig['layout']['yaxis1'].update(title='Price')
fig['layout']['yaxis2'].update(title=f'Profit {stake_currency}')

View File

@@ -9,6 +9,7 @@ import arrow
from pandas import DataFrame
from freqtrade.configuration import PeriodicCache
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.exceptions import OperationalException
from freqtrade.misc import plural
from freqtrade.plugins.pairlist.IPairList import IPairList
@@ -71,8 +72,8 @@ class AgeFilter(IPairList):
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
:return: new allowlist
"""
needed_pairs = [
(p, '1d') for p in pairlist
needed_pairs: ListPairsWithTimeframes = [
(p, '1d', self._config['candle_type_def']) for p in pairlist
if p not in self._symbolsChecked and p not in self._symbolsCheckFailed]
if not needed_pairs:
# Remove pairs that have been removed before
@@ -88,7 +89,8 @@ class AgeFilter(IPairList):
candles = self._exchange.refresh_latest_ohlcv(needed_pairs, since_ms=since_ms, cache=False)
if self._enabled:
for p in deepcopy(pairlist):
daily_candles = candles[(p, '1d')] if (p, '1d') in candles else None
daily_candles = candles[(p, '1d', self._config['candle_type_def'])] if (
p, '1d', self._config['candle_type_def']) in candles else None
if not self._validate_pair_loc(p, daily_candles):
pairlist.remove(p)
self.log_once(f"Validated {len(pairlist)} pairs.", logger.info)

View File

@@ -90,8 +90,7 @@ class PriceFilter(IPairList):
price = ticker['last']
market = self._exchange.markets[pair]
limits = market['limits']
if ('amount' in limits and 'min' in limits['amount']
and limits['amount']['min'] is not None):
if (limits['amount']['min'] is not None):
min_amount = limits['amount']['min']
min_precision = market['precision']['amount']

View File

@@ -11,6 +11,7 @@ import numpy as np
from cachetools import TTLCache
from pandas import DataFrame
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.exceptions import OperationalException
from freqtrade.misc import plural
from freqtrade.plugins.pairlist.IPairList import IPairList
@@ -33,6 +34,7 @@ class VolatilityFilter(IPairList):
self._min_volatility = pairlistconfig.get('min_volatility', 0)
self._max_volatility = pairlistconfig.get('max_volatility', sys.maxsize)
self._refresh_period = pairlistconfig.get('refresh_period', 1440)
self._def_candletype = self._config['candle_type_def']
self._pair_cache: TTLCache = TTLCache(maxsize=1000, ttl=self._refresh_period)
@@ -67,7 +69,8 @@ class VolatilityFilter(IPairList):
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
:return: new allowlist
"""
needed_pairs = [(p, '1d') for p in pairlist if p not in self._pair_cache]
needed_pairs: ListPairsWithTimeframes = [
(p, '1d', self._def_candletype) for p in pairlist if p not in self._pair_cache]
since_ms = (arrow.utcnow()
.floor('day')
@@ -81,7 +84,8 @@ class VolatilityFilter(IPairList):
if self._enabled:
for p in deepcopy(pairlist):
daily_candles = candles[(p, '1d')] if (p, '1d') in candles else None
daily_candles = candles[(p, '1d', self._def_candletype)] if (
p, '1d', self._def_candletype) in candles else None
if not self._validate_pair_loc(p, daily_candles):
pairlist.remove(p)
return pairlist
@@ -103,7 +107,7 @@ class VolatilityFilter(IPairList):
returns = (np.log(daily_candles.close / daily_candles.close.shift(-1)))
returns.fillna(0, inplace=True)
volatility_series = returns.rolling(window=self._days).std()*np.sqrt(self._days)
volatility_series = returns.rolling(window=self._days).std() * np.sqrt(self._days)
volatility_avg = volatility_series.mean()
if self._min_volatility <= volatility_avg <= self._max_volatility:

View File

@@ -9,6 +9,7 @@ from typing import Any, Dict, List
import arrow
from cachetools import TTLCache
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.misc import format_ms_time
@@ -42,6 +43,7 @@ class VolumePairList(IPairList):
self._lookback_days = self._pairlistconfig.get('lookback_days', 0)
self._lookback_timeframe = self._pairlistconfig.get('lookback_timeframe', '1d')
self._lookback_period = self._pairlistconfig.get('lookback_period', 0)
self._def_candletype = self._config['candle_type_def']
if (self._lookback_days > 0) & (self._lookback_period > 0):
raise OperationalException(
@@ -69,10 +71,13 @@ class VolumePairList(IPairList):
f'to at least {self._tf_in_sec} and restart the bot.'
)
if not self._exchange.exchange_has('fetchTickers'):
if (not self._use_range and not (
self._exchange.exchange_has('fetchTickers')
and self._exchange._ft_has["tickers_have_quoteVolume"])):
raise OperationalException(
'Exchange does not support dynamic whitelist. '
'Please edit your config and restart the bot.'
"Exchange does not support dynamic whitelist in this configuration. "
"Please edit your config and either remove Volumepairlist, "
"or switch to using candles. and restart the bot."
)
if not self._validate_keys(self._sort_key):
@@ -93,7 +98,7 @@ class VolumePairList(IPairList):
If no Pairlist requires tickers, an empty Dict is passed
as tickers argument to filter_pairlist
"""
return True
return not self._use_range
def _validate_keys(self, key):
return key in SORT_VALUES
@@ -121,16 +126,18 @@ class VolumePairList(IPairList):
# Check if pair quote currency equals to the stake currency.
_pairlist = [k for k in self._exchange.get_markets(
quote_currencies=[self._stake_currency],
pairs_only=True, active_only=True).keys()]
tradable_only=True, active_only=True).keys()]
# No point in testing for blacklisted pairs...
_pairlist = self.verify_blacklist(_pairlist, logger.info)
filtered_tickers = [
v for k, v in tickers.items()
if (self._exchange.get_pair_quote_currency(k) == self._stake_currency
and (self._use_range or v[self._sort_key] is not None)
and v['symbol'] in _pairlist)]
pairlist = [s['symbol'] for s in filtered_tickers]
if not self._use_range:
filtered_tickers = [
v for k, v in tickers.items()
if (self._exchange.get_pair_quote_currency(k) == self._stake_currency
and (self._use_range or v[self._sort_key] is not None)
and v['symbol'] in _pairlist)]
pairlist = [s['symbol'] for s in filtered_tickers]
else:
pairlist = _pairlist
pairlist = self.filter_pairlist(pairlist, tickers)
self._pair_cache['pairlist'] = pairlist.copy()
@@ -145,11 +152,11 @@ class VolumePairList(IPairList):
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
:return: new whitelist
"""
# Use the incoming pairlist.
filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
# get lookback period in ms, for exchange ohlcv fetch
if self._use_range:
# Create bare minimum from tickers structure.
filtered_tickers: List[Dict[str, Any]] = [{'symbol': k} for k in pairlist]
# get lookback period in ms, for exchange ohlcv fetch
since_ms = int(arrow.utcnow()
.floor('minute')
.shift(minutes=-(self._lookback_period * self._tf_in_min)
@@ -165,11 +172,10 @@ class VolumePairList(IPairList):
self.log_once(f"Using volume range of {self._lookback_period} candles, timeframe: "
f"{self._lookback_timeframe}, starting from {format_ms_time(since_ms)} "
f"till {format_ms_time(to_ms)}", logger.info)
needed_pairs = [
(p, self._lookback_timeframe) for p in
[
s['symbol'] for s in filtered_tickers
] if p not in self._pair_cache
needed_pairs: ListPairsWithTimeframes = [
(p, self._lookback_timeframe, self._def_candletype) for p in
[s['symbol'] for s in filtered_tickers]
if p not in self._pair_cache
]
# Get all candles
@@ -180,8 +186,10 @@ class VolumePairList(IPairList):
)
for i, p in enumerate(filtered_tickers):
pair_candles = candles[
(p['symbol'], self._lookback_timeframe)
] if (p['symbol'], self._lookback_timeframe) in candles else None
(p['symbol'], self._lookback_timeframe, self._def_candletype)
] if (
p['symbol'], self._lookback_timeframe, self._def_candletype
) in candles else None
# in case of candle data calculate typical price and quoteVolume for candle
if pair_candles is not None and not pair_candles.empty:
if self._exchange._ft_has["ohlcv_volume_currency"] == "base":
@@ -205,6 +213,9 @@ class VolumePairList(IPairList):
filtered_tickers[i]['quoteVolume'] = quoteVolume
else:
filtered_tickers[i]['quoteVolume'] = 0
else:
# Tickers mode - filter based on incomming pairlist.
filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
if self._min_value > 0:
filtered_tickers = [

View File

@@ -9,6 +9,7 @@ import arrow
from cachetools import TTLCache
from pandas import DataFrame
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.exceptions import OperationalException
from freqtrade.misc import plural
from freqtrade.plugins.pairlist.IPairList import IPairList
@@ -28,6 +29,7 @@ class RangeStabilityFilter(IPairList):
self._min_rate_of_change = pairlistconfig.get('min_rate_of_change', 0.01)
self._max_rate_of_change = pairlistconfig.get('max_rate_of_change', None)
self._refresh_period = pairlistconfig.get('refresh_period', 1440)
self._def_candletype = self._config['candle_type_def']
self._pair_cache: TTLCache = TTLCache(maxsize=1000, ttl=self._refresh_period)
@@ -65,7 +67,8 @@ class RangeStabilityFilter(IPairList):
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
:return: new allowlist
"""
needed_pairs = [(p, '1d') for p in pairlist if p not in self._pair_cache]
needed_pairs: ListPairsWithTimeframes = [
(p, '1d', self._def_candletype) for p in pairlist if p not in self._pair_cache]
since_ms = (arrow.utcnow()
.floor('day')
@@ -79,7 +82,8 @@ class RangeStabilityFilter(IPairList):
if self._enabled:
for p in deepcopy(pairlist):
daily_candles = candles[(p, '1d')] if (p, '1d') in candles else None
daily_candles = candles[(p, '1d', self._def_candletype)] if (
p, '1d', self._def_candletype) in candles else None
if not self._validate_pair_loc(p, daily_candles):
pairlist.remove(p)
return pairlist

View File

@@ -8,6 +8,7 @@ from typing import Dict, List
from cachetools import TTLCache, cached
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.enums import CandleType
from freqtrade.exceptions import OperationalException
from freqtrade.mixins import LoggingMixin
from freqtrade.plugins.pairlist.IPairList import IPairList
@@ -132,7 +133,6 @@ class PairListManager(LoggingMixin):
:return: pairlist - whitelisted pairs
"""
try:
whitelist = expand_pairlist(pairlist, self._exchange.get_markets().keys(), keep_invalid)
except ValueError as err:
logger.error(f"Pair whitelist contains an invalid Wildcard: {err}")
@@ -143,4 +143,10 @@ class PairListManager(LoggingMixin):
"""
Create list of pair tuples with (pair, timeframe)
"""
return [(pair, timeframe or self._config['timeframe']) for pair in pairs]
return [
(
pair,
timeframe or self._config['timeframe'],
self._config.get('candle_type_def', CandleType.SPOT)
) for pair in pairs
]

View File

@@ -36,7 +36,7 @@ class MaxDrawdown(IProtection):
"""
LockReason to use
"""
return (f'{drawdown} > {self._max_allowed_drawdown} in {self.lookback_period_str}, '
return (f'{drawdown} passed {self._max_allowed_drawdown} in {self.lookback_period_str}, '
f'locking for {self.stop_duration_str}.')
def _max_drawdown(self, date_now: datetime) -> ProtectionReturn:

View File

@@ -3,7 +3,7 @@ import logging
from datetime import datetime, timedelta
from typing import Any, Dict
from freqtrade.enums import SellType
from freqtrade.enums import ExitType
from freqtrade.persistence import Trade
from freqtrade.plugins.protections import IProtection, ProtectionReturn
@@ -41,21 +41,11 @@ class StoplossGuard(IProtection):
Evaluate recent trades
"""
look_back_until = date_now - timedelta(minutes=self._lookback_period)
# filters = [
# Trade.is_open.is_(False),
# Trade.close_date > look_back_until,
# or_(Trade.sell_reason == SellType.STOP_LOSS.value,
# and_(Trade.sell_reason == SellType.TRAILING_STOP_LOSS.value,
# Trade.close_profit < 0))
# ]
# if pair:
# filters.append(Trade.pair == pair)
# trades = Trade.get_trades(filters).all()
trades1 = Trade.get_trades_proxy(pair=pair, is_open=False, close_date=look_back_until)
trades = [trade for trade in trades1 if (str(trade.sell_reason) in (
SellType.TRAILING_STOP_LOSS.value, SellType.STOP_LOSS.value,
SellType.STOPLOSS_ON_EXCHANGE.value)
trades = [trade for trade in trades1 if (str(trade.exit_reason) in (
ExitType.TRAILING_STOP_LOSS.value, ExitType.STOP_LOSS.value,
ExitType.STOPLOSS_ON_EXCHANGE.value)
and trade.close_profit and trade.close_profit < 0)]
if len(trades) < self._trade_limit:

View File

@@ -11,7 +11,9 @@ from os import walk
from pathlib import Path
from typing import Any, Dict, List, Optional
from freqtrade.configuration.config_validation import validate_migrated_strategy_settings
from freqtrade.constants import REQUIRED_ORDERTIF, REQUIRED_ORDERTYPES, USERPATH_STRATEGIES
from freqtrade.enums import TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.resolvers import IResolver
from freqtrade.strategy.interface import IStrategy
@@ -84,10 +86,10 @@ class StrategyResolver(IResolver):
("protections", None),
("startup_candle_count", None),
("unfilledtimeout", None),
("use_sell_signal", True),
("sell_profit_only", False),
("ignore_roi_if_buy_signal", False),
("sell_profit_offset", 0.0),
("use_exit_signal", True),
("exit_profit_only", False),
("ignore_roi_if_entry_signal", False),
("exit_profit_offset", 0.0),
("disable_dataframe_checks", False),
("ignore_buying_expired_candle_after", 0),
("position_adjustment_enable", False),
@@ -148,14 +150,83 @@ class StrategyResolver(IResolver):
return strategy
@staticmethod
def _strategy_sanity_validations(strategy):
def _strategy_sanity_validations(strategy: IStrategy):
# Ensure necessary migrations are performed first.
validate_migrated_strategy_settings(strategy.config)
if not all(k in strategy.order_types for k in REQUIRED_ORDERTYPES):
raise ImportError(f"Impossible to load Strategy '{strategy.__class__.__name__}'. "
f"Order-types mapping is incomplete.")
if not all(k in strategy.order_time_in_force for k in REQUIRED_ORDERTIF):
raise ImportError(f"Impossible to load Strategy '{strategy.__class__.__name__}'. "
f"Order-time-in-force mapping is incomplete.")
trading_mode = strategy.config.get('trading_mode', TradingMode.SPOT)
if (strategy.can_short and trading_mode == TradingMode.SPOT):
raise ImportError(
"Short strategies cannot run in spot markets. Please make sure that this "
"is the correct strategy and that your trading mode configuration is correct. "
"You can run this strategy in spot markets by setting `can_short=False`"
" in your strategy. Please note that short signals will be ignored in that case."
)
@staticmethod
def validate_strategy(strategy: IStrategy) -> IStrategy:
if strategy.config.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
# Require new method
warn_deprecated_setting(strategy, 'sell_profit_only', 'exit_profit_only', True)
warn_deprecated_setting(strategy, 'sell_profit_offset', 'exit_profit_offset', True)
warn_deprecated_setting(strategy, 'use_sell_signal', 'use_exit_signal', True)
warn_deprecated_setting(strategy, 'ignore_roi_if_buy_signal',
'ignore_roi_if_entry_signal', True)
if not check_override(strategy, IStrategy, 'populate_entry_trend'):
raise OperationalException("`populate_entry_trend` must be implemented.")
if not check_override(strategy, IStrategy, 'populate_exit_trend'):
raise OperationalException("`populate_exit_trend` must be implemented.")
if check_override(strategy, IStrategy, 'check_buy_timeout'):
raise OperationalException("Please migrate your implementation "
"of `check_buy_timeout` to `check_entry_timeout`.")
if check_override(strategy, IStrategy, 'check_sell_timeout'):
raise OperationalException("Please migrate your implementation "
"of `check_sell_timeout` to `check_exit_timeout`.")
if check_override(strategy, IStrategy, 'custom_sell'):
raise OperationalException(
"Please migrate your implementation of `custom_sell` to `custom_exit`.")
else:
# TODO: Implementing one of the following methods should show a deprecation warning
# buy_trend and sell_trend, custom_sell
warn_deprecated_setting(strategy, 'sell_profit_only', 'exit_profit_only')
warn_deprecated_setting(strategy, 'sell_profit_offset', 'exit_profit_offset')
warn_deprecated_setting(strategy, 'use_sell_signal', 'use_exit_signal')
warn_deprecated_setting(strategy, 'ignore_roi_if_buy_signal',
'ignore_roi_if_entry_signal')
if (
not check_override(strategy, IStrategy, 'populate_buy_trend')
and not check_override(strategy, IStrategy, 'populate_entry_trend')
):
raise OperationalException(
"`populate_entry_trend` or `populate_buy_trend` must be implemented.")
if (
not check_override(strategy, IStrategy, 'populate_sell_trend')
and not check_override(strategy, IStrategy, 'populate_exit_trend')
):
raise OperationalException(
"`populate_exit_trend` or `populate_sell_trend` must be implemented.")
strategy._populate_fun_len = len(getfullargspec(strategy.populate_indicators).args)
strategy._buy_fun_len = len(getfullargspec(strategy.populate_buy_trend).args)
strategy._sell_fun_len = len(getfullargspec(strategy.populate_sell_trend).args)
if any(x == 2 for x in [
strategy._populate_fun_len,
strategy._buy_fun_len,
strategy._sell_fun_len
]):
strategy.INTERFACE_VERSION = 1
return strategy
@staticmethod
def _load_strategy(strategy_name: str,
@@ -197,23 +268,35 @@ class StrategyResolver(IResolver):
# register temp path with the bot
abs_paths.insert(0, temp.resolve())
strategy = StrategyResolver._load_object(paths=abs_paths,
object_name=strategy_name,
add_source=True,
kwargs={'config': config},
)
if strategy:
strategy._populate_fun_len = len(getfullargspec(strategy.populate_indicators).args)
strategy._buy_fun_len = len(getfullargspec(strategy.populate_buy_trend).args)
strategy._sell_fun_len = len(getfullargspec(strategy.populate_sell_trend).args)
if any(x == 2 for x in [strategy._populate_fun_len,
strategy._buy_fun_len,
strategy._sell_fun_len]):
strategy.INTERFACE_VERSION = 1
strategy = StrategyResolver._load_object(
paths=abs_paths,
object_name=strategy_name,
add_source=True,
kwargs={'config': config},
)
return strategy
if strategy:
return StrategyResolver.validate_strategy(strategy)
raise OperationalException(
f"Impossible to load Strategy '{strategy_name}'. This class does not exist "
"or contains Python code errors."
)
def warn_deprecated_setting(strategy: IStrategy, old: str, new: str, error=False):
if hasattr(strategy, old):
errormsg = f"DEPRECATED: Using '{old}' moved to '{new}'."
if error:
raise OperationalException(errormsg)
logger.warning(errormsg)
setattr(strategy, new, getattr(strategy, f'{old}'))
def check_override(object, parentclass, attribute):
"""
Checks if a object overrides the parent class attribute.
:returns: True if the object is overridden.
"""
return getattr(type(object), attribute) != getattr(parentclass, attribute)

