Merge branch 'develop' of github.com:lolongcovas/freqtrade into feature/training_data_slice_normalization

This commit is contained in:
longyu
2022-09-30 19:57:30 +02:00
174 changed files with 5153 additions and 1737 deletions

View File

@@ -16,6 +16,7 @@ from numpy.typing import NDArray
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.data.history import load_pair_history
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
@@ -27,9 +28,7 @@ logger = logging.getLogger(__name__)
class pair_info(TypedDict):
model_filename: str
first: bool
trained_timestamp: int
priority: int
data_path: str
extras: dict
@@ -58,7 +57,7 @@ class FreqaiDataDrawer:
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
"""
def __init__(self, full_path: Path, config: dict, follow_mode: bool = False):
def __init__(self, full_path: Path, config: Config, follow_mode: bool = False):
self.config = config
self.freqai_info = config.get("freqai", {})
@@ -91,7 +90,7 @@ class FreqaiDataDrawer:
self.old_DBSCAN_eps: Dict[str, float] = {}
self.empty_pair_dict: pair_info = {
"model_filename": "", "trained_timestamp": 0,
"priority": 1, "first": True, "data_path": "", "extras": {}}
"data_path": "", "extras": {}}
def load_drawer_from_disk(self):
"""
@@ -216,7 +215,6 @@ class FreqaiDataDrawer:
self.pair_dict[pair] = self.empty_pair_dict.copy()
model_filename = ""
trained_timestamp = 0
self.pair_dict[pair]["priority"] = len(self.pair_dict)
if not data_path_set and self.follow_mode:
logger.warning(
@@ -236,18 +234,9 @@ class FreqaiDataDrawer:
return
else:
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
self.pair_dict[metadata["pair"]]["priority"] = len(self.pair_dict)
return
def pair_to_end_of_training_queue(self, pair: str) -> None:
# march all pairs up in the queue
with self.pair_dict_lock:
for p in self.pair_dict:
self.pair_dict[p]["priority"] -= 1
# send pair to end of queue
self.pair_dict[pair]["priority"] = len(self.pair_dict)
def set_initial_return_values(self, pair: str, pred_df: DataFrame) -> None:
"""
Set the initial return values to the historical predictions dataframe. This avoids needing
@@ -324,6 +313,7 @@ class FreqaiDataDrawer:
"""
dk.find_features(dataframe)
dk.find_labels(dataframe)
full_labels = dk.label_list + dk.unique_class_list
@@ -387,7 +377,27 @@ class FreqaiDataDrawer:
if self.config.get("freqai", {}).get("purge_old_models", False):
self.purge_old_models()
# Functions pulled back from FreqaiDataKitchen because they relied on DataDrawer
def save_metadata(self, dk: FreqaiDataKitchen) -> None:
"""
Saves only metadata for backtesting studies if user prefers
not to save model data. This saves tremendous amounts of space
for users generating huge studies.
This is only active when `save_backtest_models`: false (not default)
"""
if not dk.data_path.is_dir():
dk.data_path.mkdir(parents=True, exist_ok=True)
save_path = Path(dk.data_path)
dk.data["data_path"] = str(dk.data_path)
dk.data["model_filename"] = str(dk.model_filename)
dk.data["training_features_list"] = list(dk.data_dictionary["train_features"].columns)
dk.data["label_list"] = dk.label_list
with open(save_path / f"{dk.model_filename}_metadata.json", "w") as fp:
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
return
def save_data(self, model: Any, coin: str, dk: FreqaiDataKitchen) -> None:
"""
@@ -441,6 +451,16 @@ class FreqaiDataDrawer:
return
def load_metadata(self, dk: FreqaiDataKitchen) -> None:
"""
Load only metadata into datakitchen to increase performance during
presaved backtesting (prediction file loading).
"""
with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp:
dk.data = json.load(fp)
dk.training_features_list = dk.data["training_features_list"]
dk.label_list = dk.data["label_list"]
def load_data(self, coin: str, dk: FreqaiDataKitchen) -> Any:
"""
loads all data required to make a prediction on a sub-train time range