Merge branch 'develop' into feat/externalsignals
This commit is contained in:
commit
efaef68ad7
6
.github/workflows/ci.yml
vendored
6
.github/workflows/ci.yml
vendored
@ -24,7 +24,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ ubuntu-18.04, ubuntu-20.04, ubuntu-22.04 ]
|
os: [ ubuntu-18.04, ubuntu-20.04, ubuntu-22.04 ]
|
||||||
python-version: ["3.8", "3.9", "3.10"]
|
python-version: ["3.8", "3.9", "3.10.6"]
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v3
|
||||||
@ -121,7 +121,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ macos-latest ]
|
os: [ macos-latest ]
|
||||||
python-version: ["3.8", "3.9", "3.10"]
|
python-version: ["3.8", "3.9", "3.10.6"]
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v3
|
||||||
@ -205,7 +205,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ windows-latest ]
|
os: [ windows-latest ]
|
||||||
python-version: ["3.8", "3.9", "3.10"]
|
python-version: ["3.8", "3.9", "3.10.6"]
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v3
|
||||||
|
@ -264,7 +264,8 @@ def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFram
|
|||||||
### Exit signal rules
|
### Exit signal rules
|
||||||
|
|
||||||
Edit the method `populate_exit_trend()` into your strategy file to update your exit strategy.
|
Edit the method `populate_exit_trend()` into your strategy file to update your exit strategy.
|
||||||
Please note that the exit-signal is only used if `use_exit_signal` is set to true in the configuration.
|
The exit-signal is only used for exits if `use_exit_signal` is set to true in the configuration.
|
||||||
|
`use_exit_signal` will not influence [signal collision rules](#colliding-signals) - which will still apply and can prevent entries.
|
||||||
|
|
||||||
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
|
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
|
||||||
|
|
||||||
|
@ -313,7 +313,9 @@ class DataProvider:
|
|||||||
Clear pair dataframe cache.
|
Clear pair dataframe cache.
|
||||||
"""
|
"""
|
||||||
self.__cached_pairs = {}
|
self.__cached_pairs = {}
|
||||||
self.__cached_pairs_backtesting = {}
|
# Don't reset backtesting pairs -
|
||||||
|
# otherwise they're reloaded each time during hyperopt due to with analyze_per_epoch
|
||||||
|
# self.__cached_pairs_backtesting = {}
|
||||||
self.__slice_index = 0
|
self.__slice_index = 0
|
||||||
|
|
||||||
# Exchange functions
|
# Exchange functions
|
||||||
|
@ -355,7 +355,7 @@ class FreqaiDataDrawer:
|
|||||||
for dir in model_folders:
|
for dir in model_folders:
|
||||||
result = pattern.match(str(dir.name))
|
result = pattern.match(str(dir.name))
|
||||||
if result is None:
|
if result is None:
|
||||||
break
|
continue
|
||||||
coin = result.group(1)
|
coin = result.group(1)
|
||||||
timestamp = result.group(2)
|
timestamp = result.group(2)
|
||||||
|
|
||||||
|
85
freqtrade/freqai/prediction_models/XGBoostClassifier.py
Normal file
85
freqtrade/freqai/prediction_models/XGBoostClassifier.py
Normal file
@ -0,0 +1,85 @@
|
|||||||
|
import logging
|
||||||
|
from typing import Any, Dict, Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import numpy.typing as npt
|
||||||
|
import pandas as pd
|
||||||
|
from pandas import DataFrame
|
||||||
|
from pandas.api.types import is_integer_dtype
|
||||||
|
from sklearn.preprocessing import LabelEncoder
|
||||||
|
from xgboost import XGBClassifier
|
||||||
|
|
||||||
|
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class XGBoostClassifier(BaseClassifierModel):
|
||||||
|
"""
|
||||||
|
User created prediction model. The class needs to override three necessary
|
||||||
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||||
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||||
|
"""
|
||||||
|
User sets up the training and test data to fit their desired model here
|
||||||
|
:params:
|
||||||
|
:data_dictionary: the dictionary constructed by DataHandler to hold
|
||||||
|
all the training and test data/labels.