View File

@@ -1,13 +1,16 @@
import asyncio
import logging
from copy import deepcopy
from typing import Any, Dict, List
from fastapi import APIRouter, BackgroundTasks, Depends
from freqtrade.configuration.config_validation import validate_config_consistency
from freqtrade.data.btanalysis import get_backtest_resultlist, load_and_merge_backtest_result
from freqtrade.enums import BacktestState
from freqtrade.exceptions import DependencyException
from freqtrade.rpc.api_server.api_schemas import BacktestRequest, BacktestResponse
from freqtrade.rpc.api_server.api_schemas import (BacktestHistoryEntry, BacktestRequest,
BacktestResponse)
from freqtrade.rpc.api_server.deps import get_config, is_webserver_mode
from freqtrade.rpc.api_server.webserver import ApiServer
from freqtrade.rpc.rpc import RPCException
@@ -200,3 +203,30 @@ def api_backtest_abort(ws_mode=Depends(is_webserver_mode)):
"progress": 0,
"status_msg": "Backtest ended",
}
@router.get('/backtest/history', response_model=List[BacktestHistoryEntry], tags=['webserver', 'backtest'])
def api_backtest_history(config=Depends(get_config), ws_mode=Depends(is_webserver_mode)):
# Get backtest result history, read from metadata files
return get_backtest_resultlist(config['user_data_dir'] / 'backtest_results')
@router.get('/backtest/history/result', response_model=BacktestResponse, tags=['webserver', 'backtest'])
def api_backtest_history_result(filename: str, strategy: str, config=Depends(get_config), ws_mode=Depends(is_webserver_mode)):
# Get backtest result history, read from metadata files
fn = config['user_data_dir'] / 'backtest_results' / filename
results: Dict[str, Any] = {
'metadata': {},
'strategy': {},
'strategy_comparison': [],
}
load_and_merge_backtest_result(strategy, fn, results)
return {
"status": "ended",
"running": False,
"step": "",
"progress": 1,
"status_msg": "Historic result",
"backtest_result": results,
}

View File

@@ -4,7 +4,7 @@ from typing import Any, Dict, List, Optional, Union
from pydantic import BaseModel
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.enums import OrderTypeValues
from freqtrade.enums import OrderTypeValues, SignalDirection, TradingMode
class Ping(BaseModel):
@@ -38,6 +38,11 @@ class Balance(BaseModel):
used: float
est_stake: float
stake: str
# Starting with 2.x
side: str
leverage: float
is_position: bool
position: float
class Balances(BaseModel):
@@ -108,7 +113,7 @@ class SellReason(BaseModel):
class Stats(BaseModel):
sell_reasons: Dict[str, SellReason]
exit_reasons: Dict[str, SellReason]
durations: Dict[str, Optional[float]]
@@ -126,18 +131,18 @@ class Daily(BaseModel):
class UnfilledTimeout(BaseModel):
buy: Optional[int]
sell: Optional[int]
entry: Optional[int]
exit: Optional[int]
unit: Optional[str]
exit_timeout_count: Optional[int]
class OrderTypes(BaseModel):
buy: OrderTypeValues
sell: OrderTypeValues
emergencysell: Optional[OrderTypeValues]
forcesell: Optional[OrderTypeValues]
forcebuy: Optional[OrderTypeValues]
entry: OrderTypeValues
exit: OrderTypeValues
emergency_exit: Optional[OrderTypeValues]
force_exit: Optional[OrderTypeValues]
force_entry: Optional[OrderTypeValues]
stoploss: OrderTypeValues
stoploss_on_exchange: bool
stoploss_on_exchange_interval: Optional[int]
@@ -148,6 +153,8 @@ class ShowConfig(BaseModel):
strategy_version: Optional[str]
api_version: float
dry_run: bool
trading_mode: str
short_allowed: bool
stake_currency: str
stake_amount: str
available_capital: Optional[float]
@@ -167,9 +174,9 @@ class ShowConfig(BaseModel):
timeframe_min: int
exchange: str
strategy: Optional[str]
forcebuy_enabled: bool
ask_strategy: Dict[str, Any]
bid_strategy: Dict[str, Any]
force_entry_enable: bool
exit_pricing: Dict[str, Any]
entry_pricing: Dict[str, Any]
bot_name: str
state: str
runmode: str
@@ -196,13 +203,17 @@ class OrderSchema(BaseModel):
class TradeSchema(BaseModel):
trade_id: int
pair: str
base_currency: str
quote_currency: str
is_open: bool
is_short: bool
exchange: str
amount: float
amount_requested: float
stake_amount: float
strategy: str
buy_tag: Optional[str]
buy_tag: Optional[str] # Deprecated
enter_tag: Optional[str]
timeframe: int
fee_open: Optional[float]
fee_open_cost: Optional[float]
@@ -226,8 +237,9 @@ class TradeSchema(BaseModel):
profit_pct: Optional[float]
profit_abs: Optional[float]
profit_fiat: Optional[float]
sell_reason: Optional[str]
sell_order_status: Optional[str]
sell_reason: Optional[str] # Deprecated
exit_reason: Optional[str]
exit_order_status: Optional[str]
stop_loss_abs: Optional[float]
stop_loss_ratio: Optional[float]
stop_loss_pct: Optional[float]
@@ -242,6 +254,11 @@ class TradeSchema(BaseModel):
open_order_id: Optional[str]
orders: List[OrderSchema]
leverage: Optional[float]
interest_rate: Optional[float]
funding_fees: Optional[float]
trading_mode: Optional[TradingMode]
class OpenTradeSchema(TradeSchema):
stoploss_current_dist: Optional[float]
@@ -262,7 +279,7 @@ class TradeResponse(BaseModel):
total_trades: int
class ForceBuyResponse(BaseModel):
class ForceEnterResponse(BaseModel):
__root__: Union[TradeSchema, StatusMsg]
@@ -292,15 +309,16 @@ class Logs(BaseModel):
logs: List[List]
class ForceBuyPayload(BaseModel):
class ForceEnterPayload(BaseModel):
pair: str
side: SignalDirection = SignalDirection.LONG
price: Optional[float]
ordertype: Optional[OrderTypeValues]
stakeamount: Optional[float]
entry_tag: Optional[str]
class ForceSellPayload(BaseModel):
class ForceExitPayload(BaseModel):
tradeid: str
ordertype: Optional[OrderTypeValues]
@@ -364,6 +382,10 @@ class PairHistory(BaseModel):
length: int
buy_signals: int
sell_signals: int
enter_long_signals: int
exit_long_signals: int
enter_short_signals: int
exit_short_signals: int
last_analyzed: datetime
last_analyzed_ts: int
data_start_ts: int
@@ -399,6 +421,13 @@ class BacktestResponse(BaseModel):
backtest_result: Optional[Dict[str, Any]]
class BacktestHistoryEntry(BaseModel):
filename: str
strategy: str
run_id: str
backtest_start_time: int
class SysInfo(BaseModel):
cpu_pct: List[float]
ram_pct: float

View File

@@ -9,13 +9,14 @@ from fastapi.exceptions import HTTPException
from freqtrade import __version__
from freqtrade.constants import USERPATH_STRATEGIES
from freqtrade.data.history import get_datahandler
from freqtrade.enums import CandleType, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.rpc import RPC
from freqtrade.rpc.api_server.api_schemas import (AvailablePairs, Balances, BlacklistPayload,
BlacklistResponse, Count, Daily,
DeleteLockRequest, DeleteTrade, ForceBuyPayload,
ForceBuyResponse, ForceSellPayload, Health, Locks,
Logs, OpenTradeSchema, PairHistory,
DeleteLockRequest, DeleteTrade, ForceEnterPayload,
ForceEnterResponse, ForceExitPayload, Health,
Locks, Logs, OpenTradeSchema, PairHistory,
PerformanceEntry, Ping, PlotConfig, Profit,
ResultMsg, ShowConfig, Stats, StatusMsg,
StrategyListResponse, StrategyResponse, SysInfo,
@@ -32,8 +33,10 @@ logger = logging.getLogger(__name__)
# 1.11: forcebuy and forcesell accept ordertype
# 1.12: add blacklist delete endpoint
# 1.13: forcebuy supports stake_amount
# 1.14: Add entry/exit orders to trade response
API_VERSION = 1.14
# versions 2.xx -> futures/short branch
# 2.14: Add entry/exit orders to trade response
# 2.15: Add backtest history endpoints
API_VERSION = 2.15
# Public API, requires no auth.
router_public = APIRouter()
@@ -133,24 +136,31 @@ def show_config(rpc: Optional[RPC] = Depends(get_rpc_optional), config=Depends(g
return resp
@router.post('/forcebuy', response_model=ForceBuyResponse, tags=['trading'])
def forcebuy(payload: ForceBuyPayload, rpc: RPC = Depends(get_rpc)):
# /forcebuy is deprecated with short addition. use /forceentry instead
@router.post('/forceenter', response_model=ForceEnterResponse, tags=['trading'])
@router.post('/forcebuy', response_model=ForceEnterResponse, tags=['trading'])
def force_entry(payload: ForceEnterPayload, rpc: RPC = Depends(get_rpc)):
ordertype = payload.ordertype.value if payload.ordertype else None
stake_amount = payload.stakeamount if payload.stakeamount else None
entry_tag = payload.entry_tag if payload.entry_tag else 'forceentry'
entry_tag = payload.entry_tag if payload.entry_tag else 'force_entry'
trade = rpc._rpc_forcebuy(payload.pair, payload.price, ordertype, stake_amount, entry_tag)
trade = rpc._rpc_force_entry(payload.pair, payload.price, order_side=payload.side,
order_type=ordertype, stake_amount=stake_amount,
enter_tag=entry_tag)
if trade:
return ForceBuyResponse.parse_obj(trade.to_json())
return ForceEnterResponse.parse_obj(trade.to_json())
else:
return ForceBuyResponse.parse_obj({"status": f"Error buying pair {payload.pair}."})
return ForceEnterResponse.parse_obj(
{"status": f"Error entering {payload.side} trade for pair {payload.pair}."})
# /forcesell is deprecated with short addition. use /forceexit instead
@router.post('/forceexit', response_model=ResultMsg, tags=['trading'])
@router.post('/forcesell', response_model=ResultMsg, tags=['trading'])
def forcesell(payload: ForceSellPayload, rpc: RPC = Depends(get_rpc)):
def forceexit(payload: ForceExitPayload, rpc: RPC = Depends(get_rpc)):
ordertype = payload.ordertype.value if payload.ordertype else None
return rpc._rpc_forcesell(payload.tradeid, ordertype)
return rpc._rpc_force_exit(payload.tradeid, ordertype)
@router.get('/blacklist', response_model=BlacklistResponse, tags=['info', 'pairlist'])
@@ -269,16 +279,22 @@ def get_strategy(strategy: str, config=Depends(get_config)):
@router.get('/available_pairs', response_model=AvailablePairs, tags=['candle data'])
def list_available_pairs(timeframe: Optional[str] = None, stake_currency: Optional[str] = None,
config=Depends(get_config)):
candletype: Optional[CandleType] = None, config=Depends(get_config)):
dh = get_datahandler(config['datadir'], config.get('dataformat_ohlcv', None))
pair_interval = dh.ohlcv_get_available_data(config['datadir'])
trading_mode: TradingMode = config.get('trading_mode', TradingMode.SPOT)
pair_interval = dh.ohlcv_get_available_data(config['datadir'], trading_mode)
if timeframe:
pair_interval = [pair for pair in pair_interval if pair[1] == timeframe]
if stake_currency:
pair_interval = [pair for pair in pair_interval if pair[0].endswith(stake_currency)]
if candletype:
pair_interval = [pair for pair in pair_interval if pair[2] == candletype]
else:
candle_type = CandleType.get_default(trading_mode)
pair_interval = [pair for pair in pair_interval if pair[2] == candle_type]
pair_interval = sorted(pair_interval, key=lambda x: x[0])
pairs = list({x[0] for x in pair_interval})

View File

@@ -63,7 +63,7 @@ class CryptoToFiatConverter:
except RequestException as request_exception:
if "429" in str(request_exception):
logger.warning(
"Too many requests for Coingecko API, backing off and trying again later.")
"Too many requests for CoinGecko API, backing off and trying again later.")
# Set backoff timestamp to 60 seconds in the future
self._backoff = datetime.datetime.now().timestamp() + 60
return
@@ -86,7 +86,7 @@ class CryptoToFiatConverter:
return None
else:
return None
found = [x for x in self._coinlistings if x['symbol'] == crypto_symbol]
found = [x for x in self._coinlistings if x['symbol'].lower() == crypto_symbol]
if crypto_symbol in coingecko_mapping.keys():
found = [x for x in self._coinlistings if x['id'] == coingecko_mapping[crypto_symbol]]
@@ -96,7 +96,7 @@ class CryptoToFiatConverter:
if len(found) > 0:
# Wrong!
logger.warning(f"Found multiple mappings in goingekko for {crypto_symbol}.")
logger.warning(f"Found multiple mappings in CoinGecko for {crypto_symbol}.")
return None
def convert_amount(self, crypto_amount: float, crypto_symbol: str, fiat_symbol: str) -> float:
@@ -160,7 +160,7 @@ class CryptoToFiatConverter:
def _find_price(self, crypto_symbol: str, fiat_symbol: str) -> float:
"""
Call CoinGekko API to retrieve the price in the FIAT
Call CoinGecko API to retrieve the price in the FIAT
:param crypto_symbol: Crypto-currency you want to convert (e.g btc)
:param fiat_symbol: FIAT currency you want to convert to (e.g usd)
:return: float, price of the crypto-currency in Fiat

