From eeebb78a5c772b0c3e569fd476587facb1f8a9dc Mon Sep 17 00:00:00 2001 From: robcaulk Date: Thu, 22 Sep 2022 21:16:21 +0200 Subject: [PATCH] skip darwin in RL tests, remove example scripts, improve doc --- docs/freqai.md | 126 +++++ .../RL/ReinforcementLearnerCustomAgent.py | 456 +++++++++--------- .../ReinforcementLearningExample4ac.py | 143 ------ .../ReinforcementLearningExample5ac.py | 147 ------ tests/freqai/test_freqai_interface.py | 8 + 5 files changed, 362 insertions(+), 518 deletions(-) delete mode 100644 freqtrade/freqai/example_strats/ReinforcementLearningExample4ac.py delete mode 100644 freqtrade/freqai/example_strats/ReinforcementLearningExample5ac.py diff --git a/docs/freqai.md b/docs/freqai.md index 028a7623e..a2058b0ed 100644 --- a/docs/freqai.md +++ b/docs/freqai.md @@ -805,3 +805,129 @@ Code review, software architecture brainstorming: Beta testing and bug reporting: @bloodhunter4rc, Salah Lamkadem @ikonx, @ken11o2, @longyu, @paranoidandy, @smidelis, @smarm, Juha Nykänen @suikula, Wagner Costa @wagnercosta + + +## Reinforcement Learning + +Setting up and running a Reinforcement Learning model is as quick and simple as running a Regressor. Users can start training and trading live from example files using: + +```bash +freqtrade trade --freqaimodel ReinforcementLearner --strategy ReinforcementLearningExample5ac --strategy-path freqtrade/freqai/example_strats --config config_examples/config_freqai-rl.example.json +``` + +As users begin to modify the strategy and the prediction model, they will quickly realize some important differences between the Reinforcement Learner and the Regressors/Classifiers. Firstly, the strategy does not set a target value (no labels!). Instead, the user sets a `calculate_reward()` function inside their custom `ReinforcementLearner.py` file. A default `calculate_reward()` is provided inside `prediction_models/ReinforcementLearner.py` to give users the necessary building blocks to start their own models. It is inside the `calculate_reward()` where users express their creative theories about the market. For example, the user wants to reward their agent when it makes a winning trade, and penalize the agent when it makes a losing trade. Or perhaps, the user wishes to reward the agnet for entering trades, and penalize the agent for sitting in trades too long. Below we show examples of how these rewards are all calculated: + +```python + class MyRLEnv(Base5ActionRLEnv): + """ + User made custom environment. This class inherits from BaseEnvironment and gym.env. + Users can override any functions from those parent classes. Here is an example + of a user customized `calculate_reward()` function. + """ + def calculate_reward(self, action): + # first, penalize if the action is not valid + if not self._is_valid(action): + return -2 + pnl = self.get_unrealized_profit() + rew = np.sign(pnl) * (pnl + 1) + factor = 100 + # reward agent for entering trades + if action in (Actions.Long_enter.value, Actions.Short_enter.value) \ + and self._position == Positions.Neutral: + return 25 + # discourage agent from not entering trades + if action == Actions.Neutral.value and self._position == Positions.Neutral: + return -1 + max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300) + trade_duration = self._current_tick - self._last_trade_tick + if trade_duration <= max_trade_duration: + factor *= 1.5 + elif trade_duration > max_trade_duration: + factor *= 0.5 + # discourage sitting in position + if self._position in (Positions.Short, Positions.Long) and \ + action == Actions.Neutral.value: + return -1 * trade_duration / max_trade_duration + # close long + if action == Actions.Long_exit.value and self._position == Positions.Long: + if pnl > self.profit_aim * self.rr: + factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2) + return float(rew * factor) + # close short + if action == Actions.Short_exit.value and self._position == Positions.Short: + if pnl > self.profit_aim * self.rr: + factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2) + return float(rew * factor) + return 0. +``` + +After users realize there are no labels to set, they will soon understand