|
||||||
|
"""
|
||||||
|
|
||||||
|
X = data_dictionary["train_features"].to_numpy()
|
||||||
|
y = data_dictionary["train_labels"].to_numpy()[:, 0]
|
||||||
|
|
||||||
|
le = LabelEncoder()
|
||||||
|
if not is_integer_dtype(y):
|
||||||
|
y = pd.Series(le.fit_transform(y), dtype="int64")
|
||||||
|
|
||||||
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
|
||||||
|
eval_set = None
|
||||||
|
else:
|
||||||
|
test_features = data_dictionary["test_features"].to_numpy()
|
||||||
|
test_labels = data_dictionary["test_labels"].to_numpy()[:, 0]
|
||||||
|
|
||||||
|
if not is_integer_dtype(test_labels):
|
||||||
|
test_labels = pd.Series(le.transform(test_labels), dtype="int64")
|
||||||
|
|
||||||
|
eval_set = [(test_features, test_labels)]
|
||||||
|
|
||||||
|
train_weights = data_dictionary["train_weights"]
|
||||||
|
|
||||||
|
init_model = self.get_init_model(dk.pair)
|
||||||
|
|
||||||
|
model = XGBClassifier(**self.model_training_parameters)
|
||||||
|
|
||||||
|
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
|
||||||
|
xgb_model=init_model)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
def predict(
|
||||||
|
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||||
|
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||||
|
"""
|
||||||
|
Filter the prediction features data and predict with it.
|
||||||
|
:param: unfiltered_df: Full dataframe for the current backtest period.
|
||||||
|
:return:
|
||||||
|
:pred_df: dataframe containing the predictions
|
||||||
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||||
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||||
|
"""
|
||||||
|
|
||||||
|
(pred_df, dk.do_predict) = super().predict(unfiltered_df, dk, **kwargs)
|
||||||
|
|
||||||
|
le = LabelEncoder()
|
||||||
|
label = dk.label_list[0]
|
||||||
|
labels_before = list(dk.data['labels_std'].keys())
|
||||||
|
labels_after = le.fit_transform(labels_before).tolist()
|
||||||
|
pred_df[label] = le.inverse_transform(pred_df[label])
|
||||||
|
pred_df = pred_df.rename(
|
||||||
|
columns={labels_after[i]: labels_before[i] for i in range(len(labels_before))})
|
||||||
|
|
||||||
|
return (pred_df, dk.do_predict)
|
@ -580,11 +580,23 @@ class Hyperopt:
|
|||||||
max_value=self.total_epochs, redirect_stdout=False, redirect_stderr=False,
|
max_value=self.total_epochs, redirect_stdout=False, redirect_stderr=False,
|
||||||
widgets=widgets
|
widgets=widgets
|
||||||
) as pbar:
|
) as pbar:
|
||||||
EVALS = ceil(self.total_epochs / jobs)
|
start = 0
|
||||||
for i in range(EVALS):
|
|
||||||
|
if self.analyze_per_epoch:
|
||||||
|
# First analysis not in parallel mode when using --analyze-per-epoch.
|
||||||
|
# This allows dataprovider to load it's informative cache.
|
||||||
|
asked, is_random = self.get_asked_points(n_points=1)
|
||||||
|
f_val0 = self.generate_optimizer(asked[0])
|
||||||
|
self.opt.tell(asked, [f_val0['loss']])
|
||||||
|
self.evaluate_result(f_val0, 1, is_random[0])
|
||||||
|
pbar.update(1)
|
||||||
|
start += 1
|
||||||
|
|
||||||
|
evals = ceil((self.total_epochs - start) / jobs)
|
||||||
|
for i in range(evals):
|
||||||
# Correct the number of epochs to be processed for the last
|
# Correct the number of epochs to be processed for the last
|
||||||
# iteration (should not exceed self.total_epochs in total)
|
# iteration (should not exceed self.total_epochs in total)
|
||||||
n_rest = (i + 1) * jobs - self.total_epochs
|
n_rest = (i + 1) * jobs - (self.total_epochs - start)
|
||||||
current_jobs = jobs - n_rest if n_rest > 0 else jobs
|
current_jobs = jobs - n_rest if n_rest > 0 else jobs
|
||||||
|
|
||||||
asked, is_random = self.get_asked_points(n_points=current_jobs)
|
asked, is_random = self.get_asked_points(n_points=current_jobs)
|
||||||
@ -594,7 +606,7 @@ class Hyperopt:
|
|||||||
# Calculate progressbar outputs
|
# Calculate progressbar outputs
|
||||||
for j, val in enumerate(f_val):
|
for j, val in enumerate(f_val):
|
||||||
# Use human-friendly indexes here (starting from 1)
|
# Use human-friendly indexes here (starting from 1)
|
||||||
current = i * jobs + j + 1
|
current = i * jobs + j + 1 + start
|
||||||
|
|
||||||
self.evaluate_result(val, current, is_random[j])
|
self.evaluate_result(val, current, is_random[j])
|
||||||
|
|
||||||
|
@ -297,7 +297,7 @@ class TestCCXTExchange():
|
|||||||
def test_ccxt__async_get_candle_history(self, exchange):
|
def test_ccxt__async_get_candle_history(self, exchange):