View File

@@ -18,7 +18,8 @@ from freqtrade import __version__
from freqtrade.configuration.timerange import TimeRange
from freqtrade.constants import CANCEL_REASON, DATETIME_PRINT_FORMAT
from freqtrade.data.history import load_data
from freqtrade.enums import SellType, State
from freqtrade.enums import (CandleType, ExitCheckTuple, ExitType, SignalDirection, State,
TradingMode)
from freqtrade.exceptions import ExchangeError, PricingError
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_msecs
from freqtrade.loggers import bufferHandler
@@ -27,7 +28,7 @@ from freqtrade.persistence import PairLocks, Trade
from freqtrade.persistence.models import PairLock
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
from freqtrade.strategy.interface import SellCheckTuple
from freqtrade.wallets import PositionWallet, Wallet
logger = logging.getLogger(__name__)
@@ -110,6 +111,8 @@ class RPC:
'version': __version__,
'strategy_version': strategy_version,
'dry_run': config['dry_run'],
'trading_mode': config.get('trading_mode', 'spot'),
'short_allowed': config.get('trading_mode', 'spot') != 'spot',
'stake_currency': config['stake_currency'],
'stake_currency_decimals': decimals_per_coin(config['stake_currency']),
'stake_amount': str(config['stake_amount']),
@@ -133,9 +136,9 @@ class RPC:
) if 'timeframe' in config else 0,
'exchange': config['exchange']['name'],
'strategy': config['strategy'],
'forcebuy_enabled': config.get('forcebuy_enable', False),
'ask_strategy': config.get('ask_strategy', {}),
'bid_strategy': config.get('bid_strategy', {}),
'force_entry_enable': config.get('force_entry_enable', False),
'exit_pricing': config.get('exit_pricing', {}),
'entry_pricing': config.get('entry_pricing', {}),
'state': str(botstate),
'runmode': config['runmode'].value,
'position_adjustment_enable': config.get('position_adjustment_enable', False),
@@ -153,7 +156,7 @@ class RPC:
"""
# Fetch open trades
if trade_ids:
trades = Trade.get_trades(trade_filter=Trade.id.in_(trade_ids)).all()
trades: List[Trade] = Trade.get_trades(trade_filter=Trade.id.in_(trade_ids)).all()
else:
trades = Trade.get_open_trades()
@@ -169,7 +172,7 @@ class RPC:
if trade.is_open:
try:
current_rate = self._freqtrade.exchange.get_rate(
trade.pair, refresh=False, side="sell")
trade.pair, side='exit', is_short=trade.is_short, refresh=False)
except (ExchangeError, PricingError):
current_rate = NAN
else:
@@ -194,7 +197,6 @@ class RPC:
trade_dict = trade.to_json()
trade_dict.update(dict(
base_currency=self._freqtrade.config['stake_currency'],
close_profit=trade.close_profit if trade.close_profit is not None else None,
current_rate=current_rate,
current_profit=current_profit, # Deprecated
@@ -219,7 +221,8 @@ class RPC:
def _rpc_status_table(self, stake_currency: str,
fiat_display_currency: str) -> Tuple[List, List, float]:
trades = Trade.get_open_trades()
trades: List[Trade] = Trade.get_open_trades()
nonspot = self._config.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT
if not trades:
raise RPCException('no active trade')
else:
@@ -229,11 +232,12 @@ class RPC:
# calculate profit and send message to user
try:
current_rate = self._freqtrade.exchange.get_rate(
trade.pair, refresh=False, side="sell")
trade.pair, side='exit', is_short=trade.is_short, refresh=False)
except (PricingError, ExchangeError):
current_rate = NAN
trade_profit = trade.calc_profit(current_rate)
profit_str = f'{trade.calc_profit_ratio(current_rate):.2%}'
direction_str = ('S' if trade.is_short else 'L') if nonspot else ''
if self._fiat_converter:
fiat_profit = self._fiat_converter.convert_amount(
trade_profit,
@@ -245,7 +249,7 @@ class RPC:
fiat_profit_sum = fiat_profit if isnan(fiat_profit_sum) \
else fiat_profit_sum + fiat_profit
detail_trade = [
trade.id,
f'{trade.id} {direction_str}',
trade.pair + ('*' if (trade.open_order_id is not None
and trade.close_rate_requested is None) else '')
+ ('**' if (trade.close_rate_requested is not None) else ''),
@@ -253,20 +257,23 @@ class RPC:
profit_str
]
if self._config.get('position_adjustment_enable', False):
max_buy_str = ''
max_entry_str = ''
if self._config.get('max_entry_position_adjustment', -1) > 0:
max_buy_str = f"/{self._config['max_entry_position_adjustment'] + 1}"
filled_buys = trade.nr_of_successful_buys
detail_trade.append(f"{filled_buys}{max_buy_str}")
max_entry_str = f"/{self._config['max_entry_position_adjustment'] + 1}"
filled_entries = trade.nr_of_successful_entries
detail_trade.append(f"{filled_entries}{max_entry_str}")
trades_list.append(detail_trade)
profitcol = "Profit"
if self._fiat_converter:
profitcol += " (" + fiat_display_currency + ")"
columns = [
'ID L/S' if nonspot else 'ID',
'Pair',
'Since',
profitcol]
if self._config.get('position_adjustment_enable', False):
columns = ['ID', 'Pair', 'Since', profitcol, '# Entries']
else:
columns = ['ID', 'Pair', 'Since', profitcol]
columns.append('# Entries')
return trades_list, columns, fiat_profit_sum
def _rpc_daily_profit(
@@ -425,13 +432,13 @@ class RPC:
return 'losses'
else:
return 'draws'
trades = trades = Trade.get_trades([Trade.is_open.is_(False)])
trades: List[Trade] = Trade.get_trades([Trade.is_open.is_(False)])
# Sell reason
sell_reasons = {}
exit_reasons = {}
for trade in trades:
if trade.sell_reason not in sell_reasons:
sell_reasons[trade.sell_reason] = {'wins': 0, 'losses': 0, 'draws': 0}
sell_reasons[trade.sell_reason][trade_win_loss(trade)] += 1
if trade.exit_reason not in exit_reasons:
exit_reasons[trade.exit_reason] = {'wins': 0, 'losses': 0, 'draws': 0}
exit_reasons[trade.exit_reason][trade_win_loss(trade)] += 1
# Duration
dur: Dict[str, List[int]] = {'wins': [], 'draws': [], 'losses': []}
@@ -445,7 +452,7 @@ class RPC:
losses_dur = sum(dur['losses']) / len(dur['losses']) if len(dur['losses']) > 0 else None
durations = {'wins': wins_dur, 'draws': draws_dur, 'losses': losses_dur}
return {'sell_reasons': sell_reasons, 'durations': durations}
return {'exit_reasons': exit_reasons, 'durations': durations}
def _rpc_trade_statistics(
self, stake_currency: str, fiat_display_currency: str,
@@ -453,7 +460,7 @@ class RPC:
""" Returns cumulative profit statistics """
trade_filter = ((Trade.is_open.is_(False) & (Trade.close_date >= start_date)) |
Trade.is_open.is_(True))
trades = Trade.get_trades(trade_filter).order_by(Trade.id).all()
trades: List[Trade] = Trade.get_trades(trade_filter).order_by(Trade.id).all()
profit_all_coin = []
profit_all_ratio = []
@@ -483,7 +490,7 @@ class RPC:
# Get current rate
try:
current_rate = self._freqtrade.exchange.get_rate(
trade.pair, refresh=False, side="sell")
trade.pair, side='exit', is_short=trade.is_short, refresh=False)
except (PricingError, ExchangeError):
current_rate = NAN
profit_ratio = trade.calc_profit_ratio(rate=current_rate)
@@ -559,7 +566,7 @@ class RPC:
def _rpc_balance(self, stake_currency: str, fiat_display_currency: str) -> Dict:
""" Returns current account balance per crypto """
output = []
currencies = []
total = 0.0
try:
tickers = self._freqtrade.exchange.get_tickers(cached=True)
@@ -570,7 +577,8 @@ class RPC:
starting_capital = self._freqtrade.wallets.get_starting_balance()
starting_cap_fiat = self._fiat_converter.convert_amount(
starting_capital, stake_currency, fiat_display_currency) if self._fiat_converter else 0
coin: str
balance: Wallet
for coin, balance in self._freqtrade.wallets.get_all_balances().items():
if not balance.total:
continue
@@ -579,6 +587,9 @@ class RPC:
if coin == stake_currency:
rate = 1.0
est_stake = balance.total
if self._config.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
# in Futures, "total" includes the locked stake, and therefore all positions
est_stake = balance.free
else:
try:
pair = self._freqtrade.exchange.get_valid_pair_combination(coin, stake_currency)
@@ -591,13 +602,35 @@ class RPC:
logger.warning(f" Could not get rate for pair {coin}.")
continue
total = total + (est_stake or 0)
output.append({
currencies.append({
'currency': coin,
# TODO: The below can be simplified if we don't assign None to values.
'free': balance.free if balance.free is not None else 0,
'balance': balance.total if balance.total is not None else 0,
'used': balance.used if balance.used is not None else 0,
'est_stake': est_stake or 0,
'stake': stake_currency,
'side': 'long',
'leverage': 1,
'position': 0,
'is_position': False,
})
symbol: str
position: PositionWallet
for symbol, position in self._freqtrade.wallets.get_all_positions().items():
total += position.collateral
currencies.append({
'currency': symbol,
'free': 0,
'balance': 0,
'used': 0,
'position': position.position,
'est_stake': position.collateral,
'stake': stake_currency,
'leverage': position.leverage,
'side': position.side,
'is_position': True
})
value = self._fiat_converter.convert_amount(
@@ -609,7 +642,7 @@ class RPC:
starting_cap_fiat_ratio = (value / starting_cap_fiat) - 1 if starting_cap_fiat else 0.0
return {
'currencies': output,
'currencies': currencies,
'total': total,
'symbol': fiat_display_currency,
'value': value,
@@ -655,35 +688,35 @@ class RPC:
return {'status': 'No more buy will occur from now. Run /reload_config to reset.'}
def _rpc_forcesell(self, trade_id: str, ordertype: Optional[str] = None) -> Dict[str, str]:
def _rpc_force_exit(self, trade_id: str, ordertype: Optional[str] = None) -> Dict[str, str]:
"""
Handler for forcesell <id>.
Handler for forceexit <id>.
Sells the given trade at current price
"""
def _exec_forcesell(trade: Trade) -> None:
def _exec_force_exit(trade: Trade) -> None:
# Check if there is there is an open order
fully_canceled = False
if trade.open_order_id:
order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair)
if order['side'] == 'buy':
if order['side'] == trade.entry_side:
fully_canceled = self._freqtrade.handle_cancel_enter(
trade, order, CANCEL_REASON['FORCE_SELL'])
trade, order, CANCEL_REASON['FORCE_EXIT'])
if order['side'] == 'sell':
if order['side'] == trade.exit_side:
# Cancel order - so it is placed anew with a fresh price.
self._freqtrade.handle_cancel_exit(trade, order, CANCEL_REASON['FORCE_SELL'])
self._freqtrade.handle_cancel_exit(trade, order, CANCEL_REASON['FORCE_EXIT'])
if not fully_canceled:
# Get current rate and execute sell
current_rate = self._freqtrade.exchange.get_rate(
trade.pair, refresh=False, side="sell")
sell_reason = SellCheckTuple(sell_type=SellType.FORCE_SELL)
trade.pair, side='exit', is_short=trade.is_short, refresh=True)
exit_check = ExitCheckTuple(exit_type=ExitType.FORCE_EXIT)
order_type = ordertype or self._freqtrade.strategy.order_types.get(
"forcesell", self._freqtrade.strategy.order_types["sell"])
"force_exit", self._freqtrade.strategy.order_types["exit"])
self._freqtrade.execute_trade_exit(
trade, current_rate, sell_reason, ordertype=order_type)
trade, current_rate, exit_check, ordertype=order_type)
# ---- EOF def _exec_forcesell ----
if self._freqtrade.state != State.RUNNING:
@@ -693,7 +726,7 @@ class RPC:
if trade_id == 'all':
# Execute sell for all open orders
for trade in Trade.get_open_trades():
_exec_forcesell(trade)
_exec_force_exit(trade)
Trade.commit()
self._freqtrade.wallets.update()
return {'result': 'Created sell orders for all open trades.'}
@@ -703,28 +736,33 @@ class RPC:
trade_filter=[Trade.id == trade_id, Trade.is_open.is_(True), ]
).first()
if not trade:
logger.warning('forcesell: Invalid argument received')
logger.warning('force_exit: Invalid argument received')
raise RPCException('invalid argument')
_exec_forcesell(trade)
_exec_force_exit(trade)
Trade.commit()
self._freqtrade.wallets.update()
return {'result': f'Created sell order for trade {trade_id}.'}
def _rpc_forcebuy(self, pair: str, price: Optional[float], order_type: Optional[str] = None,
stake_amount: Optional[float] = None,
buy_tag: Optional[str] = 'forceentry') -> Optional[Trade]:
def _rpc_force_entry(self, pair: str, price: Optional[float], *,
order_type: Optional[str] = None,
order_side: SignalDirection = SignalDirection.LONG,
stake_amount: Optional[float] = None,
enter_tag: Optional[str] = 'force_entry') -> Optional[Trade]:
"""
Handler for forcebuy <asset> <price>
Buys a pair trade at the given or current price
"""
if not self._freqtrade.config.get('forcebuy_enable', False):
raise RPCException('Forcebuy not enabled.')
if not self._freqtrade.config.get('force_entry_enable', False):
raise RPCException('Force_entry not enabled.')
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
if order_side == SignalDirection.SHORT and self._freqtrade.trading_mode == TradingMode.SPOT:
raise RPCException("Can't go short on Spot markets.")
# Check if pair quote currency equals to the stake currency.
stake_currency = self._freqtrade.config.get('stake_currency')
if not self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency:
@@ -733,8 +771,10 @@ class RPC:
# check if valid pair
# check if pair already has an open pair
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first()
trade: Trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first()
is_short = (order_side == SignalDirection.SHORT)
if trade:
is_short = trade.is_short
if not self._freqtrade.strategy.position_adjustment_enable:
raise RPCException(f'position for {pair} already open - id: {trade.id}')
@@ -745,14 +785,17 @@ class RPC:
# execute buy
if not order_type:
order_type = self._freqtrade.strategy.order_types.get(
'forcebuy', self._freqtrade.strategy.order_types['buy'])
'force_entry', self._freqtrade.strategy.order_types['entry'])
if self._freqtrade.execute_entry(pair, stake_amount, price,
ordertype=order_type, trade=trade, buy_tag=buy_tag):
ordertype=order_type, trade=trade,
is_short=is_short,
enter_tag=enter_tag,
):
Trade.commit()
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first()
return trade
else:
return None
raise RPCException(f'Failed to enter position for {pair}.')
def _rpc_delete(self, trade_id: int) -> Dict[str, Union[str, int]]:
"""
@@ -802,27 +845,23 @@ class RPC:
return pair_rates
def _rpc_buy_tag_performance(self, pair: Optional[str]) -> List[Dict[str, Any]]:
def _rpc_enter_tag_performance(self, pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Handler for buy tag performance.
Shows a performance statistic from finished trades
"""
buy_tags = Trade.get_buy_tag_performance(pair)
return Trade.get_enter_tag_performance(pair)
return buy_tags
def _rpc_sell_reason_performance(self, pair: Optional[str]) -> List[Dict[str, Any]]:
def _rpc_exit_reason_performance(self, pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Handler for sell reason performance.
Handler for exit reason performance.
Shows a performance statistic from finished trades
"""
sell_reasons = Trade.get_sell_reason_performance(pair)
return sell_reasons
return Trade.get_exit_reason_performance(pair)
def _rpc_mix_tag_performance(self, pair: Optional[str]) -> List[Dict[str, Any]]:
"""
Handler for mix tag (buy_tag + sell_reason) performance.
Handler for mix tag (enter_tag + exit_reason) performance.
Shows a performance statistic from finished trades
"""
mix_tags = Trade.get_mix_tag_performance(pair)
@@ -945,20 +984,21 @@ class RPC:
def _convert_dataframe_to_dict(strategy: str, pair: str, timeframe: str, dataframe: DataFrame,
last_analyzed: datetime) -> Dict[str, Any]:
has_content = len(dataframe) != 0
buy_signals = 0
sell_signals = 0
signals = {
'enter_long': 0,
'exit_long': 0,
'enter_short': 0,
'exit_short': 0,
}
if has_content:
dataframe.loc[:, '__date_ts'] = dataframe.loc[:, 'date'].view(int64) // 1000 // 1000
# Move signal close to separate column when signal for easy plotting
if 'buy' in dataframe.columns:
buy_mask = (dataframe['buy'] == 1)
buy_signals = int(buy_mask.sum())
dataframe.loc[buy_mask, '_buy_signal_close'] = dataframe.loc[buy_mask, 'close']
if 'sell' in dataframe.columns:
sell_mask = (dataframe['sell'] == 1)
sell_signals = int(sell_mask.sum())
dataframe.loc[sell_mask, '_sell_signal_close'] = dataframe.loc[sell_mask, 'close']
for sig_type in signals.keys():
if sig_type in dataframe.columns:
mask = (dataframe[sig_type] == 1)
signals[sig_type] = int(mask.sum())
dataframe.loc[mask, f'_{sig_type}_signal_close'] = dataframe.loc[mask, 'close']
# band-aid until this is fixed:
# https://github.com/pandas-dev/pandas/issues/45836
@@ -978,8 +1018,12 @@ class RPC:
'columns': list(dataframe.columns),
'data': dataframe.values.tolist(),
'length': len(dataframe),
'buy_signals': buy_signals,
'sell_signals': sell_signals,
'buy_signals': signals['enter_long'], # Deprecated
'sell_signals': signals['exit_long'], # Deprecated
'enter_long_signals': signals['enter_long'],
'exit_long_signals': signals['exit_long'],
'enter_short_signals': signals['enter_short'],
'exit_short_signals': signals['exit_short'],
'last_analyzed': last_analyzed,
'last_analyzed_ts': int(last_analyzed.timestamp()),
'data_start': '',
@@ -1018,6 +1062,7 @@ class RPC:
timeframe=timeframe,
timerange=timerange_parsed,
data_format=config.get('dataformat_ohlcv', 'json'),
candle_type=config.get('candle_type_def', CandleType.SPOT)
)
if pair not in _data:
raise RPCException(f"No data for {pair}, {timeframe} in {timerange} found.")