that the agent is making its "own" entry and exit decisions. This makes strategy construction rather simple. The entry and exit signals come from the agent in the form of an integer - which are used directly to decide entries and exits in the strategy: + +```python + def populate_any_indicators( + self, pair, df, tf, informative=None, set_generalized_indicators=False + ): + ... + + if set_generalized_indicators: + # For RL, there are no direct targets to set. This sets the base action to neutral + # until the agent sends an action. + df["&-action"] = 0 + + return df + +``` + +and then the `&-action` will be used in `populate_entry/exit` functions: + +```python + def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame: + + enter_long_conditions = [df["do_predict"] == 1, df["&-action"] == 1] + + if enter_long_conditions: + df.loc[ + reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"] + ] = (1, "long") + + enter_short_conditions = [df["do_predict"] == 1, df["&-action"] == 3] + + if enter_short_conditions: + df.loc[ + reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"] + ] = (1, "short") + + return df + + def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame: + exit_long_conditions = [df["do_predict"] == 1, df["&-action"] == 2] + if exit_long_conditions: + df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1 + + exit_short_conditions = [df["do_predict"] == 1, df["&-action"] == 4] + if exit_short_conditions: + df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1 + + return df +``` + +Users should be careful to consider that `&-action` depends on which environment they choose to use. The example above shows 5 actions, where 0 is neutral, 1 is enter long, 2 is exit long, 3 is enter short and 4 is exit short. + +### Using Tensorboard + +Reinforcement Learning models benefit from tracking training metrics. FreqAI has integrated Tensorboard to allow users to track training and evaluation performance across all coins and across all retrainings. To start, the user should ensure Tensorboard is installed on their computer: + +```bash +pip3 install tensorboard +``` + +Next, the user can activate Tensorboard with the following command: + +```bash +cd freqtrade +tensorboard --logdir user_data/models/unique-id +``` + +where `unique-id` is the `identifier` set in the `freqai` configuration file. + +![tensorboard](assets/tensorboard.png) \ No newline at end of file diff --git a/freqtrade/freqai/RL/ReinforcementLearnerCustomAgent.py b/freqtrade/freqai/RL/ReinforcementLearnerCustomAgent.py index 4ad95c214..31d21d459 100644 --- a/freqtrade/freqai/RL/ReinforcementLearnerCustomAgent.py +++ b/freqtrade/freqai/RL/ReinforcementLearnerCustomAgent.py @@ -1,262 +1,262 @@ -import logging -from pathlib import Path -from typing import Any, Dict, List, Optional, Tuple, Type, Union +# import logging +# from pathlib import Path +# from typing import Any, Dict, List, Optional, Tuple, Type, Union -import gym -import torch as th -from stable_baselines3 import DQN -from stable_baselines3.common.buffers import ReplayBuffer -from stable_baselines3.common.policies import BasePolicy -from stable_baselines3.common.torch_layers import BaseFeaturesExtractor, FlattenExtractor -from stable_baselines3.common.type_aliases import GymEnv, Schedule -from stable_baselines3.dqn.policies import CnnPolicy, DQNPolicy, MlpPolicy, QNetwork -from torch import nn +# import gym +# import torch as th +# from stable_baselines3 import DQN +# from stable_baselines3.common.buffers import ReplayBuffer +# from stable_baselines3.common.policies import BasePolicy +# from stable_baselines3.common.torch_layers import BaseFeaturesExtractor, FlattenExtractor +# from stable_baselines3.common.type_aliases import GymEnv, Schedule +# from stable_baselines3.dqn.policies import CnnPolicy, DQNPolicy, MlpPolicy, QNetwork +# from torch import nn -from freqtrade.freqai.data_kitchen import FreqaiDataKitchen -from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel +# from freqtrade.freqai.data_kitchen import FreqaiDataKitchen +# from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel -logger = logging.getLogger(__name__) +# logger = logging.getLogger(__name__) -class ReinforcementLearnerCustomAgent(BaseReinforcementLearningModel): - """ - User can customize agent by defining the class and using it directly. - Here the example is "TDQN" +# class ReinforcementLearnerCustomAgent(BaseReinforcementLearningModel): +# """ +# User can customize agent by defining the class and using it directly. +# Here the example is "TDQN" - Warning! - This is an advanced example of how a user may create and use a highly - customized model class (which can inherit from existing classes, - similar to how the example below inherits from DQN). - This file is for example purposes only, and should not be run. - """ +# Warning! +# This is an advanced example of how a user may create and use a highly +# customized model class (which can inherit from existing classes, +# similar to how the example below inherits from DQN). +# This file is for example purposes only, and should not be run. +# """ - def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen): +# def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen): - train_df = data_dictionary["train_features"] - total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df) +# train_df = data_dictionary["train_features"] +# total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df) - policy_kwargs = dict(activation_fn=th.nn.ReLU, - net_arch=[256, 256, 128]) +# policy_kwargs = dict(activation_fn=th.nn.ReLU, +# net_arch=[256, 256, 128]) - # TDQN is a custom agent defined below - model = TDQN(self.policy_type, self.train_env, - tensorboard_log=str(Path(dk.data_path / "tensorboard")), - policy_kwargs=policy_kwargs, - **self.freqai_info['model_training_parameters'] - ) +# # TDQN is a custom agent defined below +# model = TDQN(self.policy_type, self.train_env, +# tensorboard_log=str(Path(dk.data_path / "tensorboard")), +# policy_kwargs=policy_kwargs, +# **self.freqai_info['model_training_parameters'] +# ) - model.learn( - total_timesteps=int(total_timesteps), - callback=self.eval_callback - ) +# model.learn( +# total_timesteps=int(total_timesteps), +# callback=self.eval_callback +# ) - if Path(dk.data_path / "best_model.zip").is_file(): - logger.info('Callback found a best model.') - best_model = self.MODELCLASS.load(dk.data_path / "best_model") - return best_model +# if Path(dk.data_path / "best_model.zip").is_file(): +# logger.info('Callback found a best model.') +# best_model = self.MODELCLASS.load(dk.data_path / "best_model") +# return best_model - logger.info('Couldnt find best model, using final model instead.') +# logger.info('Couldnt find best model, using final model instead.') - return model +# return model -# User creates their custom agent and networks as shown below +# # User creates their custom agent and networks as shown below -def create_mlp_( - input_dim: int, - output_dim: int, - net_arch: List[int], - activation_fn: Type[nn.Module] = nn.ReLU, - squash_output: bool = False, -) -> List[nn.Module]: - dropout = 0.2 - if len(net_arch) > 0: - number_of_neural = net_arch[0] +# def create_mlp_( +# input_dim: int, +# output_dim: int, +# net_arch: List[int], +# activation_fn: Type[nn.Module] = nn.ReLU, +# squash_output: bool = False, +# ) -> List[nn.Module]: +# dropout = 0.2 +# if len(net_arch) > 0: +# number_of_neural = net_arch[0] - modules = [ - nn.Linear(input_dim, number_of_neural), - nn.BatchNorm1d(number_of_neural), - nn.LeakyReLU(), - nn.Dropout(dropout), - nn.Linear(number_of_neural, number_of_neural), - nn.BatchNorm1d(number_of_neural), - nn.LeakyReLU(), - nn.Dropout(dropout), - nn.Linear(number_of_neural, number_of_neural), - nn.BatchNorm1d(number_of_neural), - nn.LeakyReLU(), - nn.Dropout(dropout), - nn.Linear(number_of_neural, number_of_neural), - nn.BatchNorm1d(number_of_neural), - nn.LeakyReLU(), - nn.Dropout(dropout), - nn.Linear(number_of_neural, output_dim) - ] - return modules +# modules = [ +# nn.Linear(input_dim, number_of_neural), +# nn.BatchNorm1d(number_of_neural), +# nn.LeakyReLU(), +# nn.Dropout(dropout), +# nn.Linear(number_of_neural, number_of_neural), +# nn.BatchNorm1d(number_of_neural), +# nn.LeakyReLU(), +# nn.Dropout(dropout), +# nn.Linear(number_of_neural, number_of_neural), +# nn.BatchNorm1d(number_of_neural), +# nn.LeakyReLU(), +# nn.Dropout(dropout), +# nn.Linear(number_of_neural, number_of_neural), +# nn.BatchNorm1d(number_of_neural), +# nn.LeakyReLU(), +# nn.Dropout(dropout), +# nn.Linear(number_of_neural, output_dim) +# ] +# return modules -class TDQNetwork(QNetwork): - def __init__(self, - observation_space: gym.spaces.Space, - action_space: gym.spaces.Space, - features_extractor: nn.Module, - features_dim: int, - net_arch: Optional[List[int]] = None, - activation_fn: Type[nn.Module] = nn.ReLU, - normalize_images: bool = True - ): - super().