|
||||||
exchange, exchangename = exchange
|
exchange, exchangename = exchange
|
||||||
# For some weired reason, this test returns random lengths for bittrex.
|
# For some weired reason, this test returns random lengths for bittrex.
|
||||||
if not exchange._ft_has['ohlcv_has_history'] or exchangename in ('bittrex', 'gateio'):
|
if not exchange._ft_has['ohlcv_has_history'] or exchangename in ('bittrex'):
|
||||||
return
|
return
|
||||||
pair = EXCHANGES[exchangename]['pair']
|
pair = EXCHANGES[exchangename]['pair']
|
||||||
timeframe = EXCHANGES[exchangename]['timeframe']
|
timeframe = EXCHANGES[exchangename]['timeframe']
|
||||||
|
@ -99,6 +99,7 @@ def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model):
|
|||||||
@pytest.mark.parametrize('model', [
|
@pytest.mark.parametrize('model', [
|
||||||
'LightGBMClassifier',
|
'LightGBMClassifier',
|
||||||
'CatboostClassifier',
|
'CatboostClassifier',
|
||||||
|
'XGBoostClassifier',
|
||||||
])
|
])
|
||||||
def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
|
def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
|
||||||
if is_arm() and model == 'CatboostClassifier':
|
if is_arm() and model == 'CatboostClassifier':
|
||||||
|
@ -922,6 +922,45 @@ def test_in_strategy_auto_hyperopt_with_parallel(mocker, hyperopt_conf, tmpdir,
|
|||||||
hyperopt.start()
|
hyperopt.start()
|
||||||
|
|
||||||
|
|
||||||
|
def test_in_strategy_auto_hyperopt_per_epoch(mocker, hyperopt_conf, tmpdir, fee) -> None:
|
||||||
|
patch_exchange(mocker)
|
||||||
|
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||||
|
(Path(tmpdir) / 'hyperopt_results').mkdir(parents=True)
|
||||||
|
|
||||||
|
hyperopt_conf.update({
|
||||||
|
'strategy': 'HyperoptableStrategy',
|
||||||
|
'user_data_dir': Path(tmpdir),
|
||||||
|
'hyperopt_random_state': 42,
|
||||||
|
'spaces': ['all'],
|
||||||
|
'epochs': 3,
|
||||||
|
'analyze_per_epoch': True,
|
||||||
|
})
|
||||||
|
go = mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.generate_optimizer',
|
||||||
|
return_value={
|
||||||
|
'loss': 0.05,
|
||||||
|
'results_explanation': 'foo result', 'params': {},
|
||||||
|
'results_metrics': generate_result_metrics(),
|
||||||
|
})
|
||||||
|
hyperopt = Hyperopt(hyperopt_conf)
|
||||||
|
hyperopt.backtesting.exchange.get_max_leverage = MagicMock(return_value=1.0)
|
||||||
|
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
|
||||||
|
assert isinstance(hyperopt.backtesting.strategy.buy_rsi, IntParameter)
|
||||||
|
assert hyperopt.backtesting.strategy.bot_loop_started is True
|
||||||
|
|
||||||
|
assert hyperopt.backtesting.strategy.buy_rsi.in_space is True
|
||||||
|
assert hyperopt.backtesting.strategy.buy_rsi.value == 35
|
||||||
|
assert hyperopt.backtesting.strategy.sell_rsi.value == 74
|
||||||
|
assert hyperopt.backtesting.strategy.protection_cooldown_lookback.value == 30
|
||||||
|
buy_rsi_range = hyperopt.backtesting.strategy.buy_rsi.range
|
||||||
|
assert isinstance(buy_rsi_range, range)
|
||||||
|
# Range from 0 - 50 (inclusive)
|
||||||
|
assert len(list(buy_rsi_range)) == 51
|
||||||
|
|
||||||
|
hyperopt.start()
|
||||||
|
# backtesting should be called 3 times (once per epoch)
|
||||||
|
assert go.call_count == 3
|
||||||
|
|
||||||
|
|
||||||
def test_SKDecimal():
|
def test_SKDecimal():
|
||||||
space = SKDecimal(1, 2, decimals=2)
|
space = SKDecimal(1, 2, decimals=2)
|
||||||
assert 1.5 in space
|
assert 1.5 in space
|
||||||
|
Loading…
Reference in New Issue
Block a user