View File

@@ -7,6 +7,7 @@ import json
import logging
import re
from datetime import date, datetime, timedelta
from functools import partial
from html import escape
from itertools import chain
from math import isnan
@@ -22,7 +23,7 @@ from telegram.utils.helpers import escape_markdown
from freqtrade.__init__ import __version__
from freqtrade.constants import DUST_PER_COIN
from freqtrade.enums import RPCMessageType
from freqtrade.enums import RPCMessageType, SignalDirection, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.misc import chunks, plural, round_coin_value
from freqtrade.persistence import Trade
@@ -102,18 +103,20 @@ class Telegram(RPCHandler):
['/count', '/start', '/stop', '/help']
]
# do not allow commands with mandatory arguments and critical cmds
# like /forcesell and /forcebuy
# TODO: DRY! - its not good to list all valid cmds here. But otherwise
# this needs refactoring of the whole telegram module (same
# problem in _help()).
valid_keys: List[str] = [r'/start$', r'/stop$', r'/status$', r'/status table$',
r'/trades$', r'/performance$', r'/buys', r'/sells', r'/mix_tags',
r'/trades$', r'/performance$', r'/buys', r'/entries',
r'/sells', r'/exits', r'/mix_tags',
r'/daily$', r'/daily \d+$', r'/profit$', r'/profit \d+',
r'/stats$', r'/count$', r'/locks$', r'/balance$',
r'/stopbuy$', r'/reload_config$', r'/show_config$',
r'/logs$', r'/whitelist$', r'/blacklist$', r'/bl_delete$',
r'/weekly$', r'/weekly \d+$', r'/monthly$', r'/monthly \d+$',
r'/forcebuy$', r'/edge$', r'/health$', r'/help$', r'/version$']
r'/forcebuy$', r'/forcelong$', r'/forceshort$',
r'/forcesell$', r'/forceexit$',
r'/edge$', r'/health$', r'/help$', r'/version$']
# Create keys for generation
valid_keys_print = [k.replace('$', '') for k in valid_keys]
@@ -150,13 +153,16 @@ class Telegram(RPCHandler):
CommandHandler('balance', self._balance),
CommandHandler('start', self._start),
CommandHandler('stop', self._stop),
CommandHandler('forcesell', self._forcesell),
CommandHandler('forcebuy', self._forcebuy),
CommandHandler(['forcesell', 'forceexit', 'fx'], self._force_exit),
CommandHandler(['forcebuy', 'forcelong'], partial(
self._force_enter, order_side=SignalDirection.LONG)),
CommandHandler('forceshort', partial(
self._force_enter, order_side=SignalDirection.SHORT)),
CommandHandler('trades', self._trades),
CommandHandler('delete', self._delete_trade),
CommandHandler('performance', self._performance),
CommandHandler('buys', self._buy_tag_performance),
CommandHandler('sells', self._sell_reason_performance),
CommandHandler(['buys', 'entries'], self._enter_tag_performance),
CommandHandler(['sells', 'exits'], self._exit_reason_performance),
CommandHandler('mix_tags', self._mix_tag_performance),
CommandHandler('stats', self._stats),
CommandHandler('daily', self._daily),
@@ -185,12 +191,14 @@ class Telegram(RPCHandler):
CallbackQueryHandler(self._profit, pattern='update_profit'),
CallbackQueryHandler(self._balance, pattern='update_balance'),
CallbackQueryHandler(self._performance, pattern='update_performance'),
CallbackQueryHandler(self._buy_tag_performance, pattern='update_buy_tag_performance'),
CallbackQueryHandler(self._sell_reason_performance,
pattern='update_sell_reason_performance'),
CallbackQueryHandler(self._enter_tag_performance,
pattern='update_enter_tag_performance'),
CallbackQueryHandler(self._exit_reason_performance,
pattern='update_exit_reason_performance'),
CallbackQueryHandler(self._mix_tag_performance, pattern='update_mix_tag_performance'),
CallbackQueryHandler(self._count, pattern='update_count'),
CallbackQueryHandler(self._forcebuy_inline),
CallbackQueryHandler(self._force_exit_inline, pattern=r"force_exit__\S+"),
CallbackQueryHandler(self._force_enter_inline, pattern=r"\S+\/\S+"),
]
for handle in handles:
self._updater.dispatcher.add_handler(handle)
@@ -217,26 +225,30 @@ class Telegram(RPCHandler):
# This can take up to `timeout` from the call to `start_polling`.
self._updater.stop()
def _format_buy_msg(self, msg: Dict[str, Any]) -> str:
def _format_entry_msg(self, msg: Dict[str, Any]) -> str:
if self._rpc._fiat_converter:
msg['stake_amount_fiat'] = self._rpc._fiat_converter.convert_amount(
msg['stake_amount'], msg['stake_currency'], msg['fiat_currency'])
else:
msg['stake_amount_fiat'] = 0
is_fill = msg['type'] == RPCMessageType.BUY_FILL
is_fill = msg['type'] in [RPCMessageType.ENTRY_FILL]
emoji = '\N{CHECK MARK}' if is_fill else '\N{LARGE BLUE CIRCLE}'
entry_side = ({'enter': 'Long', 'entered': 'Longed'} if msg['direction'] == 'Long'
else {'enter': 'Short', 'entered': 'Shorted'})
message = (
f"{emoji} *{msg['exchange']}:* {'Bought' if is_fill else 'Buying'} {msg['pair']}"
f"{emoji} *{msg['exchange']}:*"
f" {entry_side['entered'] if is_fill else entry_side['enter']} {msg['pair']}"
f" (#{msg['trade_id']})\n"
)
message += f"*Buy Tag:* `{msg['buy_tag']}`\n" if msg.get('buy_tag', None) else ""
message += f"*Enter Tag:* `{msg['enter_tag']}`\n" if msg.get('enter_tag', None) else ""
message += f"*Amount:* `{msg['amount']:.8f}`\n"
if msg.get('leverage') and msg.get('leverage', 1.0) != 1.0:
message += f"*Leverage:* `{msg['leverage']}`\n"
if msg['type'] == RPCMessageType.BUY_FILL:
if msg['type'] in [RPCMessageType.ENTRY_FILL]:
message += f"*Open Rate:* `{msg['open_rate']:.8f}`\n"
elif msg['type'] == RPCMessageType.BUY:
elif msg['type'] in [RPCMessageType.ENTRY]:
message += f"*Open Rate:* `{msg['limit']:.8f}`\n"\
f"*Current Rate:* `{msg['current_rate']:.8f}`\n"
@@ -248,18 +260,21 @@ class Telegram(RPCHandler):
message += ")`"
return message
def _format_sell_msg(self, msg: Dict[str, Any]) -> str:
def _format_exit_msg(self, msg: Dict[str, Any]) -> str:
msg['amount'] = round(msg['amount'], 8)
msg['profit_percent'] = round(msg['profit_ratio'] * 100, 2)
msg['duration'] = msg['close_date'].replace(
microsecond=0) - msg['open_date'].replace(microsecond=0)
msg['duration_min'] = msg['duration'].total_seconds() / 60
msg['buy_tag'] = msg['buy_tag'] if "buy_tag" in msg.keys() else None
msg['enter_tag'] = msg['enter_tag'] if "enter_tag" in msg.keys() else None
msg['emoji'] = self._get_sell_emoji(msg)
msg['leverage_text'] = (f"*Leverage:* `{msg['leverage']:.1f}`\n"
if msg.get('leverage', None) and msg.get('leverage', 1.0) != 1.0
else "")
# Check if all sell properties are available.
# This might not be the case if the message origin is triggered by /forcesell
# This might not be the case if the message origin is triggered by /forceexit
if (all(prop in msg for prop in ['gain', 'fiat_currency', 'stake_currency'])
and self._rpc._fiat_converter):
msg['profit_fiat'] = self._rpc._fiat_converter.convert_amount(
@@ -269,38 +284,40 @@ class Telegram(RPCHandler):
f" / {msg['profit_fiat']:.3f} {msg['fiat_currency']})")
else:
msg['profit_extra'] = ''
is_fill = msg['type'] == RPCMessageType.SELL_FILL
is_fill = msg['type'] == RPCMessageType.EXIT_FILL
message = (
f"{msg['emoji']} *{msg['exchange']}:* "
f"{'Sold' if is_fill else 'Selling'} {msg['pair']} (#{msg['trade_id']})\n"
f"{'Exited' if is_fill else 'Exiting'} {msg['pair']} (#{msg['trade_id']})\n"
f"*{'Profit' if is_fill else 'Unrealized Profit'}:* "
f"`{msg['profit_ratio']:.2%}{msg['profit_extra']}`\n"
f"*Buy Tag:* `{msg['buy_tag']}`\n"
f"*Sell Reason:* `{msg['sell_reason']}`\n"
f"*Enter Tag:* `{msg['enter_tag']}`\n"
f"*Exit Reason:* `{msg['exit_reason']}`\n"
f"*Duration:* `{msg['duration']} ({msg['duration_min']:.1f} min)`\n"
f"*Direction:* `{msg['direction']}`\n"
f"{msg['leverage_text']}"
f"*Amount:* `{msg['amount']:.8f}`\n"
f"*Open Rate:* `{msg['open_rate']:.8f}`\n")
if msg['type'] == RPCMessageType.SELL:
f"*Open Rate:* `{msg['open_rate']:.8f}`\n"
)
if msg['type'] == RPCMessageType.EXIT:
message += (f"*Current Rate:* `{msg['current_rate']:.8f}`\n"
f"*Close Rate:* `{msg['limit']:.8f}`")
elif msg['type'] == RPCMessageType.SELL_FILL:
elif msg['type'] == RPCMessageType.EXIT_FILL:
message += f"*Close Rate:* `{msg['close_rate']:.8f}`"
return message
def compose_message(self, msg: Dict[str, Any], msg_type: RPCMessageType) -> str:
if msg_type in [RPCMessageType.BUY, RPCMessageType.BUY_FILL]:
message = self._format_buy_msg(msg)
if msg_type in [RPCMessageType.ENTRY, RPCMessageType.ENTRY_FILL]:
message = self._format_entry_msg(msg)
elif msg_type in [RPCMessageType.SELL, RPCMessageType.SELL_FILL]:
message = self._format_sell_msg(msg)
elif msg_type in [RPCMessageType.EXIT, RPCMessageType.EXIT_FILL]:
message = self._format_exit_msg(msg)
elif msg_type in (RPCMessageType.BUY_CANCEL, RPCMessageType.SELL_CANCEL):
msg['message_side'] = 'buy' if msg_type == RPCMessageType.BUY_CANCEL else 'sell'
elif msg_type in (RPCMessageType.ENTRY_CANCEL, RPCMessageType.EXIT_CANCEL):
msg['message_side'] = 'enter' if msg_type in [RPCMessageType.ENTRY_CANCEL] else 'exit'
message = ("\N{WARNING SIGN} *{exchange}:* "
"Cancelling open {message_side} Order for {pair} (#{trade_id}). "
"Cancelling {message_side} Order for {pair} (#{trade_id}). "
"Reason: {reason}.".format(**msg))
elif msg_type == RPCMessageType.PROTECTION_TRIGGER:
@@ -335,14 +352,14 @@ class Telegram(RPCHandler):
msg_type = msg['type']
noti = ''
if msg_type == RPCMessageType.SELL:
if msg_type == RPCMessageType.EXIT:
sell_noti = self._config['telegram'] \
.get('notification_settings', {}).get(str(msg_type), {})
# For backward compatibility sell still can be string
if isinstance(sell_noti, str):
noti = sell_noti
else:
noti = sell_noti.get(str(msg['sell_reason']), default_noti)
noti = sell_noti.get(str(msg['exit_reason']), default_noti)
else:
noti = self._config['telegram'] \
.get('notification_settings', {}).get(str(msg_type), default_noti)
@@ -365,12 +382,12 @@ class Telegram(RPCHandler):
return "\N{ROCKET}"
elif float(msg['profit_percent']) >= 0.0:
return "\N{EIGHT SPOKED ASTERISK}"
elif msg['sell_reason'] == "stop_loss":
elif msg['exit_reason'] == "stop_loss":
return "\N{WARNING SIGN}"
else:
return "\N{CROSS MARK}"
def _prepare_entry_details(self, filled_orders: List, base_currency: str, is_open: bool):
def _prepare_entry_details(self, filled_orders: List, quote_currency: str, is_open: bool):
"""
Prepare details of trade with entry adjustment enabled
"""
@@ -379,7 +396,7 @@ class Telegram(RPCHandler):
first_avg = filled_orders[0]["safe_price"]
for x, order in enumerate(filled_orders):
if order['ft_order_side'] != 'buy':
if not order['ft_is_entry']:
continue
cur_entry_datetime = arrow.get(order["order_filled_date"])
cur_entry_amount = order["amount"]
@@ -388,7 +405,7 @@ class Telegram(RPCHandler):
if x == 0:
lines.append(f"*Entry #{x+1}:*")
lines.append(
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {base_currency})")
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
lines.append(f"*Average Entry Price:* {cur_entry_average}")
else:
sumA = 0
@@ -402,7 +419,8 @@ class Telegram(RPCHandler):
if prev_avg_price:
minus_on_entry = (cur_entry_average - prev_avg_price) / prev_avg_price
dur_entry = cur_entry_datetime - arrow.get(filled_orders[x-1]["order_filled_date"])
dur_entry = cur_entry_datetime - arrow.get(
filled_orders[x - 1]["order_filled_date"])
days = dur_entry.days
hours, remainder = divmod(dur_entry.seconds, 3600)
minutes, seconds = divmod(remainder, 60)
@@ -411,7 +429,7 @@ class Telegram(RPCHandler):
lines.append("({})".format(cur_entry_datetime
.humanize(granularity=["day", "hour", "minute"])))
lines.append(
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {base_currency})")
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
lines.append(f"*Average Entry Price:* {cur_entry_average} "
f"({price_to_1st_entry:.2%} from 1st entry rate)")
lines.append(f"*Order filled at:* {order['order_filled_date']}")
@@ -446,15 +464,17 @@ class Telegram(RPCHandler):
messages = []
for r in results:
r['open_date_hum'] = arrow.get(r['open_date']).humanize()
r['num_entries'] = len([o for o in r['orders'] if o['ft_order_side'] == 'buy'])
r['sell_reason'] = r.get('sell_reason', "")
r['num_entries'] = len([o for o in r['orders'] if o['ft_is_entry']])
r['exit_reason'] = r.get('exit_reason', "")
lines = [
"*Trade ID:* `{trade_id}`" +
("` (since {open_date_hum})`" if r['is_open'] else ""),
"*Current Pair:* {pair}",
"*Amount:* `{amount} ({stake_amount} {base_currency})`",
"*Entry Tag:* `{buy_tag}`" if r['buy_tag'] else "",
"*Exit Reason:* `{sell_reason}`" if r['sell_reason'] else "",
"*Direction:* " + ("`Short`" if r.get('is_short') else "`Long`"),
"*Leverage:* `{leverage}`" if r.get('leverage') else "",
"*Amount:* `{amount} ({stake_amount} {quote_currency})`",
"*Enter Tag:* `{enter_tag}`" if r['enter_tag'] else "",
"*Exit Reason:* `{exit_reason}`" if r['exit_reason'] else "",
]
if position_adjust:
@@ -484,13 +504,13 @@ class Telegram(RPCHandler):
lines.append("*Stoploss distance:* `{stoploss_current_dist:.8f}` "
"`({stoploss_current_dist_ratio:.2%})`")
if r['open_order']:
if r['sell_order_status']:
lines.append("*Open Order:* `{open_order}` - `{sell_order_status}`")
if r['exit_order_status']:
lines.append("*Open Order:* `{open_order}` - `{exit_order_status}`")
else:
lines.append("*Open Order:* `{open_order}`")
lines_detail = self._prepare_entry_details(
r['orders'], r['base_currency'], r['is_open'])
r['orders'], r['quote_currency'], r['is_open'])
lines.extend(lines_detail if lines_detail else "")
# Filter empty lines using list-comprehension
@@ -746,27 +766,27 @@ class Telegram(RPCHandler):
'stop_loss': 'Stoploss',
'trailing_stop_loss': 'Trail. Stop',
'stoploss_on_exchange': 'Stoploss',
'sell_signal': 'Sell Signal',
'force_sell': 'Forcesell',
'emergency_sell': 'Emergency Sell',
'exit_signal': 'Exit Signal',
'force_exit': 'Force Exit',
'emergency_exit': 'Emergency Exit',
}
sell_reasons_tabulate = [
exit_reasons_tabulate = [
[
reason_map.get(reason, reason),
sum(count.values()),
count['wins'],
count['losses']
] for reason, count in stats['sell_reasons'].items()
] for reason, count in stats['exit_reasons'].items()
]
sell_reasons_msg = 'No trades yet.'
for reason in chunks(sell_reasons_tabulate, 25):
sell_reasons_msg = tabulate(
exit_reasons_msg = 'No trades yet.'
for reason in chunks(exit_reasons_tabulate, 25):
exit_reasons_msg = tabulate(
reason,
headers=['Sell Reason', 'Sells', 'Wins', 'Losses']
headers=['Exit Reason', 'Exits', 'Wins', 'Losses']
)
if len(sell_reasons_tabulate) > 25:
self._send_msg(sell_reasons_msg, ParseMode.MARKDOWN)
sell_reasons_msg = ''
if len(exit_reasons_tabulate) > 25:
self._send_msg(exit_reasons_msg, ParseMode.MARKDOWN)
exit_reasons_msg = ''
durations = stats['durations']
duration_msg = tabulate(
@@ -778,7 +798,7 @@ class Telegram(RPCHandler):
],
headers=['', 'Avg. Duration']
)
msg = (f"""```\n{sell_reasons_msg}```\n```\n{duration_msg}```""")
msg = (f"""```\n{exit_reasons_msg}```\n```\n{duration_msg}```""")
self._send_msg(msg, ParseMode.MARKDOWN)
@@ -810,13 +830,21 @@ class Telegram(RPCHandler):
for curr in result['currencies']:
curr_output = ''
if curr['est_stake'] > balance_dust_level:
curr_output = (
f"*{curr['currency']}:*\n"
f"\t`Available: {curr['free']:.8f}`\n"
f"\t`Balance: {curr['balance']:.8f}`\n"
f"\t`Pending: {curr['used']:.8f}`\n"
f"\t`Est. {curr['stake']}: "
f"{round_coin_value(curr['est_stake'], curr['stake'], False)}`\n")
if curr['is_position']:
curr_output = (
f"*{curr['currency']}:*\n"
f"\t`{curr['side']}: {curr['position']:.8f}`\n"
f"\t`Leverage: {curr['leverage']:.1f}`\n"
f"\t`Est. {curr['stake']}: "
f"{round_coin_value(curr['est_stake'], curr['stake'], False)}`\n")
else:
curr_output = (
f"*{curr['currency']}:*\n"
f"\t`Available: {curr['free']:.8f}`\n"
f"\t`Balance: {curr['balance']:.8f}`\n"
f"\t`Pending: {curr['used']:.8f}`\n"
f"\t`Est. {curr['stake']}: "
f"{round_coin_value(curr['est_stake'], curr['stake'], False)}`\n")
elif curr['est_stake'] <= balance_dust_level:
total_dust_balance += curr['est_stake']
total_dust_currencies += 1
@@ -900,50 +928,93 @@ class Telegram(RPCHandler):
self._send_msg('Status: `{status}`'.format(**msg))
@authorized_only
def _forcesell(self, update: Update, context: CallbackContext) -> None:
def _force_exit(self, update: Update, context: CallbackContext) -> None:
"""
Handler for /forcesell <id>.
Handler for /forceexit <id>.
Sells the given trade at current price
:param bot: telegram bot
:param update: message update
:return: None
"""
trade_id = context.args[0] if context.args and len(context.args) > 0 else None
if not trade_id:
self._send_msg("You must specify a trade-id or 'all'.")
return
try:
msg = self._rpc._rpc_forcesell(trade_id)
self._send_msg('Forcesell Result: `{result}`'.format(**msg))
except RPCException as e:
self._send_msg(str(e))
def _forcebuy_action(self, pair, price=None):
if pair != 'cancel':
if context.args:
trade_id = context.args[0]
self._force_exit_action(trade_id)
else:
fiat_currency = self._config.get('fiat_display_currency', '')
try:
self._rpc._rpc_forcebuy(pair, price)
statlist, head, fiat_profit_sum = self._rpc._rpc_status_table(
self._config['stake_currency'], fiat_currency)
except RPCException:
self._send_msg(msg='No open trade found.')
return
trades = []
for trade in statlist:
trades.append((trade[0], f"{trade[0]} {trade[1]} {trade[2]} {trade[3]}"))
trade_buttons = [
InlineKeyboardButton(text=trade[1], callback_data=f"force_exit__{trade[0]}")
for trade in trades]
buttons_aligned = self._layout_inline_keyboard_onecol(trade_buttons)
buttons_aligned.append([InlineKeyboardButton(
text='Cancel', callback_data='force_exit__cancel')])
self._send_msg(msg="Which trade?", keyboard=buttons_aligned)
def _force_exit_action(self, trade_id):
if trade_id != 'cancel':
try:
self._rpc._rpc_force_exit(trade_id)
except RPCException as e:
self._send_msg(str(e))
def _forcebuy_inline(self, update: Update, _: CallbackContext) -> None:
def _force_exit_inline(self, update: Update, _: CallbackContext) -> None:
if update.callback_query:
query = update.callback_query
pair = query.data
query.answer()
query.edit_message_text(text=f"Force Buying: {pair}")
self._forcebuy_action(pair)
if query.data and '__' in query.data:
# Input data is "force_exit__<tradid|cancel>"
trade_id = query.data.split("__")[1].split(' ')[0]
if trade_id == 'cancel':
query.answer()
query.edit_message_text(text="Force exit canceled.")
return
trade: Trade = Trade.get_trades(trade_filter=Trade.id == trade_id).first()
query.answer()
query.edit_message_text(text=f"Manually exiting Trade #{trade_id}, {trade.pair}")
self._force_exit_action(trade_id)
def _force_enter_action(self, pair, price: Optional[float], order_side: SignalDirection):
if pair != 'cancel':
try:
self._rpc._rpc_force_entry(pair, price, order_side=order_side)
except RPCException as e:
self._send_msg(str(e))
def _force_enter_inline(self, update: Update, _: CallbackContext) -> None:
if update.callback_query:
query = update.callback_query
if query.data and '_||_' in query.data:
pair, side = query.data.split('_||_')
order_side = SignalDirection(side)
query.answer()
query.edit_message_text(text=f"Manually entering {order_side} for {pair}")
self._force_enter_action(pair, None, order_side)
@staticmethod
def _layout_inline_keyboard(buttons: List[InlineKeyboardButton],
cols=3) -> List[List[InlineKeyboardButton]]:
def _layout_inline_keyboard(
buttons: List[InlineKeyboardButton], cols=3) -> List[List[InlineKeyboardButton]]:
return [buttons[i:i + cols] for i in range(0, len(buttons), cols)]
@staticmethod
def _layout_inline_keyboard_onecol(
buttons: List[InlineKeyboardButton], cols=1) -> List[List[InlineKeyboardButton]]:
return [buttons[i:i + cols] for i in range(0, len(buttons), cols)]
@authorized_only
def _forcebuy(self, update: Update, context: CallbackContext) -> None:
def _force_enter(
self, update: Update, context: CallbackContext, order_side: SignalDirection) -> None:
"""
Handler for /forcebuy <asset> <price>.
Handler for /forcelong <asset> <price> and `/forceshort <asset> <price>
Buys a pair trade at the given or current price
:param bot: telegram bot
:param update: message update
@@ -952,16 +1023,19 @@ class Telegram(RPCHandler):
if context.args:
pair = context.args[0]
price = float(context.args[1]) if len(context.args) > 1 else None
self._forcebuy_action(pair, price)
self._force_enter_action(pair, price, order_side)
else:
whitelist = self._rpc._rpc_whitelist()['whitelist']
pair_buttons = [
InlineKeyboardButton(text=pair, callback_data=pair) for pair in sorted(whitelist)]
InlineKeyboardButton(text=pair, callback_data=f"{pair}_||_{order_side}")
for pair in sorted(whitelist)
]
buttons_aligned = self._layout_inline_keyboard(pair_buttons)
buttons_aligned.append([InlineKeyboardButton(text='Cancel', callback_data='cancel')])
self._send_msg(msg="Which pair?",
keyboard=buttons_aligned)
keyboard=buttons_aligned,
query=update.callback_query)
@authorized_only
def _trades(self, update: Update, context: CallbackContext) -> None:
@@ -1052,7 +1126,7 @@ class Telegram(RPCHandler):
self._send_msg(str(e))
@authorized_only
def _buy_tag_performance(self, update: Update, context: CallbackContext) -> None:
def _enter_tag_performance(self, update: Update, context: CallbackContext) -> None:
"""
Handler for /buys PAIR .
Shows a performance statistic from finished trades
@@ -1065,11 +1139,11 @@ class Telegram(RPCHandler):
if context.args and isinstance(context.args[0], str):
pair = context.args[0]
trades = self._rpc._rpc_buy_tag_performance(pair)
output = "<b>Buy Tag Performance:</b>\n"
trades = self._rpc._rpc_enter_tag_performance(pair)
output = "<b>Entry Tag Performance:</b>\n"
for i, trade in enumerate(trades):
stat_line = (
f"{i+1}.\t <code>{trade['buy_tag']}\t"
f"{i+1}.\t <code>{trade['enter_tag']}\t"
f"{round_coin_value(trade['profit_abs'], self._config['stake_currency'])} "
f"({trade['profit_ratio']:.2%}) "
f"({trade['count']})</code>\n")
@@ -1081,13 +1155,13 @@ class Telegram(RPCHandler):
output += stat_line
self._send_msg(output, parse_mode=ParseMode.HTML,
reload_able=True, callback_path="update_buy_tag_performance",
reload_able=True, callback_path="update_enter_tag_performance",
query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@authorized_only
def _sell_reason_performance(self, update: Update, context: CallbackContext) -> None:
def _exit_reason_performance(self, update: Update, context: CallbackContext) -> None:
"""
Handler for /sells.
Shows a performance statistic from finished trades
@@ -1100,11 +1174,11 @@ class Telegram(RPCHandler):
if context.args and isinstance(context.args[0], str):
pair = context.args[0]
trades = self._rpc._rpc_sell_reason_performance(pair)
output = "<b>Sell Reason Performance:</b>\n"
trades = self._rpc._rpc_exit_reason_performance(pair)
output = "<b>Exit Reason Performance:</b>\n"
for i, trade in enumerate(trades):
stat_line = (
f"{i+1}.\t <code>{trade['sell_reason']}\t"
f"{i+1}.\t <code>{trade['exit_reason']}\t"
f"{round_coin_value(trade['profit_abs'], self._config['stake_currency'])} "
f"({trade['profit_ratio']:.2%}) "
f"({trade['count']})</code>\n")
@@ -1116,7 +1190,7 @@ class Telegram(RPCHandler):
output += stat_line
self._send_msg(output, parse_mode=ParseMode.HTML,
reload_able=True, callback_path="update_sell_reason_performance",
reload_able=True, callback_path="update_exit_reason_performance",
query=update.callback_query)
except RPCException as e:
self._send_msg(str(e))
@@ -1327,18 +1401,24 @@ class Telegram(RPCHandler):
:param update: message update
:return: None
"""
forcebuy_text = ("*/forcebuy <pair> [<rate>]:* `Instantly buys the given pair. "
"Optionally takes a rate at which to buy "
"(only applies to limit orders).` \n")
force_enter_text = ("*/forcelong <pair> [<rate>]:* `Instantly buys the given pair. "
"Optionally takes a rate at which to buy "
"(only applies to limit orders).` \n"
)
if self._rpc._freqtrade.trading_mode != TradingMode.SPOT:
force_enter_text += ("*/forceshort <pair> [<rate>]:* `Instantly shorts the given pair. "
"Optionally takes a rate at which to sell "
"(only applies to limit orders).` \n")
message = (
"_BotControl_\n"
"------------\n"
"*/start:* `Starts the trader`\n"
"*/stop:* Stops the trader\n"
"*/stopbuy:* `Stops buying, but handles open trades gracefully` \n"
"*/forcesell <trade_id>|all:* `Instantly sells the given trade or all trades, "
"*/forceexit <trade_id>|all:* `Instantly exits the given trade or all trades, "
"regardless of profit`\n"
f"{forcebuy_text if self._config.get('forcebuy_enable', False) else ''}"
"*/fe <trade_id>|all:* `Alias to /forceexit`"
f"{force_enter_text if self._config.get('force_entry_enable', False) else ''}"
"*/delete <trade_id>:* `Instantly delete the given trade in the database`\n"
"*/whitelist:* `Show current whitelist` \n"
"*/blacklist [pair]:* `Show current blacklist, or adds one or more pairs "
@@ -1366,9 +1446,9 @@ class Telegram(RPCHandler):
" *table :* `will display trades in a table`\n"
" `pending buy orders are marked with an asterisk (*)`\n"
" `pending sell orders are marked with a double asterisk (**)`\n"
"*/buys <pair|none>:* `Shows the buy_tag performance`\n"
"*/sells <pair|none>:* `Shows the sell reason performance`\n"
"*/mix_tags <pair|none>:* `Shows combined buy tag + sell reason performance`\n"
"*/buys <pair|none>:* `Shows the enter_tag performance`\n"
"*/sells <pair|none>:* `Shows the exit reason performance`\n"
"*/mix_tags <pair|none>:* `Shows combined entry tag + exit reason performance`\n"
"*/trades [limit]:* `Lists last closed trades (limited to 10 by default)`\n"
"*/profit [<n>]:* `Lists cumulative profit from all finished trades, "
"over the last n days`\n"
@@ -1446,11 +1526,12 @@ class Telegram(RPCHandler):
self._send_msg(
f"*Mode:* `{'Dry-run' if val['dry_run'] else 'Live'}`\n"
f"*Exchange:* `{val['exchange']}`\n"
f"*Market: * `{val['trading_mode']}`\n"
f"*Stake per trade:* `{val['stake_amount']} {val['stake_currency']}`\n"
f"*Max open Trades:* `{val['max_open_trades']}`\n"
f"*Minimum ROI:* `{val['minimal_roi']}`\n"
f"*Ask strategy:* ```\n{json.dumps(val['ask_strategy'])}```\n"
f"*Bid strategy:* ```\n{json.dumps(val['bid_strategy'])}```\n"
f"*Entry strategy:* ```\n{json.dumps(val['entry_pricing'])}```\n"
f"*Exit strategy:* ```\n{json.dumps(val['exit_pricing'])}```\n"
f"{sl_info}"
f"{pa_info}"
f"*Timeframe:* `{val['timeframe']}`\n"