__init__( - observation_space=observation_space, - action_space=action_space, - features_extractor=features_extractor, - features_dim=features_dim, - net_arch=net_arch, - activation_fn=activation_fn, - normalize_images=normalize_images - ) - action_dim = self.action_space.n - q_net = create_mlp_(self.features_dim, action_dim, self.net_arch, self.activation_fn) - self.q_net = nn.Sequential(*q_net).apply(self.init_weights) +# class TDQNetwork(QNetwork): +# def __init__(self, +# observation_space: gym.spaces.Space, +# action_space: gym.spaces.Space, +# features_extractor: nn.Module, +# features_dim: int, +# net_arch: Optional[List[int]] = None, +# activation_fn: Type[nn.Module] = nn.ReLU, +# normalize_images: bool = True +# ): +# super().__init__( +# observation_space=observation_space, +# action_space=action_space, +# features_extractor=features_extractor, +# features_dim=features_dim, +# net_arch=net_arch, +# activation_fn=activation_fn, +# normalize_images=normalize_images +# ) +# action_dim = self.action_space.n +# q_net = create_mlp_(self.features_dim, action_dim, self.net_arch, self.activation_fn) +# self.q_net = nn.Sequential(*q_net).apply(self.init_weights) - def init_weights(self, m): - if type(m) == nn.Linear: - th.nn.init.kaiming_uniform_(m.weight) +# def init_weights(self, m): +# if type(m) == nn.Linear: +# th.nn.init.kaiming_uniform_(m.weight) -class TDQNPolicy(DQNPolicy): +# class TDQNPolicy(DQNPolicy): - def __init__( - self, - observation_space: gym.spaces.Space, - action_space: gym.spaces.Space, - lr_schedule: Schedule, - net_arch: Optional[List[int]] = None, - activation_fn: Type[nn.Module] = nn.ReLU, - features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor, - features_extractor_kwargs: Optional[Dict[str, Any]] = None, - normalize_images: bool = True, - optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, - optimizer_kwargs: Optional[Dict[str, Any]] = None, - ): - super().__init__( - observation_space=observation_space, - action_space=action_space, - lr_schedule=lr_schedule, - net_arch=net_arch, - activation_fn=activation_fn, - features_extractor_class=features_extractor_class, - features_extractor_kwargs=features_extractor_kwargs, - normalize_images=normalize_images, - optimizer_class=optimizer_class, - optimizer_kwargs=optimizer_kwargs - ) +# def __init__( +# self, +# observation_space: gym.spaces.Space, +# action_space: gym.spaces.Space, +# lr_schedule: Schedule, +# net_arch: Optional[List[int]] = None, +# activation_fn: Type[nn.Module] = nn.ReLU, +# features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor, +# features_extractor_kwargs: Optional[Dict[str, Any]] = None, +# normalize_images: bool = True, +# optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, +# optimizer_kwargs: Optional[Dict[str, Any]] = None, +# ): +# super().__init__( +# observation_space=observation_space, +# action_space=action_space, +# lr_schedule=lr_schedule, +# net_arch=net_arch, +# activation_fn=activation_fn, +# features_extractor_class=features_extractor_class, +# features_extractor_kwargs=features_extractor_kwargs, +# normalize_images=normalize_images, +# optimizer_class=optimizer_class, +# optimizer_kwargs=optimizer_kwargs +# ) - @staticmethod - def init_weights(module: nn.Module, gain: float = 1) -> None: - """ - Orthogonal initialization (used in PPO and A2C) - """ - if isinstance(module, (nn.Linear, nn.Conv2d)): - nn.init.kaiming_uniform_(module.weight) - if module.bias is not None: - module.bias.data.fill_(0.0) +# @staticmethod +# def init_weights(module: nn.Module, gain: float = 1) -> None: +# """ +# Orthogonal initialization (used in PPO and A2C) +# """ +# if isinstance(module, (nn.Linear, nn.Conv2d)): +# nn.init.kaiming_uniform_(module.weight) +# if module.bias is not None: +# module.bias.data.fill_(0.0) - def make_q_net(self) -> TDQNetwork: - # Make sure we always have separate networks for features extractors etc - net_args = self._update_features_extractor(self.net_args, features_extractor=None) - return TDQNetwork(**net_args).to(self.device) +# def make_q_net(self) -> TDQNetwork: +# # Make sure we always have separate networks for features extractors etc +# net_args = self._update_features_extractor(self.net_args, features_extractor=None) +# return TDQNetwork(**net_args).to(self.device) -class TMultiInputPolicy(TDQNPolicy): - def __init__( - self, - observation_space: gym.spaces.Space, - action_space: gym.spaces.Space, - lr_schedule: Schedule, - net_arch: Optional[List[int]] = None, - activation_fn: Type[nn.Module] = nn.ReLU, - features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor, - features_extractor_kwargs: Optional[Dict[str, Any]] = None, - normalize_images: bool = True, - optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, - optimizer_kwargs: Optional[Dict[str, Any]] = None, - ): - super().__init__( - observation_space, - action_space, - lr_schedule, - net_arch, - activation_fn, - features_extractor_class, - features_extractor_kwargs, - normalize_images, - optimizer_class, - optimizer_kwargs, - ) +# class TMultiInputPolicy(TDQNPolicy): +# def __init__( +# self, +# observation_space: gym.spaces.Space, +# action_space: gym.spaces.Space, +# lr_schedule: Schedule, +# net_arch: Optional[List[int]] = None, +# activation_fn: Type[nn.Module] = nn.ReLU, +# features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor, +# features_extractor_kwargs: Optional[Dict[str, Any]] = None, +# normalize_images: bool = True, +# optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, +# optimizer_kwargs: Optional[Dict[str, Any]] = None, +# ): +# super().__init__( +# observation_space, +# action_space, +# lr_schedule, +# net_arch, +# activation_fn, +# features_extractor_class, +# features_extractor_kwargs, +# normalize_images, +# optimizer_class, +# optimizer_kwargs, +# ) -class TDQN(DQN): +# class TDQN(DQN): - policy_aliases: Dict[str, Type[BasePolicy]] = { - "MlpPolicy": MlpPolicy, - "CnnPolicy": CnnPolicy, - "TMultiInputPolicy": TMultiInputPolicy, - } +# policy_aliases: Dict[str, Type[BasePolicy]] = { +# "MlpPolicy": MlpPolicy, +# "CnnPolicy": CnnPolicy, +# "TMultiInputPolicy": TMultiInputPolicy, +# } - def __init__( - self, - policy: Union[str, Type[TDQNPolicy]], - env: Union[GymEnv, str], - learning_rate: Union[float, Schedule] = 1e-4, - buffer_size: int = 1000000, # 1e6 - learning_starts: int = 50000, - batch_size: int = 32, - tau: float = 1.0, - gamma: float = 0.99, - train_freq: Union[int, Tuple[int, str]] = 4, - gradient_steps: int = 1, - replay_buffer_class: Optional[ReplayBuffer] = None, - replay_buffer_kwargs: Optional[Dict[str, Any]] = None, - optimize_memory_usage: bool = False, - target_update_interval: int = 10000, - exploration_fraction: float = 0.1, - exploration_initial_eps: float = 1.0, - exploration_final_eps: float = 0.05, - max_grad_norm: float = 10, - tensorboard_log: Optional[str] = None, - create_eval_env: bool = False, - policy_kwargs: Optional[Dict[str, Any]] = None, - verbose: int = 1, - seed: Optional[int] = None, - device: Union[th.device, str] = "auto", - _init_setup_model: bool = True, - ): +# def __init__( +# self, +# policy: Union[str, Type[TDQNPolicy]], +# env: Union[GymEnv, str], +# learning_rate: Union[float, Schedule] = 1e-4, +# buffer_size: int = 1000000, # 1e6 +# learning_starts: int = 50000, +# batch_size: int = 32, +# tau: float = 1.0, +# gamma: float = 0.99, +# train_freq: Union[int, Tuple[int, str]] = 4, +# gradient_steps: int = 1, +# replay_buffer_class: Optional[ReplayBuffer] = None, +# replay_buffer_kwargs: Optional[Dict[str, Any]] = None, +# optimize_memory_usage: bool = False, +# target_update_interval: int = 10000, +# exploration_fraction: float = 0.1, +# exploration_initial_eps: float = 1.0, +# exploration_final_eps: float = 0.05, +# max_grad_norm: float = 10, +# tensorboard_log: Optional[str] = None, +# create_eval_env: bool = False, +# policy_kwargs: Optional[Dict[str, Any]] = None, +# verbose: int = 1, +# seed: Optional[int] = None, +# device: Union[th.device, str] = "auto", +# _init_setup_model: bool = True, +# ): - super().