View File

@@ -43,23 +43,23 @@ class Webhook(RPCHandler):
def send_msg(self, msg: Dict[str, Any]) -> None:
""" Send a message to telegram channel """
try:
if msg['type'] == RPCMessageType.BUY:
valuedict = self._config['webhook'].get('webhookbuy', None)
elif msg['type'] == RPCMessageType.BUY_CANCEL:
valuedict = self._config['webhook'].get('webhookbuycancel', None)
elif msg['type'] == RPCMessageType.BUY_FILL:
valuedict = self._config['webhook'].get('webhookbuyfill', None)
elif msg['type'] == RPCMessageType.SELL:
valuedict = self._config['webhook'].get('webhooksell', None)
elif msg['type'] == RPCMessageType.SELL_FILL:
valuedict = self._config['webhook'].get('webhooksellfill', None)
elif msg['type'] == RPCMessageType.SELL_CANCEL:
valuedict = self._config['webhook'].get('webhooksellcancel', None)
whconfig = self._config['webhook']
if msg['type'] in [RPCMessageType.ENTRY]:
valuedict = whconfig.get('webhookentry', None)
elif msg['type'] in [RPCMessageType.ENTRY_CANCEL]:
valuedict = whconfig.get('webhookentrycancel', None)
elif msg['type'] in [RPCMessageType.ENTRY_FILL]:
valuedict = whconfig.get('webhookentryfill', None)
elif msg['type'] == RPCMessageType.EXIT:
valuedict = whconfig.get('webhookexit', None)
elif msg['type'] == RPCMessageType.EXIT_FILL:
valuedict = whconfig.get('webhookexitfill', None)
elif msg['type'] == RPCMessageType.EXIT_CANCEL:
valuedict = whconfig.get('webhookexitcancel', None)
elif msg['type'] in (RPCMessageType.STATUS,
RPCMessageType.STARTUP,
RPCMessageType.WARNING):
valuedict = self._config['webhook'].get('webhookstatus', None)
valuedict = whconfig.get('webhookstatus', None)
else:
raise NotImplementedError('Unknown message type: {}'.format(msg['type']))
if not valuedict:

View File

@@ -1,7 +1,9 @@
from typing import Any, Callable, NamedTuple, Optional, Union
from dataclasses import dataclass
from typing import Any, Callable, Optional, Union
from pandas import DataFrame
from freqtrade.enums import CandleType
from freqtrade.exceptions import OperationalException
from freqtrade.strategy.strategy_helper import merge_informative_pair
@@ -9,15 +11,19 @@ from freqtrade.strategy.strategy_helper import merge_informative_pair
PopulateIndicators = Callable[[Any, DataFrame, dict], DataFrame]
class InformativeData(NamedTuple):
@dataclass
class InformativeData:
asset: Optional[str]
timeframe: str
fmt: Union[str, Callable[[Any], str], None]
ffill: bool
candle_type: Optional[CandleType]
def informative(timeframe: str, asset: str = '',
fmt: Optional[Union[str, Callable[[Any], str]]] = None,
*,
candle_type: Optional[CandleType] = None,
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
"""
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
@@ -46,15 +52,17 @@ def informative(timeframe: str, asset: str = '',
* {column} - name of dataframe column.
* {timeframe} - timeframe of informative dataframe.
:param ffill: ffill dataframe after merging informative pair.
:param candle_type: '', mark, index, premiumIndex, or funding_rate
"""
_asset = asset
_timeframe = timeframe
_fmt = fmt
_ffill = ffill
_candle_type = CandleType.from_string(candle_type) if candle_type else None
def decorator(fn: PopulateIndicators):
informative_pairs = getattr(fn, '_ft_informative', [])
informative_pairs.append(InformativeData(_asset, _timeframe, _fmt, _ffill))
informative_pairs.append(InformativeData(_asset, _timeframe, _fmt, _ffill, _candle_type))
setattr(fn, '_ft_informative', informative_pairs)
return fn
return decorator
@@ -71,6 +79,8 @@ def _create_and_merge_informative_pair(strategy, dataframe: DataFrame, metadata:
asset = inf_data.asset or ''
timeframe = inf_data.timeframe
fmt = inf_data.fmt
candle_type = inf_data.candle_type
config = strategy.config
if asset:
@@ -97,7 +107,7 @@ def _create_and_merge_informative_pair(strategy, dataframe: DataFrame, metadata:
fmt = '{base}_{quote}_' + fmt # Informatives of other pairs
inf_metadata = {'pair': asset, 'timeframe': timeframe}
inf_dataframe = strategy.dp.get_pair_dataframe(asset, timeframe)
inf_dataframe = strategy.dp.get_pair_dataframe(asset, timeframe, candle_type)
inf_dataframe = populate_indicators(strategy, inf_dataframe, inf_metadata)
formatter: Any = None

View File

@@ -13,7 +13,8 @@ from pandas import DataFrame
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import SellType, SignalTagType, SignalType
from freqtrade.enums import (CandleType, ExitCheckTuple, ExitType, SignalDirection, SignalTagType,
SignalType, TradingMode)
from freqtrade.exceptions import OperationalException, StrategyError
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.exchange.exchange import timeframe_to_next_date
@@ -28,23 +29,7 @@ from freqtrade.wallets import Wallets
logger = logging.getLogger(__name__)
CUSTOM_SELL_MAX_LENGTH = 64
class SellCheckTuple:
"""
NamedTuple for Sell type + reason
"""
sell_type: SellType
sell_reason: str = ''
def __init__(self, sell_type: SellType, sell_reason: str = ''):
self.sell_type = sell_type
self.sell_reason = sell_reason or sell_type.value
@property
def sell_flag(self):
return self.sell_type != SellType.NONE
CUSTOM_EXIT_MAX_LENGTH = 64
class IStrategy(ABC, HyperStrategyMixin):
@@ -61,7 +46,8 @@ class IStrategy(ABC, HyperStrategyMixin):
# Default to version 2
# Version 1 is the initial interface without metadata dict
# Version 2 populate_* include metadata dict
INTERFACE_VERSION: int = 2
# Version 3 - First version with short and leverage support
INTERFACE_VERSION: int = 3
_populate_fun_len: int = 0
_buy_fun_len: int = 0
@@ -80,13 +66,16 @@ class IStrategy(ABC, HyperStrategyMixin):
trailing_only_offset_is_reached = False
use_custom_stoploss: bool = False
# Can this strategy go short?
can_short: bool = False
# associated timeframe
timeframe: str
# Optional order types
order_types: Dict = {
'buy': 'limit',
'sell': 'limit',
'entry': 'limit',
'exit': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False,
'stoploss_on_exchange_interval': 60,
@@ -94,17 +83,17 @@ class IStrategy(ABC, HyperStrategyMixin):
# Optional time in force
order_time_in_force: Dict = {
'buy': 'gtc',
'sell': 'gtc',
'entry': 'gtc',
'exit': 'gtc',
}
# run "populate_indicators" only for new candle
process_only_new_candles: bool = False
use_sell_signal: bool
sell_profit_only: bool
sell_profit_offset: float
ignore_roi_if_buy_signal: bool
use_exit_signal: bool
exit_profit_only: bool
exit_profit_offset: float
ignore_roi_if_entry_signal: bool
# Position adjustment is disabled by default
position_adjustment_enable: bool = False
@@ -157,31 +146,41 @@ class IStrategy(ABC, HyperStrategyMixin):
if timeframe_to_minutes(informative_data.timeframe) < strategy_timeframe_minutes:
raise OperationalException('Informative timeframe must be equal or higher than '
'strategy timeframe!')
if not informative_data.candle_type:
informative_data.candle_type = config['candle_type_def']
self._ft_informative.append((informative_data, cls_method))
@abstractmethod
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
Populate indicators that will be used in the Buy, Sell, Short, Exit_short strategy
:param dataframe: DataFrame with data from the exchange
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
return dataframe
@abstractmethod
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
DEPRECATED - please migrate to populate_entry_trend
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
return dataframe
@abstractmethod
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the entry signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with entry columns populated
"""
return self.populate_buy_trend(dataframe, metadata)
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
DEPRECATED - please migrate to populate_exit_trend
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
@@ -189,6 +188,15 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the exit signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with exit columns populated
"""
return self.populate_sell_trend(dataframe, metadata)
def bot_loop_start(self, **kwargs) -> None:
"""
Called at the start of the bot iteration (one loop).
@@ -198,51 +206,67 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
pass
def check_buy_timeout(self, pair: str, trade: Trade, order: dict,
def check_buy_timeout(self, pair: str, trade: Trade, order: Order,
current_time: datetime, **kwargs) -> bool:
"""
Check buy timeout function callback.
This method can be used to override the buy-timeout.
It is called whenever a limit buy order has been created,
DEPRECATED: Please use `check_entry_timeout` instead.
"""
return False
def check_entry_timeout(self, pair: str, trade: Trade, order: Order,
current_time: datetime, **kwargs) -> bool:
"""
Check entry timeout function callback.
This method can be used to override the entry-timeout.
It is called whenever a limit entry order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param trade: Trade object.
:param order: Order object.
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the buy-order is cancelled.
:return bool: When True is returned, then the entry order is cancelled.
"""
return False
return self.check_buy_timeout(
pair=pair, trade=trade, order=order, current_time=current_time)
def check_sell_timeout(self, pair: str, trade: Trade, order: dict,
def check_sell_timeout(self, pair: str, trade: Trade, order: Order,
current_time: datetime, **kwargs) -> bool:
"""
Check sell timeout function callback.
This method can be used to override the sell-timeout.
It is called whenever a limit sell order has been created,
DEPRECATED: Please use `check_exit_timeout` instead.
"""
return False
def check_exit_timeout(self, pair: str, trade: Trade, order: Order,
current_time: datetime, **kwargs) -> bool:
"""
Check exit timeout function callback.
This method can be used to override the exit-timeout.
It is called whenever a limit exit order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param trade: Trade object.
:param order: Order object
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the sell-order is cancelled.
:return bool: When True is returned, then the exit-order is cancelled.
"""
return False
return self.check_sell_timeout(
pair=pair, trade=trade, order=order, current_time=current_time)
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
**kwargs) -> bool:
side: str, **kwargs) -> bool:
"""
Called right before placing a buy order.
Called right before placing a entry order.
Timing for this function is critical, so avoid doing heavy computations or
network requests in this method.
@@ -250,13 +274,14 @@ class IStrategy(ABC, HyperStrategyMixin):
When not implemented by a strategy, returns True (always confirming).
:param pair: Pair that's about to be bought.
:param pair: Pair that's about to be bought/shorted.
:param order_type: Order type (as configured in order_types). usually limit or market.
:param amount: Amount in target (quote) currency that's going to be traded.
:param rate: Rate that's going to be used when using limit orders
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
:param current_time: datetime object, containing the current datetime
:param entry_tag: Optional entry_tag (buy_tag) if provided with the buy signal.
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the buy-order is placed on the exchange.
False aborts the process
@@ -264,10 +289,10 @@ class IStrategy(ABC, HyperStrategyMixin):
return True
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
rate: float, time_in_force: str, sell_reason: str,
rate: float, time_in_force: str, exit_reason: str,
current_time: datetime, **kwargs) -> bool:
"""
Called right before placing a regular sell order.
Called right before placing a regular exit order.
Timing for this function is critical, so avoid doing heavy computations or
network requests in this method.
@@ -275,18 +300,18 @@ class IStrategy(ABC, HyperStrategyMixin):
When not implemented by a strategy, returns True (always confirming).
:param pair: Pair that's about to be sold.
:param pair: Pair for trade that's about to be exited.
:param trade: trade object.
:param order_type: Order type (as configured in order_types). usually limit or market.
:param amount: Amount in quote currency.
:param rate: Rate that's going to be used when using limit orders
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
:param sell_reason: Sell reason.
:param exit_reason: Exit reason.
Can be any of ['roi', 'stop_loss', 'stoploss_on_exchange', 'trailing_stop_loss',
'sell_signal', 'force_sell', 'emergency_sell']
'exit_signal', 'force_exit', 'emergency_exit']
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the sell-order is placed on the exchange.
:return bool: When True, then the exit-order is placed on the exchange.
False aborts the process
"""
return True
@@ -306,7 +331,7 @@ class IStrategy(ABC, HyperStrategyMixin):
:param pair: Pair that's currently analyzed
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New stoploss value, relative to the current_rate
@@ -314,7 +339,7 @@ class IStrategy(ABC, HyperStrategyMixin):
return self.stoploss
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
entry_tag: Optional[str], **kwargs) -> float:
entry_tag: Optional[str], side: str, **kwargs) -> float:
"""
Custom entry price logic, returning the new entry price.
@@ -324,8 +349,9 @@ class IStrategy(ABC, HyperStrategyMixin):
:param pair: Pair that's currently analyzed
:param current_time: datetime object, containing the current datetime
:param proposed_rate: Rate, calculated based on pricing settings in ask_strategy.
:param proposed_rate: Rate, calculated based on pricing settings in exit_pricing.
:param entry_tag: Optional entry_tag (buy_tag) if provided with the buy signal.
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New entry price value if provided
"""
@@ -344,7 +370,7 @@ class IStrategy(ABC, HyperStrategyMixin):
:param pair: Pair that's currently analyzed
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param proposed_rate: Rate, calculated based on pricing settings in ask_strategy.
:param proposed_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New exit price value if provided
@@ -354,41 +380,66 @@ class IStrategy(ABC, HyperStrategyMixin):
def custom_sell(self, pair: str, trade: Trade, current_time: datetime, current_rate: float,
current_profit: float, **kwargs) -> Optional[Union[str, bool]]:
"""
Custom sell signal logic indicating that specified position should be sold. Returning a
string or True from this method is equal to setting sell signal on a candle at specified
time. This method is not called when sell signal is set.
DEPRECATED - please use custom_exit instead.
Custom exit signal logic indicating that specified position should be sold. Returning a
string or True from this method is equal to setting exit signal on a candle at specified
time. This method is not called when exit signal is set.
This method should be overridden to create sell signals that depend on trade parameters. For
example you could implement a sell relative to the candle when the trade was opened,
This method should be overridden to create exit signals that depend on trade parameters. For
example you could implement an exit relative to the candle when the trade was opened,
or a custom 1:2 risk-reward ROI.
Custom sell reason max length is 64. Exceeding characters will be removed.
Custom exit reason max length is 64. Exceeding characters will be removed.
:param pair: Pair that's currently analyzed
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return: To execute sell, return a string with custom sell reason or True. Otherwise return
:return: To execute exit, return a string with custom exit reason or True. Otherwise return
None or False.
"""
return None
def custom_exit(self, pair: str, trade: Trade, current_time: datetime, current_rate: float,
current_profit: float, **kwargs) -> Optional[Union[str, bool]]:
"""
Custom exit signal logic indicating that specified position should be sold. Returning a
string or True from this method is equal to setting exit signal on a candle at specified
time. This method is not called when exit signal is set.
This method should be overridden to create exit signals that depend on trade parameters. For
example you could implement an exit relative to the candle when the trade was opened,
or a custom 1:2 risk-reward ROI.
Custom exit reason max length is 64. Exceeding characters will be removed.
:param pair: Pair that's currently analyzed
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return: To execute exit, return a string with custom exit reason or True. Otherwise return
None or False.
"""
return self.custom_sell(pair, trade, current_time, current_rate, current_profit, **kwargs)
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
entry_tag: Optional[str], **kwargs) -> float:
entry_tag: Optional[str], side: str, **kwargs) -> float:
"""
Customize stake size for each new trade. This method is not called when edge module is
enabled.
Customize stake size for each new trade.
:param pair: Pair that's currently analyzed
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param proposed_stake: A stake amount proposed by the bot.
:param min_stake: Minimal stake size allowed by exchange.
:param max_stake: Balance available for trading.
:param entry_tag: Optional entry_tag (buy_tag) if provided with the buy signal.
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:return: A stake size, which is between min_stake and max_stake.
"""
return proposed_stake
@@ -416,6 +467,22 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
return None
def leverage(self, pair: str, current_time: datetime, current_rate: float,
proposed_leverage: float, max_leverage: float, side: str,
**kwargs) -> float:
"""
Customize leverage for each new trade. This method is only called in futures mode.
:param pair: Pair that's currently analyzed
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param proposed_leverage: A leverage proposed by the bot.
:param max_leverage: Max leverage allowed on this pair
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:return: A leverage amount, which is between 1.0 and max_leverage.
"""
return 1.0
def informative_pairs(self) -> ListPairsWithTimeframes:
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
@@ -444,16 +511,28 @@ class IStrategy(ABC, HyperStrategyMixin):
Internal method which gathers all informative pairs (user or automatically defined).
"""
informative_pairs = self.informative_pairs()
# Compatibility code for 2 tuple informative pairs
informative_pairs = [
(p[0], p[1], CandleType.from_string(p[2]) if len(
p) > 2 and p[2] != '' else self.config.get('candle_type_def', CandleType.SPOT))
for p in informative_pairs]
for inf_data, _ in self._ft_informative:
# Get default candle type if not provided explicitly.
candle_type = (inf_data.candle_type if inf_data.candle_type
else self.config.get('candle_type_def', CandleType.SPOT))
if inf_data.asset:
pair_tf = (_format_pair_name(self.config, inf_data.asset), inf_data.timeframe)
pair_tf = (
_format_pair_name(self.config, inf_data.asset),
inf_data.timeframe,
candle_type,
)
informative_pairs.append(pair_tf)
else:
if not self.dp:
raise OperationalException('@informative decorator with unspecified asset '
'requires DataProvider instance.')
for pair in self.dp.current_whitelist():
informative_pairs.append((pair, inf_data.timeframe))
informative_pairs.append((pair, inf_data.timeframe, candle_type))
return list(set(informative_pairs))
def get_strategy_name(self) -> str:
@@ -498,7 +577,7 @@ class IStrategy(ABC, HyperStrategyMixin):
Checks if a pair is currently locked
The 2nd, optional parameter ensures that locks are applied until the new candle arrives,
and not stop at 14:00:00 - while the next candle arrives at 14:00:02 leaving a gap
of 2 seconds for a buy to happen on an old signal.
of 2 seconds for an entry order to happen on an old signal.
:param pair: "Pair to check"
:param candle_date: Date of the last candle. Optional, defaults to current date
:returns: locking state of the pair in question.
@@ -514,15 +593,15 @@ class IStrategy(ABC, HyperStrategyMixin):
def analyze_ticker(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Parses the given candle (OHLCV) data and returns a populated DataFrame
add several TA indicators and buy signal to it
add several TA indicators and entry order signal to it
:param dataframe: Dataframe containing data from exchange
:param metadata: Metadata dictionary with additional data (e.g. 'pair')
:return: DataFrame of candle (OHLCV) data with indicator data and signals added
"""
logger.debug("TA Analysis Launched")
dataframe = self.advise_indicators(dataframe, metadata)
dataframe = self.advise_buy(dataframe, metadata)
dataframe = self.advise_sell(dataframe, metadata)
dataframe = self.advise_entry(dataframe, metadata)
dataframe = self.advise_exit(dataframe, metadata)
return dataframe
def _analyze_ticker_internal(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
@@ -544,16 +623,18 @@ class IStrategy(ABC, HyperStrategyMixin):
dataframe = self.analyze_ticker(dataframe, metadata)
self._last_candle_seen_per_pair[pair] = dataframe.iloc[-1]['date']
if self.dp:
self.dp._set_cached_df(pair, self.timeframe, dataframe)
self.dp._set_cached_df(
pair, self.timeframe, dataframe,
candle_type=self.config.get('candle_type_def', CandleType.SPOT))
else:
logger.debug("Skipping TA Analysis for already analyzed candle")
dataframe['buy'] = 0
dataframe['sell'] = 0
dataframe['buy_tag'] = None
dataframe['exit_tag'] = None
dataframe[SignalType.ENTER_LONG.value] = 0
dataframe[SignalType.EXIT_LONG.value] = 0
dataframe[SignalType.ENTER_SHORT.value] = 0
dataframe[SignalType.EXIT_SHORT.value] = 0
dataframe[SignalTagType.ENTER_TAG.value] = None
dataframe[SignalTagType.EXIT_TAG.value] = None
# Other Defs in strategy that want to be called every loop here
# twitter_sell = self.watch_twitter_feed(dataframe, metadata)
logger.debug("Loop Analysis Launched")
return dataframe
@@ -567,7 +648,9 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
if not self.dp:
raise OperationalException("DataProvider not found.")
dataframe = self.dp.ohlcv(pair, self.timeframe)
dataframe = self.dp.ohlcv(
pair, self.timeframe, candle_type=self.config.get('candle_type_def', CandleType.SPOT)
)
if not isinstance(dataframe, DataFrame) or dataframe.empty:
logger.warning('Empty candle (OHLCV) data for pair %s', pair)
return
@@ -609,8 +692,8 @@ class IStrategy(ABC, HyperStrategyMixin):
message = ""
if dataframe is None:
message = "No dataframe returned (return statement missing?)."
elif 'buy' not in dataframe:
message = "Buy column not set."
elif 'enter_long' not in dataframe:
message = "enter_long/buy column not set."
elif df_len != len(dataframe):
message = message_template.format("length")
elif df_close != dataframe["close"].iloc[-1]:
@@ -623,23 +706,24 @@ class IStrategy(ABC, HyperStrategyMixin):
else:
raise StrategyError(message)
def get_signal(
def get_latest_candle(
self,
pair: str,
timeframe: str,
dataframe: DataFrame
) -> Tuple[bool, bool, Optional[str], Optional[str]]:
dataframe: DataFrame,
) -> Tuple[Optional[DataFrame], Optional[arrow.Arrow]]:
"""
Calculates current signal based based on the buy / sell columns of the dataframe.
Used by Bot to get the signal to buy or sell
Calculates current signal based based on the entry order or exit order
columns of the dataframe.
Used by Bot to get the signal to enter, or exit
:param pair: pair in format ANT/BTC
:param timeframe: timeframe to use
:param dataframe: Analyzed dataframe to get signal from.
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
:return: (None, None) or (Dataframe, latest_date) - corresponding to the last candle
"""
if not isinstance(dataframe, DataFrame) or dataframe.empty:
logger.warning(f'Empty candle (OHLCV) data for pair {pair}')
return False, False, None, None
return None, None
latest_date = dataframe['date'].max()
latest = dataframe.loc[dataframe['date'] == latest_date].iloc[-1]
@@ -654,49 +738,124 @@ class IStrategy(ABC, HyperStrategyMixin):
'Outdated history for pair %s. Last tick is %s minutes old',
pair, int((arrow.utcnow() - latest_date).total_seconds() // 60)
)
return False, False, None, None
return None, None
return latest, latest_date
buy = latest[SignalType.BUY.value] == 1
def get_exit_signal(
self,
pair: str,
timeframe: str,
dataframe: DataFrame,
is_short: bool = None
) -> Tuple[bool, bool, Optional[str]]:
"""
Calculates current exit signal based based on the dataframe
columns of the dataframe.
Used by Bot to get the signal to exit.
depending on is_short, looks at "short" or "long" columns.
:param pair: pair in format ANT/BTC
:param timeframe: timeframe to use
:param dataframe: Analyzed dataframe to get signal from.
:param is_short: Indicating existing trade direction.
:return: (enter, exit) A bool-tuple with enter / exit values.
"""
latest, latest_date = self.get_latest_candle(pair, timeframe, dataframe)
if latest is None:
return False, False, None
sell = False
if SignalType.SELL.value in latest:
sell = latest[SignalType.SELL.value] == 1
if is_short:
enter = latest.get(SignalType.ENTER_SHORT.value, 0) == 1
exit_ = latest.get(SignalType.EXIT_SHORT.value, 0) == 1
buy_tag = latest.get(SignalTagType.BUY_TAG.value, None)
else:
enter = latest[SignalType.ENTER_LONG.value] == 1
exit_ = latest.get(SignalType.EXIT_LONG.value, 0) == 1
exit_tag = latest.get(SignalTagType.EXIT_TAG.value, None)
# Tags can be None, which does not resolve to False.
buy_tag = buy_tag if isinstance(buy_tag, str) else None
exit_tag = exit_tag if isinstance(exit_tag, str) else None
logger.debug('trigger: %s (pair=%s) buy=%s sell=%s',
latest['date'], pair, str(buy), str(sell))
timeframe_seconds = timeframe_to_seconds(timeframe)
if self.ignore_expired_candle(latest_date=latest_date,
current_time=datetime.now(timezone.utc),
timeframe_seconds=timeframe_seconds,
buy=buy):
return False, sell, buy_tag, exit_tag
return buy, sell, buy_tag, exit_tag
logger.debug(f"exit-trigger: {latest['date']} (pair={pair}) "
f"enter={enter} exit={exit_}")
def ignore_expired_candle(self, latest_date: datetime, current_time: datetime,
timeframe_seconds: int, buy: bool):
if self.ignore_buying_expired_candle_after and buy:
return enter, exit_, exit_tag
def get_entry_signal(
self,
pair: str,
timeframe: str,
dataframe: DataFrame,
) -> Tuple[Optional[SignalDirection], Optional[str]]:
"""
Calculates current entry signal based based on the dataframe signals
columns of the dataframe.
Used by Bot to get the signal to enter trades.
:param pair: pair in format ANT/BTC
:param timeframe: timeframe to use
:param dataframe: Analyzed dataframe to get signal from.
:return: (SignalDirection, entry_tag)
"""
latest, latest_date = self.get_latest_candle(pair, timeframe, dataframe)
if latest is None or latest_date is None:
return None, None
enter_long = latest[SignalType.ENTER_LONG.value] == 1
exit_long = latest.get(SignalType.EXIT_LONG.value, 0) == 1
enter_short = latest.get(SignalType.ENTER_SHORT.value, 0) == 1
exit_short = latest.get(SignalType.EXIT_SHORT.value, 0) == 1
enter_signal: Optional[SignalDirection] = None
enter_tag_value: Optional[str] = None
if enter_long == 1 and not any([exit_long, enter_short]):
enter_signal = SignalDirection.LONG
enter_tag_value = latest.get(SignalTagType.ENTER_TAG.value, None)
if (self.config.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT
and self.can_short
and enter_short == 1 and not any([exit_short, enter_long])):
enter_signal = SignalDirection.SHORT
enter_tag_value = latest.get(SignalTagType.ENTER_TAG.value, None)
enter_tag_value = enter_tag_value if isinstance(enter_tag_value, str) else None
timeframe_seconds = timeframe_to_seconds(timeframe)
if self.ignore_expired_candle(
latest_date=latest_date.datetime,
current_time=datetime.now(timezone.utc),
timeframe_seconds=timeframe_seconds,
enter=bool(enter_signal)
):
return None, enter_tag_value
logger.debug(f"entry trigger: {latest['date']} (pair={pair}) "
f"enter={enter_long} enter_tag_value={enter_tag_value}")
return enter_signal, enter_tag_value
def ignore_expired_candle(
self,
latest_date: datetime,
current_time: datetime,
timeframe_seconds: int,
enter: bool
):
if self.ignore_buying_expired_candle_after and enter:
time_delta = current_time - (latest_date + timedelta(seconds=timeframe_seconds))
return time_delta.total_seconds() > self.ignore_buying_expired_candle_after
else:
return False
def should_sell(self, trade: Trade, rate: float, current_time: datetime, buy: bool,
sell: bool, low: float = None, high: float = None,
force_stoploss: float = 0) -> SellCheckTuple:
def should_exit(self, trade: Trade, rate: float, current_time: datetime, *,
enter: bool, exit_: bool,
low: float = None, high: float = None,
force_stoploss: float = 0) -> ExitCheckTuple:
"""
This function evaluates if one of the conditions required to trigger a sell
has been reached, which can either be a stop-loss, ROI or sell-signal.
:param low: Only used during backtesting to simulate stoploss
:param high: Only used during backtesting, to simulate ROI
This function evaluates if one of the conditions required to trigger an exit order
has been reached, which can either be a stop-loss, ROI or exit-signal.
:param low: Only used during backtesting to simulate (long)stoploss/(short)ROI
:param high: Only used during backtesting, to simulate (short)stoploss/(long)ROI
:param force_stoploss: Externally provided stoploss
:return: True if trade should be sold, False otherwise
:return: True if trade should be exited, False otherwise
"""
current_rate = rate
current_profit = trade.calc_profit_ratio(current_rate)
@@ -707,72 +866,72 @@ class IStrategy(ABC, HyperStrategyMixin):
current_profit=current_profit,
force_stoploss=force_stoploss, low=low, high=high)
# Set current rate to high for backtesting sell
current_rate = high or rate
# Set current rate to high for backtesting exits
current_rate = (low if trade.is_short else high) or rate
current_profit = trade.calc_profit_ratio(current_rate)
# if buy signal and ignore_roi is set, we don't need to evaluate min_roi.
roi_reached = (not (buy and self.ignore_roi_if_buy_signal)
# if enter signal and ignore_roi is set, we don't need to evaluate min_roi.
roi_reached = (not (enter and self.ignore_roi_if_entry_signal)
and self.min_roi_reached(trade=trade, current_profit=current_profit,
current_time=current_time))
sell_signal = SellType.NONE
exit_signal = ExitType.NONE
custom_reason = ''
# use provided rate in backtesting, not high/low.
current_rate = rate
current_profit = trade.calc_profit_ratio(current_rate)
if (self.sell_profit_only and current_profit <= self.sell_profit_offset):
# sell_profit_only and profit doesn't reach the offset - ignore sell signal
pass
elif self.use_sell_signal and not buy:
if sell:
sell_signal = SellType.SELL_SIGNAL
if self.use_exit_signal:
if exit_ and not enter:
exit_signal = ExitType.EXIT_SIGNAL
else:
custom_reason = strategy_safe_wrapper(self.custom_sell, default_retval=False)(
custom_reason = strategy_safe_wrapper(self.custom_exit, default_retval=False)(
pair=trade.pair, trade=trade, current_time=current_time,
current_rate=current_rate, current_profit=current_profit)
if custom_reason:
sell_signal = SellType.CUSTOM_SELL
exit_signal = ExitType.CUSTOM_EXIT
if isinstance(custom_reason, str):
if len(custom_reason) > CUSTOM_SELL_MAX_LENGTH:
logger.warning(f'Custom sell reason returned from custom_sell is too '
f'long and was trimmed to {CUSTOM_SELL_MAX_LENGTH} '
f'characters.')
custom_reason = custom_reason[:CUSTOM_SELL_MAX_LENGTH]
if len(custom_reason) > CUSTOM_EXIT_MAX_LENGTH:
logger.warning(f'Custom exit reason returned from '
f'custom_exit is too long and was trimmed'
f'to {CUSTOM_EXIT_MAX_LENGTH} characters.')
custom_reason = custom_reason[:CUSTOM_EXIT_MAX_LENGTH]
else:
custom_reason = None
if sell_signal in (SellType.CUSTOM_SELL, SellType.SELL_SIGNAL):
if (
exit_signal == ExitType.CUSTOM_EXIT
or (exit_signal == ExitType.EXIT_SIGNAL
and (not self.exit_profit_only or current_profit > self.exit_profit_offset))
):
logger.debug(f"{trade.pair} - Sell signal received. "
f"sell_type=SellType.{sell_signal.name}" +
f"exit_type=ExitType.{exit_signal.name}" +
(f", custom_reason={custom_reason}" if custom_reason else ""))
return SellCheckTuple(sell_type=sell_signal, sell_reason=custom_reason)
return ExitCheckTuple(exit_type=exit_signal, exit_reason=custom_reason)
# Start evaluations
# Sequence:
# Sell-signal
# Exit-signal
# ROI (if not stoploss)
# Stoploss
if roi_reached and stoplossflag.sell_type != SellType.STOP_LOSS:
logger.debug(f"{trade.pair} - Required profit reached. sell_type=SellType.ROI")
return SellCheckTuple(sell_type=SellType.ROI)
if roi_reached and stoplossflag.exit_type != ExitType.STOP_LOSS:
logger.debug(f"{trade.pair} - Required profit reached. exit_type=ExitType.ROI")
return ExitCheckTuple(exit_type=ExitType.ROI)
if stoplossflag.sell_flag:
if stoplossflag.exit_flag:
logger.debug(f"{trade.pair} - Stoploss hit. sell_type={stoplossflag.sell_type}")
logger.debug(f"{trade.pair} - Stoploss hit. exit_type={stoplossflag.exit_type}")
return stoplossflag
# This one is noisy, commented out...
# logger.debug(f"{trade.pair} - No sell signal.")
return SellCheckTuple(sell_type=SellType.NONE)
# logger.debug(f"{trade.pair} - No exit signal.")
return ExitCheckTuple(exit_type=ExitType.NONE)
def stop_loss_reached(self, current_rate: float, trade: Trade,
current_time: datetime, current_profit: float,
force_stoploss: float, low: float = None,
high: float = None) -> SellCheckTuple:
high: float = None) -> ExitCheckTuple:
"""
Based on current profit of the trade and configured (trailing) stoploss,
decides to sell or not
decides to exit or not
:param current_profit: current profit as ratio
:param low: Low value of this candle, only set in backtesting
:param high: High value of this candle, only set in backtesting
@@ -782,7 +941,12 @@ class IStrategy(ABC, HyperStrategyMixin):
# Initiate stoploss with open_rate. Does nothing if stoploss is already set.
trade.adjust_stop_loss(trade.open_rate, stop_loss_value, initial=True)
if self.use_custom_stoploss and trade.stop_loss < (low or current_rate):
dir_correct = (trade.stop_loss < (low or current_rate)
if not trade.is_short else
trade.stop_loss > (high or current_rate)
)
if self.use_custom_stoploss and dir_correct:
stop_loss_value = strategy_safe_wrapper(self.custom_stoploss, default_retval=None
)(pair=trade.pair, trade=trade,
current_time=current_time,
@@ -795,45 +959,56 @@ class IStrategy(ABC, HyperStrategyMixin):
else:
logger.warning("CustomStoploss function did not return valid stoploss")
if self.trailing_stop and trade.stop_loss < (low or current_rate):
sl_lower_long = (trade.stop_loss < (low or current_rate) and not trade.is_short)
sl_higher_short = (trade.stop_loss > (high or current_rate) and trade.is_short)
if self.trailing_stop and (sl_lower_long or sl_higher_short):
# trailing stoploss handling
sl_offset = self.trailing_stop_positive_offset
# Make sure current_profit is calculated using high for backtesting.
high_profit = current_profit if not high else trade.calc_profit_ratio(high)
bound = low if trade.is_short else high
bound_profit = current_profit if not bound else trade.calc_profit_ratio(bound)
# Don't update stoploss if trailing_only_offset_is_reached is true.
if not (self.trailing_only_offset_is_reached and high_profit < sl_offset):
if not (self.trailing_only_offset_is_reached and bound_profit < sl_offset):
# Specific handling for trailing_stop_positive
if self.trailing_stop_positive is not None and high_profit > sl_offset:
if self.trailing_stop_positive is not None and bound_profit > sl_offset:
stop_loss_value = self.trailing_stop_positive
logger.debug(f"{trade.pair} - Using positive stoploss: {stop_loss_value} "
f"offset: {sl_offset:.4g} profit: {current_profit:.2%}")
trade.adjust_stop_loss(high or current_rate, stop_loss_value)
trade.adjust_stop_loss(bound or current_rate, stop_loss_value)
sl_higher_long = (trade.stop_loss >= (low or current_rate) and not trade.is_short)
sl_lower_short = (trade.stop_loss <= (high or current_rate) and trade.is_short)
# evaluate if the stoploss was hit if stoploss is not on exchange
# in Dry-Run, this handles stoploss logic as well, as the logic will not be different to
# regular stoploss handling.
if ((trade.stop_loss >= (low or current_rate)) and
if ((sl_higher_long or sl_lower_short) and
(not self.order_types.get('stoploss_on_exchange') or self.config['dry_run'])):
sell_type = SellType.STOP_LOSS
exit_type = ExitType.STOP_LOSS
# If initial stoploss is not the same as current one then it is trailing.
if trade.initial_stop_loss != trade.stop_loss:
sell_type = SellType.TRAILING_STOP_LOSS
exit_type = ExitType.TRAILING_STOP_LOSS
logger.debug(
f"{trade.pair} - HIT STOP: current price at {(low or current_rate):.6f}, "
f"{trade.pair} - HIT STOP: current price at "
f"{((high if trade.is_short else low) or current_rate):.6f}, "
f"stoploss is {trade.stop_loss:.6f}, "
f"initial stoploss was at {trade.initial_stop_loss:.6f}, "
f"trade opened at {trade.open_rate:.6f}")
new_stoploss = (
trade.stop_loss + trade.initial_stop_loss
if trade.is_short else
trade.stop_loss - trade.initial_stop_loss
)
logger.debug(f"{trade.pair} - Trailing stop saved "
f"{trade.stop_loss - trade.initial_stop_loss:.6f}")
f"{new_stoploss:.6f}")
return SellCheckTuple(sell_type=sell_type)
return ExitCheckTuple(exit_type=exit_type)
return SellCheckTuple(sell_type=SellType.NONE)
return ExitCheckTuple(exit_type=ExitType.NONE)
def min_roi_reached_entry(self, trade_dur: int) -> Tuple[Optional[int], Optional[float]]:
"""
@@ -851,9 +1026,9 @@ class IStrategy(ABC, HyperStrategyMixin):
def min_roi_reached(self, trade: Trade, current_profit: float, current_time: datetime) -> bool:
"""
Based on trade duration, current profit of the trade and ROI configuration,
decides whether bot should sell.
decides whether bot should exit.
:param current_profit: current profit as ratio
:return: True if bot should sell at current rate
:return: True if bot should exit at current rate
"""
# Check if time matches and current rate is above threshold
trade_dur = int((current_time.timestamp() - trade.open_date_utc.timestamp()) // 60)
@@ -863,22 +1038,24 @@ class IStrategy(ABC, HyperStrategyMixin):
else:
return current_profit > roi
def ft_check_timed_out(self, side: str, trade: LocalTrade, order: Order,
def ft_check_timed_out(self, trade: LocalTrade, order: Order,
current_time: datetime) -> bool:
"""
FT Internal method.
Check if timeout is active, and if the order is still open and timed out
"""
side = 'entry' if order.ft_order_side == trade.entry_side else 'exit'
timeout = self.config.get('unfilledtimeout', {}).get(side)
if timeout is not None:
timeout_unit = self.config.get('unfilledtimeout', {}).get('unit', 'minutes')
timeout_kwargs = {timeout_unit: -timeout}
timeout_threshold = current_time + timedelta(**timeout_kwargs)
timedout = (order.status == 'open' and order.side == side
and order.order_date_utc < timeout_threshold)
timedout = (order.status == 'open' and order.order_date_utc < timeout_threshold)
if timedout:
return True
time_method = self.check_sell_timeout if order.side == 'sell' else self.check_buy_timeout
time_method = (self.check_exit_timeout if order.side == trade.exit_side
else self.check_entry_timeout)
return strategy_safe_wrapper(time_method,
default_retval=False)(
@@ -888,7 +1065,7 @@ class IStrategy(ABC, HyperStrategyMixin):
def advise_all_indicators(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
"""
Populates indicators for given candle (OHLCV) data (for multiple pairs)
Does not run advise_buy or advise_sell!
Does not run advise_entry or advise_exit!
Used by optimize operations only, not during dry / live runs.
Using .copy() to get a fresh copy of the dataframe for every strategy run.
Also copy on output to avoid PerformanceWarnings pandas 1.3.0 started to show.
@@ -900,7 +1077,7 @@ class IStrategy(ABC, HyperStrategyMixin):
def advise_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
Populate indicators that will be used in the Buy, Sell, short, exit_short strategy
This method should not be overridden.
:param dataframe: Dataframe with data from the exchange
:param metadata: Additional information, like the currently traded pair
@@ -920,37 +1097,46 @@ class IStrategy(ABC, HyperStrategyMixin):
else:
return self.populate_indicators(dataframe, metadata)
def advise_buy(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def advise_entry(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
Based on TA indicators, populates the entry order signal for the given dataframe
This method should not be overridden.
:param dataframe: DataFrame
:param metadata: Additional information dictionary, with details like the
currently traded pair
:return: DataFrame with buy column
"""
logger.debug(f"Populating buy signals for pair {metadata.get('pair')}.")
logger.debug(f"Populating enter signals for pair {metadata.get('pair')}.")
if self._buy_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)
return self.populate_buy_trend(dataframe) # type: ignore
df = self.populate_buy_trend(dataframe) # type: ignore
else:
return self.populate_buy_trend(dataframe, metadata)
df = self.populate_entry_trend(dataframe, metadata)
if 'enter_long' not in df.columns:
df = df.rename({'buy': 'enter_long', 'buy_tag': 'enter_tag'}, axis='columns')
def advise_sell(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
return df
def advise_exit(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
Based on TA indicators, populates the exit order signal for the given dataframe
This method should not be overridden.
:param dataframe: DataFrame
:param metadata: Additional information dictionary, with details like the
currently traded pair
:return: DataFrame with sell column
:return: DataFrame with exit column
"""
logger.debug(f"Populating sell signals for pair {metadata.get('pair')}.")
logger.debug(f"Populating exit signals for pair {metadata.get('pair')}.")
if self._sell_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)
return self.populate_sell_trend(dataframe) # type: ignore
df = self.populate_sell_trend(dataframe) # type: ignore
else:
return self.populate_sell_trend(dataframe, metadata)
df = self.populate_exit_trend(dataframe, metadata)
if 'exit_long' not in df.columns:
df = df.rename({'sell': 'exit_long'}, axis='columns')
return df