__init__( - policy=policy, - env=env, - learning_rate=learning_rate, - buffer_size=buffer_size, - learning_starts=learning_starts, - batch_size=batch_size, - tau=tau, - gamma=gamma, - train_freq=train_freq, - gradient_steps=gradient_steps, - replay_buffer_class=replay_buffer_class, # No action noise - replay_buffer_kwargs=replay_buffer_kwargs, - optimize_memory_usage=optimize_memory_usage, - target_update_interval=target_update_interval, - exploration_fraction=exploration_fraction, - exploration_initial_eps=exploration_initial_eps, - exploration_final_eps=exploration_final_eps, - max_grad_norm=max_grad_norm, - tensorboard_log=tensorboard_log, - create_eval_env=create_eval_env, - policy_kwargs=policy_kwargs, - verbose=verbose, - seed=seed, - device=device, - _init_setup_model=_init_setup_model - ) +# super().__init__( +# policy=policy, +# env=env, +# learning_rate=learning_rate, +# buffer_size=buffer_size, +# learning_starts=learning_starts, +# batch_size=batch_size, +# tau=tau, +# gamma=gamma, +# train_freq=train_freq, +# gradient_steps=gradient_steps, +# replay_buffer_class=replay_buffer_class, # No action noise +# replay_buffer_kwargs=replay_buffer_kwargs, +# optimize_memory_usage=optimize_memory_usage, +# target_update_interval=target_update_interval, +# exploration_fraction=exploration_fraction, +# exploration_initial_eps=exploration_initial_eps, +# exploration_final_eps=exploration_final_eps, +# max_grad_norm=max_grad_norm, +# tensorboard_log=tensorboard_log, +# create_eval_env=create_eval_env, +# policy_kwargs=policy_kwargs, +# verbose=verbose, +# seed=seed, +# device=device, +# _init_setup_model=_init_setup_model +# ) diff --git a/freqtrade/freqai/example_strats/ReinforcementLearningExample4ac.py b/freqtrade/freqai/example_strats/ReinforcementLearningExample4ac.py deleted file mode 100644 index d9932eea7..000000000 --- a/freqtrade/freqai/example_strats/ReinforcementLearningExample4ac.py +++ /dev/null @@ -1,143 +0,0 @@ -import logging -from functools import reduce - -import pandas as pd -import talib.abstract as ta -from pandas import DataFrame - -from freqtrade.strategy import DecimalParameter, IntParameter, IStrategy, merge_informative_pair - - -logger = logging.getLogger(__name__) - - -class ReinforcementLearningExample4ac(IStrategy): - """ - Test strategy - used for testing freqAI functionalities. - DO not use in production. - """ - - minimal_roi = {"0": 0.1, "240": -1} - - plot_config = { - "main_plot": {}, - "subplots": { - "prediction": {"prediction": {"color": "blue"}}, - "target_roi": { - "target_roi": {"color": "brown"}, - }, - "do_predict": { - "do_predict": {"color": "brown"}, - }, - }, - } - - process_only_new_candles = True - stoploss = -0.05 - use_exit_signal = True - startup_candle_count: int = 300 - can_short = True - - linear_roi_offset = DecimalParameter( - 0.00, 0.02, default=0.005, space="sell", optimize=False, load=True - ) - max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True) - - def informative_pairs(self): - whitelist_pairs = self.dp.current_whitelist() - corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"] - informative_pairs = [] - for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]: - for pair in whitelist_pairs: - informative_pairs.append((pair, tf)) - for pair in corr_pairs: - if pair in whitelist_pairs: - continue # avoid duplication - informative_pairs.append((pair, tf)) - return informative_pairs - - def populate_any_indicators( - self, pair, df, tf, informative=None, set_generalized_indicators=False - ): - - coin = pair.split('/')[0] - - if informative is None: - informative = self.dp.get_pair_dataframe(pair, tf) - - # first loop is automatically duplicating indicators for time periods - for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]: - - t = int(t) - informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t) - informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t) - informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t) - - informative[f"%-{coin}pct-change"] = informative["close"].pct_change() - informative[f"%-{coin}raw_volume"] = informative["volume"] - - # The following features are necessary for RL models - informative[f"%-{coin}raw_close"] = informative["close"] - informative[f"%-{coin}raw_open"] = informative["open"] - informative[f"%-{coin}raw_high"] = informative["high"] - informative[f"%-{coin}raw_low"] = informative["low"] - - indicators = [col for col in informative if col.startswith("%")] - # This loop duplicates and shifts all indicators to add a sense of recency to data - for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1): - if n == 0: - continue - informative_shift = informative[indicators].shift(n) - informative_shift = informative_shift.add_suffix("_shift-" + str(n)) - informative = pd.concat((informative, informative_shift), axis=1) - - df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True) - skip_columns = [ - (s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"] - ] - df = df.drop(columns=skip_columns) - - # Add generalized indicators here (because in live, it will call this - # function to populate indicators during training). Notice how we ensure not to - # add them multiple times - if set_generalized_indicators: - df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7 - df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25 - - # For RL, this is not a target, it is simply a filler until actions come out - # of the model. - # for Base4ActionEnv, 0 is netural (hold) - df["&-action"] = 0 - - return df - - def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: - - dataframe = self.freqai.start(dataframe, metadata, self) - - return dataframe - - def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame: - - enter_long_conditions = [df["do_predict"] == 1, df["&-action"] == 2] - - if enter_long_conditions: - df.loc[ - reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"] - ] = (1, "long") - - enter_short_conditions = [df["do_predict"] == 1, df["&-action"] == 3] - - if enter_short_conditions: - df.loc[ - reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"] - ] = (1, "short") - - return df - - def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame: - exit_long_conditions = [df["do_predict"] == 1, df["&-action"] == 1] - if exit_long_conditions: - df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit"] = 1 - - return df diff --git a/freqtrade/freqai/example_strats/ReinforcementLearningExample5ac.py b/freqtrade/freqai/example_strats/ReinforcementLearningExample5ac.py deleted file mode 100644 index 2118e1221..000000000 --- a/freqtrade/freqai/example_strats/ReinforcementLearningExample5ac.py +++ /dev/null @@ -1,147 +0,0 @@ -import logging -from functools import reduce - -import pandas as pd -import talib.abstract as ta -from pandas import DataFrame - -from freqtrade.strategy import DecimalParameter, IntParameter, IStrategy, merge_informative_pair - - -logger = logging.getLogger(__name__) - - -class ReinforcementLearningExample5ac(IStrategy): - """ - Test strategy - used for testing freqAI functionalities. - DO not use in production. - """ - - minimal_roi = {"0": 0.1, "240": -1} - - plot_config = { - "main_plot": {}, - "subplots": { - "prediction": {"prediction": {"color": "blue"}}, - "target_roi": { - "target_roi": {"color": "brown"}, - }, - "do_predict": { - "do_predict": {"color": "brown"}, - }, - }, - } - - process_only_new_candles = True - stoploss = -0.05 - use_exit_signal = True - startup_candle_count: int = 300 - can_short = True - - linear_roi_offset = DecimalParameter( - 0.00, 0.02, default=0.005, space="sell", optimize=False, load=True - ) - max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True) - - def informative_pairs(self): - whitelist_pairs = self.dp.current_whitelist() - corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"] - informative_pairs = [] - for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]: - for pair in whitelist_pairs: - informative_pairs.append((pair, tf)) - for