View File

@@ -66,7 +66,11 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
return dataframe
def stoploss_from_open(open_relative_stop: float, current_profit: float) -> float:
def stoploss_from_open(
open_relative_stop: float,
current_profit: float,
is_short: bool = False
) -> float:
"""
Given the current profit, and a desired stop loss value relative to the open price,
@@ -76,24 +80,29 @@ def stoploss_from_open(open_relative_stop: float, current_profit: float) -> floa
The requested stop can be positive for a stop above the open price, or negative for
a stop below the open price. The return value is always >= 0.
Returns 0 if the resulting stop price would be above the current price.
Returns 0 if the resulting stop price would be above/below (longs/shorts) the current price
:param open_relative_stop: Desired stop loss percentage relative to open price
:param current_profit: The current profit percentage
:return: Positive stop loss value relative to current price
:param is_short: When true, perform the calculation for short instead of long
:return: Stop loss value relative to current price
"""
# formula is undefined for current_profit -1, return maximum value
if current_profit == -1:
# formula is undefined for current_profit -1 (longs) or 1 (shorts), return maximum value
if (current_profit == -1 and not is_short) or (is_short and current_profit == 1):
return 1
stoploss = 1-((1+open_relative_stop)/(1+current_profit))
if is_short is True:
stoploss = -1 + ((1 - open_relative_stop) / (1 - current_profit))
else:
stoploss = 1 - ((1 + open_relative_stop) / (1 + current_profit))
# negative stoploss values indicate the requested stop price is higher than the current price
# negative stoploss values indicate the requested stop price is higher/lower
# (long/short) than the current price
return max(stoploss, 0.0)
def stoploss_from_absolute(stop_rate: float, current_rate: float) -> float:
def stoploss_from_absolute(stop_rate: float, current_rate: float, is_short: bool = False) -> float:
"""
Given current price and desired stop price, return a stop loss value that is relative to current
price.
@@ -105,6 +114,7 @@ def stoploss_from_absolute(stop_rate: float, current_rate: float) -> float:
:param stop_rate: Stop loss price.
:param current_rate: Current asset price.
:param is_short: When true, perform the calculation for short instead of long
:return: Positive stop loss value relative to current price
"""
@@ -113,6 +123,10 @@ def stoploss_from_absolute(stop_rate: float, current_rate: float) -> float:
return 1
stoploss = 1 - (stop_rate / current_rate)
if is_short:
stoploss = -stoploss
# negative stoploss values indicate the requested stop price is higher than the current price
return max(stoploss, 0.0)
# negative stoploss values indicate the requested stop price is higher/lower
# (long/short) than the current price
# shorts can yield stoploss values higher than 1, so limit that as well
return max(min(stoploss, 1.0), 0.0)