pair in corr_pairs: - if pair in whitelist_pairs: - continue # avoid duplication - informative_pairs.append((pair, tf)) - return informative_pairs - - def populate_any_indicators( - self, pair, df, tf, informative=None, set_generalized_indicators=False - ): - - coin = pair.split('/')[0] - - if informative is None: - informative = self.dp.get_pair_dataframe(pair, tf) - - # first loop is automatically duplicating indicators for time periods - for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]: - - t = int(t) - informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t) - informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t) - informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t) - - informative[f"%-{coin}pct-change"] = informative["close"].pct_change() - informative[f"%-{coin}raw_volume"] = informative["volume"] - - # FIXME: add these outside the user strategy? - # The following columns are necessary for RL models. - informative[f"%-{coin}raw_close"] = informative["close"] - informative[f"%-{coin}raw_open"] = informative["open"] - informative[f"%-{coin}raw_high"] = informative["high"] - informative[f"%-{coin}raw_low"] = informative["low"] - - indicators = [col for col in informative if col.startswith("%")] - # This loop duplicates and shifts all indicators to add a sense of recency to data - for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1): - if n == 0: - continue - informative_shift = informative[indicators].shift(n) - informative_shift = informative_shift.add_suffix("_shift-" + str(n)) - informative = pd.concat((informative, informative_shift), axis=1) - - df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True) - skip_columns = [ - (s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"] - ] - df = df.drop(columns=skip_columns) - - # Add generalized indicators here (because in live, it will call this - # function to populate indicators during training). Notice how we ensure not to - # add them multiple times - if set_generalized_indicators: - df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7 - df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25 - - # For RL, there are no direct targets to set. This is filler (neutral) - # until the agent sends an action. - df["&-action"] = 0 - - return df - - def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: - - dataframe = self.freqai.start(dataframe, metadata, self) - - return dataframe - - def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame: - - enter_long_conditions = [df["do_predict"] == 1, df["&-action"] == 1] - - if enter_long_conditions: - df.loc[ - reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"] - ] = (1, "long") - - enter_short_conditions = [df["do_predict"] == 1, df["&-action"] == 3] - - if enter_short_conditions: - df.loc[ - reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"] - ] = (1, "short") - - return df - - def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame: - exit_long_conditions = [df["do_predict"] == 1, df["&-action"] == 2] - if exit_long_conditions: - df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1 - - exit_short_conditions = [df["do_predict"] == 1, df["&-action"] == 4] - if exit_short_conditions: - df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1 - - return df diff --git a/tests/freqai/test_freqai_interface.py b/tests/freqai/test_freqai_interface.py index 52577f2d3..a50e7e04c 100644 --- a/tests/freqai/test_freqai_interface.py +++ b/tests/freqai/test_freqai_interface.py @@ -18,6 +18,11 @@ def is_arm() -> bool: return "arm" in machine or "aarch64" in machine +def is_mac() -> bool: + machine = platform.system() + return "Darwin" in machine + + @pytest.mark.parametrize('model', [ 'LightGBMRegressor', 'XGBoostRegressor', @@ -29,6 +34,9 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model): if is_arm() and model == 'CatboostRegressor': pytest.skip("CatBoost is not supported on ARM") + if is_mac(): + pytest.skip("Reinforcement learning module not available on intel based Mac OS") + model_save_ext = 'joblib' freqai_conf.update({"freqaimodel": model}) freqai_conf.update({"timerange": "20180110-20180130"})