View File

@@ -13,24 +13,26 @@
"fiat_display_currency": "{{ fiat_display_currency }}",{{ ('\n "timeframe": "' + timeframe + '",') if timeframe else '' }}
"dry_run": {{ dry_run | lower }},
"cancel_open_orders_on_exit": false,
"trading_mode": "{{ trading_mode }}",
"margin_mode": "{{ margin_mode }}",
"unfilledtimeout": {
"buy": 10,
"sell": 10,
"entry": 10,
"exit": 10,
"exit_timeout_count": 0,
"unit": "minutes"
},
"bid_strategy": {
"price_side": "bid",
"ask_last_balance": 0.0,
"entry_pricing": {
"price_side": "same",
"use_order_book": true,
"order_book_top": 1,
"price_last_balance": 0.0,
"check_depth_of_market": {
"enabled": false,
"bids_to_ask_delta": 1
}
},
"ask_strategy": {
"price_side": "ask",
"exit_pricing":{
"price_side": "same",
"use_order_book": true,
"order_book_top": 1
},
@@ -70,7 +72,7 @@
},
"bot_name": "freqtrade",
"initial_state": "running",
"forcebuy_enable": false,
"force_entry_enable": false,
"internals": {
"process_throttle_secs": 5
}

View File

@@ -29,17 +29,20 @@ class {{ strategy }}(IStrategy):
You must keep:
- the lib in the section "Do not remove these libs"
- the methods: populate_indicators, populate_buy_trend, populate_sell_trend
- the methods: populate_indicators, populate_entry_trend, populate_exit_trend
You should keep:
- timeframe, minimal_roi, stoploss, trailing_*
"""
# Strategy interface version - allow new iterations of the strategy interface.
# Check the documentation or the Sample strategy to get the latest version.
INTERFACE_VERSION = 2
INTERFACE_VERSION = 3
# Optimal timeframe for the strategy.
timeframe = '5m'
# Can this strategy go short?
can_short: bool = False
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
minimal_roi = {
@@ -61,10 +64,10 @@ class {{ strategy }}(IStrategy):
# Run "populate_indicators()" only for new candle.
process_only_new_candles = False
# These values can be overridden in the "ask_strategy" section in the config.
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# These values can be overridden in the config.
use_exit_signal = True
exit_profit_only = False
ignore_roi_if_entry_signal = False
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 30
@@ -75,16 +78,16 @@ class {{ strategy }}(IStrategy):
# Optional order type mapping.
order_types = {
'buy': 'limit',
'sell': 'limit',
'entry': 'limit',
'exit': 'limit',
'stoploss': 'market',
'stoploss_on_exchange': False
}
# Optional order time in force.
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc'
'entry': 'gtc',
'exit': 'gtc'
}
{{ plot_config | indent(4) }}
@@ -116,34 +119,52 @@ class {{ strategy }}(IStrategy):
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame populated with indicators
Based on TA indicators, populates the entry signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
:return: DataFrame with entry columns populated
"""
dataframe.loc[
(
{{ buy_trend | indent(16) }}
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
'enter_long'] = 1
# Uncomment to use shorts (Only used in futures/margin mode. Check the documentation for more info)
"""
dataframe.loc[
(
{{ sell_trend | indent(16) }}
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'sell'] = 1
'enter_short'] = 1
"""
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the exit signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with exit columns populated
"""
dataframe.loc[
(
{{ sell_trend | indent(16) }}
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'exit_long'] = 1
# Uncomment to use shorts (Only used in futures/margin mode. Check the documentation for more info)
"""
dataframe.loc[
(
{{ buy_trend | indent(16) }}
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'exit_short'] = 1
"""
return dataframe
{{ additional_methods | indent(4) }}

View File

@@ -29,13 +29,16 @@ class SampleStrategy(IStrategy):
You must keep:
- the lib in the section "Do not remove these libs"
- the methods: populate_indicators, populate_buy_trend, populate_sell_trend
- the methods: populate_indicators, populate_entry_trend, populate_exit_trend
You should keep:
- timeframe, minimal_roi, stoploss, trailing_*
"""
# Strategy interface version - allow new iterations of the strategy interface.
# Check the documentation or the Sample strategy to get the latest version.
INTERFACE_VERSION = 2
INTERFACE_VERSION = 3
# Can this strategy go short?
can_short: bool = False
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
@@ -55,36 +58,38 @@ class SampleStrategy(IStrategy):
# trailing_stop_positive = 0.01
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
# Hyperoptable parameters
buy_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell', optimize=True, load=True)
# Optimal timeframe for the strategy.
timeframe = '5m'
# Run "populate_indicators()" only for new candle.
process_only_new_candles = False
# These values can be overridden in the "ask_strategy" section in the config.
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# These values can be overridden in the config.
use_exit_signal = True
exit_profit_only = False
ignore_roi_if_entry_signal = False
# Hyperoptable parameters
buy_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell', optimize=True, load=True)
short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True)
exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 30
# Optional order type mapping.
order_types = {
'buy': 'limit',
'sell': 'limit',
'entry': 'limit',
'exit': 'limit',
'stoploss': 'market',
'stoploss_on_exchange': False
}
# Optional order time in force.
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc'
'entry': 'gtc',
'exit': 'gtc'
}
plot_config = {
@@ -337,12 +342,12 @@ class SampleStrategy(IStrategy):
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame populated with indicators
Based on TA indicators, populates the entry signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
:return: DataFrame with entry columns populated
"""
dataframe.loc[
(
@@ -352,16 +357,26 @@ class SampleStrategy(IStrategy):
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'buy'] = 1
'enter_long'] = 1
dataframe.loc[
(
# Signal: RSI crosses above 70
(qtpylib.crossed_above(dataframe['rsi'], self.short_rsi.value)) &
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'enter_short'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame populated with indicators
Based on TA indicators, populates the exit signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with sell column
:return: DataFrame with exit columns populated
"""
dataframe.loc[
(
@@ -371,5 +386,18 @@ class SampleStrategy(IStrategy):
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'sell'] = 1
'exit_long'] = 1
dataframe.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(dataframe['rsi'], self.exit_short_rsi.value)) &
# Guard: tema below BB middle
(dataframe['tema'] <= dataframe['bb_middleband']) &
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'exit_short'] = 1
return dataframe

View File

@@ -110,7 +110,7 @@
"outputs": [],
"source": [
"# Report results\n",
"print(f\"Generated {df['buy'].sum()} buy signals\")\n",
"print(f\"Generated {df['enter_long'].sum()} entry signals\")\n",
"data = df.set_index('date', drop=False)\n",
"data.tail()"
]
@@ -187,7 +187,7 @@
"trades = load_backtest_data(backtest_dir)\n",
"\n",
"# Show value-counts per pair\n",
"trades.groupby(\"pair\")[\"sell_reason\"].value_counts()"
"trades.groupby(\"pair\")[\"exit_reason\"].value_counts()"
]
},
{
@@ -257,7 +257,7 @@
"trades = load_trades_from_db(\"sqlite:///tradesv3.sqlite\")\n",
"\n",
"# Display results\n",
"trades.groupby(\"pair\")[\"sell_reason\"].value_counts()"
"trades.groupby(\"pair\")[\"exit_reason\"].value_counts()"
]
},
{
@@ -348,7 +348,7 @@
"hist_data = [trades.profit_ratio]\n",
"group_labels = ['profit_ratio'] # name of the dataset\n",
"\n",
"fig = ff.create_distplot(hist_data, group_labels,bin_size=0.01)\n",
"fig = ff.create_distplot(hist_data, group_labels, bin_size=0.01)\n",
"fig.show()\n"
]
},

View File

@@ -1,7 +1,7 @@
"order_types": {
"buy": "limit",
"sell": "limit",
"emergencysell": "limit",
"entry": "limit",
"exit": "limit",
"emergency_exit": "limit",
"stoploss": "limit",
"stoploss_on_exchange": false
},

View File

@@ -23,7 +23,7 @@ def custom_entry_price(self, pair: str, current_time: 'datetime', proposed_rate:
:param pair: Pair that's currently analyzed
:param current_time: datetime object, containing the current datetime
:param proposed_rate: Rate, calculated based on pricing settings in ask_strategy.
:param proposed_rate: Rate, calculated based on pricing settings in exit_pricing.
:param entry_tag: Optional entry_tag (buy_tag) if provided with the buy signal.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New entry price value if provided
@@ -43,7 +43,7 @@ def custom_exit_price(self, pair: str, trade: 'Trade',
:param pair: Pair that's currently analyzed
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param proposed_rate: Rate, calculated based on pricing settings in ask_strategy.
:param proposed_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New exit price value if provided
@@ -52,18 +52,18 @@ def custom_exit_price(self, pair: str, trade: 'Trade',
def custom_stake_amount(self, pair: str, current_time: 'datetime', current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
entry_tag: 'Optional[str]', **kwargs) -> float:
side: str, entry_tag: 'Optional[str]', **kwargs) -> float:
"""
Customize stake size for each new trade. This method is not called when edge module is
enabled.
Customize stake size for each new trade.
:param pair: Pair that's currently analyzed
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param proposed_stake: A stake amount proposed by the bot.
:param min_stake: Minimal stake size allowed by exchange.
:param max_stake: Balance available for trading.
:param entry_tag: Optional entry_tag (buy_tag) if provided with the buy signal.
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:return: A stake size, which is between min_stake and max_stake.
"""
return proposed_stake
@@ -85,17 +85,17 @@ def custom_stoploss(self, pair: str, trade: 'Trade', current_time: 'datetime',
:param pair: Pair that's currently analyzed
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New stoploss value, relative to the current_rate
"""
return self.stoploss
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
def custom_exit(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
current_profit: float, **kwargs) -> 'Optional[Union[str, bool]]':
"""
Custom sell signal logic indicating that specified position should be sold. Returning a
Custom exit signal logic indicating that specified position should be sold. Returning a
string or True from this method is equal to setting sell signal on a candle at specified
time. This method is not called when sell signal is set.
@@ -103,24 +103,24 @@ def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', curre
example you could implement a sell relative to the candle when the trade was opened,
or a custom 1:2 risk-reward ROI.
Custom sell reason max length is 64. Exceeding characters will be removed.
Custom exit reason max length is 64. Exceeding characters will be removed.
:param pair: Pair that's currently analyzed
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return: To execute sell, return a string with custom sell reason or True. Otherwise return
:return: To execute sell, return a string with custom exit reason or True. Otherwise return
None or False.
"""
return None
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time: 'datetime', entry_tag: 'Optional[str]',
**kwargs) -> bool:
time_in_force: str, current_time: datetime, entry_tag: 'Optional[str]',
side: str, **kwargs) -> bool:
"""
Called right before placing a buy order.
Called right before placing a entry order.
Timing for this function is critical, so avoid doing heavy computations or
network requests in this method.
@@ -128,13 +128,14 @@ def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: f
When not implemented by a strategy, returns True (always confirming).
:param pair: Pair that's about to be bought.
:param pair: Pair that's about to be bought/shorted.
:param order_type: Order type (as configured in order_types). usually limit or market.
:param amount: Amount in target (quote) currency that's going to be traded.
:param rate: Rate that's going to be used when using limit orders
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
:param current_time: datetime object, containing the current datetime
:param entry_tag: Optional entry_tag (buy_tag) if provided with the buy signal.
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the buy-order is placed on the exchange.
False aborts the process
@@ -142,7 +143,7 @@ def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: f
return True
def confirm_trade_exit(self, pair: str, trade: 'Trade', order_type: str, amount: float,
rate: float, time_in_force: str, sell_reason: str,
rate: float, time_in_force: str, exit_reason: str,
current_time: 'datetime', **kwargs) -> bool:
"""
Called right before placing a regular sell order.
@@ -159,21 +160,22 @@ def confirm_trade_exit(self, pair: str, trade: 'Trade', order_type: str, amount:
:param amount: Amount in quote currency.
:param rate: Rate that's going to be used when using limit orders
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
:param sell_reason: Sell reason.
:param exit_reason: Exit reason.
Can be any of ['roi', 'stop_loss', 'stoploss_on_exchange', 'trailing_stop_loss',
'sell_signal', 'force_sell', 'emergency_sell']
'exit_signal', 'force_exit', 'emergency_exit']
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the sell-order is placed on the exchange.
:return bool: When True is returned, then the exit-order is placed on the exchange.
False aborts the process
"""
return True
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
"""
Check buy timeout function callback.
This method can be used to override the buy-timeout.
It is called whenever a limit buy order has been created,
Check entry timeout function callback.
This method can be used to override the entry-timeout.
It is called whenever a limit entry order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
@@ -182,18 +184,20 @@ def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) ->
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param trade: Trade object.
:param order: Order object.
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the buy-order is cancelled.
:return bool: When True is returned, then the entry order is cancelled.
"""
return False
def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
def check_exit_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
"""
Check sell timeout function callback.
This method can be used to override the sell-timeout.
It is called whenever a limit sell order has been created,
Check exit timeout function callback.
This method can be used to override the exit-timeout.
It is called whenever a limit exit order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
@@ -202,10 +206,11 @@ def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -
When not implemented by a strategy, this simply returns False.
:param pair: Pair the trade is for
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param trade: Trade object.
:param order: Order object.
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the sell-order is cancelled.
:return bool: When True is returned, then the exit-order is cancelled.
"""
return False
@@ -231,3 +236,19 @@ def adjust_trade_position(self, trade: 'Trade', current_time: 'datetime',
:return float: Stake amount to adjust your trade
"""
return None
def leverage(self, pair: str, current_time: datetime, current_rate: float,
proposed_leverage: float, max_leverage: float, side: str,
**kwargs) -> float:
"""
Customize leverage for each new trade. This method is only called in futures mode.
:param pair: Pair that's currently analyzed
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param proposed_leverage: A leverage proposed by the bot.
:param max_leverage: Max leverage allowed on this pair
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:return: A leverage amount, which is between 1.0 and max_leverage.
"""
return 1.0

View File

@@ -3,12 +3,12 @@
import logging
from copy import deepcopy
from typing import Any, Dict, NamedTuple, Optional
from typing import Dict, NamedTuple, Optional
import arrow
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT
from freqtrade.enums import RunMode
from freqtrade.enums import RunMode, TradingMode
from freqtrade.exceptions import DependencyException
from freqtrade.exchange import Exchange
from freqtrade.persistence import LocalTrade, Trade
@@ -25,6 +25,14 @@ class Wallet(NamedTuple):
total: float = 0
class PositionWallet(NamedTuple):
symbol: str
position: float = 0
leverage: float = 0
collateral: float = 0
side: str = 'long'
class Wallets:
def __init__(self, config: dict, exchange: Exchange, log: bool = True) -> None:
@@ -32,6 +40,7 @@ class Wallets:
self._log = log
self._exchange = exchange
self._wallets: Dict[str, Wallet] = {}
self._positions: Dict[str, PositionWallet] = {}
self.start_cap = config['dry_run_wallet']
self._last_wallet_refresh = 0
self.update()
@@ -66,6 +75,7 @@ class Wallets:
"""
# Recreate _wallets to reset closed trade balances
_wallets = {}
_positions = {}
open_trades = Trade.get_trades_proxy(is_open=True)
# If not backtesting...
# TODO: potentially remove the ._log workaround to determine backtest mode.
@@ -74,24 +84,45 @@ class Wallets:
else:
tot_profit = LocalTrade.total_profit
tot_in_trades = sum(trade.stake_amount for trade in open_trades)
used_stake = 0.0
if self._config.get('trading_mode', 'spot') != TradingMode.FUTURES:
current_stake = self.start_cap + tot_profit - tot_in_trades
total_stake = current_stake
for trade in open_trades:
curr = self._exchange.get_pair_base_currency(trade.pair)
_wallets[curr] = Wallet(
curr,
trade.amount,
0,
trade.amount
)
else:
tot_in_trades = 0
for position in open_trades:
# size = self._exchange._contracts_to_amount(position.pair, position['contracts'])
size = position.amount
collateral = position.stake_amount
leverage = position.leverage
tot_in_trades += collateral
_positions[position.pair] = PositionWallet(
position.pair, position=size,
leverage=leverage,
collateral=collateral,
side=position.trade_direction
)
current_stake = self.start_cap + tot_profit - tot_in_trades
used_stake = tot_in_trades
total_stake = current_stake + tot_in_trades
current_stake = self.start_cap + tot_profit - tot_in_trades
_wallets[self._config['stake_currency']] = Wallet(
self._config['stake_currency'],
current_stake,
0,
current_stake
currency=self._config['stake_currency'],
free=current_stake,
used=used_stake,
total=total_stake
)
for trade in open_trades:
curr = self._exchange.get_pair_base_currency(trade.pair)
_wallets[curr] = Wallet(
curr,
trade.amount,
0,
trade.amount
)
self._wallets = _wallets
self._positions = _positions
def _update_live(self) -> None:
balances = self._exchange.get_balances()
@@ -109,6 +140,23 @@ class Wallets:
if currency not in balances:
del self._wallets[currency]
positions = self._exchange.fetch_positions()
self._positions = {}
for position in positions:
symbol = position['symbol']
if position['side'] is None or position['collateral'] == 0.0:
# Position is not open ...
continue
size = self._exchange._contracts_to_amount(symbol, position['contracts'])
collateral = position['collateral']
leverage = position['leverage']
self._positions[symbol] = PositionWallet(
symbol, position=size,
leverage=leverage,
collateral=collateral,
side=position['side']
)
def update(self, require_update: bool = True) -> None:
"""
Updates wallets from the configured version.
@@ -126,9 +174,12 @@ class Wallets:
logger.info('Wallets synced.')
self._last_wallet_refresh = arrow.utcnow().int_timestamp
def get_all_balances(self) -> Dict[str, Any]:
def get_all_balances(self) -> Dict[str, Wallet]:
return self._wallets
def get_all_positions(self) -> Dict[str, PositionWallet]:
return self._positions
def get_starting_balance(self) -> float:
"""
Retrieves starting balance - based on either available capital,
@@ -239,13 +290,13 @@ class Wallets:
return self._check_available_stake_amount(stake_amount, available_amount)
def validate_stake_amount(
self, pair: str, stake_amount: Optional[float], min_stake_amount: Optional[float]):
def validate_stake_amount(self, pair: str, stake_amount: Optional[float],
min_stake_amount: Optional[float], max_stake_amount: float):
if not stake_amount:
logger.debug(f"Stake amount is {stake_amount}, ignoring possible trade for {pair}.")
return 0
max_stake_amount = self.get_available_stake_amount()
max_stake_amount = min(max_stake_amount, self.get_available_stake_amount())
if min_stake_amount is not None and min_stake_amount > max_stake_amount:
if self._log: