version 1 ready for testing phase

This commit is contained in:
Bo van Hasselt 2021-02-23 00:27:29 +01:00
parent a215dc5212
commit ee378a2a54
4 changed files with 267 additions and 95 deletions

View File

@ -1,6 +1,5 @@
import ast import ast
import logging import logging
from os import EX_USAGE
from pathlib import Path from pathlib import Path
from typing import Any, Dict, List from typing import Any, Dict, List
@ -15,14 +14,54 @@ logger = logging.getLogger(__name__)
# ---------------------------------------------------extract-strategy------------------------------------------------------ # ---------------------------------------------------extract-strategy------------------------------------------------------
'''
TODO def get_indicator_info(file: List, indicators: Dict) -> None:
- get the stoploss value to optimize """
- get the values from the guards to specify the optimzation range (cooperation with custom-hyperopt) Get all necessary information to build a custom hyperopt space using
''' the file and a dictionary filled with the indicators and their corropsonding line numbers.
"""
info_list = []
for indicator in indicators:
indicator_info = []
# find the corrosponding aim
for position, line in enumerate(file):
if position == indicators[indicator]:
# use split twice to remove the context around the indicator
back_of_line = line.split(f"(dataframe['{indicator}'] ", 1)[1]
aim = back_of_line.split()[0]
# add the indicator and aim to the info
indicator_info.append(indicator)
indicator_info.append(aim)
# check if first character after aim is a d in which case the indicator is a trigger
if back_of_line.split()[1][0] == "d":
indicator_info.append("trigger")
# add the second indicator of the guard to the info list
back_of_line = back_of_line.split("dataframe['")[1]
second_indicator = back_of_line.split("'])")[0]
indicator_info.append(second_indicator)
# elif indicator[0:3] == "CDL":
# indicator_info.append("guard")
# else it is a regular guard
else:
indicator_info.append("guard")
value = back_of_line.split()[1]
value = value[:-1]
value = float(value)
indicator_info.append(value)
info_list.append(indicator_info)
return info_list
def extract_lists(strategypath: Path): def extract_lists(strategypath: Path) -> None:
""" """
Get the indicators, their aims and the stoploss and format them into lists Get the indicators, their aims and the stoploss and format them into lists
""" """
@ -64,71 +103,17 @@ def extract_lists(strategypath: Path):
sellindicator = back_of_line.split("'] ", 1)[0] sellindicator = back_of_line.split("'] ", 1)[0]
sellindicators[sellindicator] = position sellindicators[sellindicator] = position
# build the final buy list # build the final lists
buy_list = [] buy_info_list = get_indicator_info(stored_file, buyindicators)
for indicator in buyindicators: sell_info_list = get_indicator_info(stored_file, sellindicators)
indicator_info = []
# find the corrosponding aim
for position, line in enumerate(stored_file):
if position == buyindicators[indicator]:
# use split twice to remove the context around the indicator
back_of_line = line.split(f"(dataframe['{indicator}'] ", 1)[1]
aim = back_of_line.split()[0]
# add the indicator and aim to the info
indicator_info.append(indicator)
indicator_info.append(aim)
# check if first character after aim is a d in which case the indicator is a trigger
if back_of_line.split()[1][0] == "d":
indicator_info.append("trigger")
# add the second indicator of the guard to the info list
back_of_line = back_of_line.split("dataframe['")[1]
second_indicator = back_of_line.split("'])")[0]
indicator_info.append(second_indicator)
# else it is a guard
else:
indicator_info.append("guard")
buy_list.append(indicator_info)
# build the final sell list
sell_list = []
for indicator in sellindicators:
indicator_info = []
# find the corrosponding aim and whether a guard or trigger
for position, line in enumerate(stored_file):
if position == sellindicators[indicator]:
# use split twice to remove the context around the indicator
back_of_line = line.split(f"(dataframe['{indicator}'] ", 1)[1]
aim = back_of_line.split()[0]
# add the indicator and aim to the info
indicator_info.append(indicator)
indicator_info.append(aim)
# check if first character after aim is a d in which case the indicator is a trigger
if back_of_line.split()[1][0] == "d":
indicator_info.append("trigger")
# add the second indicator of the guard to the info list
back_of_line = back_of_line.split("dataframe['")[1]
second_indicator = back_of_line.split("'])")[0]
indicator_info.append(second_indicator)
# else it is a guard
else:
indicator_info.append("guard")
sell_list.append(indicator_info)
# put the final lists into a tuple # put the final lists into a tuple
final_lists = (buy_list, sell_list) final_lists = (buy_info_list, sell_info_list)
return final_lists return final_lists
def start_extract_strategy(args: Dict[str, Any]) -> None: def start_extract_strategy(args: Dict) -> None:
""" """
Check if the right subcommands where passed and start extracting the strategy data Check if the right subcommands where passed and start extracting the strategy data
""" """
@ -158,16 +143,6 @@ def start_extract_strategy(args: Dict[str, Any]) -> None:
# --------------------------------------------------custom-hyperopt------------------------------------------------------ # --------------------------------------------------custom-hyperopt------------------------------------------------------
'''
TODO
-make the code below more dynamic with a large list of indicators and aims
-buy_space integer values variation based on aim and input value form extract-strategy(later deep learning)
-add --mode , see notes (denk hierbij ook aan value range bij guards)
-Custom stoploss and roi (based on input from extract-strategy)
-cli option to read extracted strategies files (--extraction)
-code cleanup (maybe the two elements functions can be combined)
'''
def custom_hyperopt_buyelements(buy_indicators: List): def custom_hyperopt_buyelements(buy_indicators: List):
""" """
@ -184,11 +159,20 @@ def custom_hyperopt_buyelements(buy_indicators: List):
# If the indicator is a guard # If the indicator is a guard
if usage == "guard": if usage == "guard":
value = indicator_info[3]
if value >= -1.0 and value <= 1.0:
lower_bound = value - 0.3
upper_bound = value + 0.3
else:
lower_bound = value - 30.0
upper_bound = value + 30.0
# add the guard to its argument # add the guard to its argument
buy_guards += f"if params.get('{indicator}-enabled'):\n conditions.append(dataframe['{indicator}'] {aim} params['{indicator}-value'])\n" buy_guards += f"if params.get('{indicator}-enabled'):\n conditions.append(dataframe['{indicator}'] {aim} params['{indicator}-value'])\n"
# add the space to its argument # add the space to its argument
buy_space += f"Integer(10, 90, name='{indicator}-value'),\nCategorical([True, False], name='{indicator}-enabled'),\n" buy_space += f"Integer({lower_bound}, {upper_bound}, name='{indicator}-value'),\nCategorical([True, False], name='{indicator}-enabled'),\n"
# If the indicator is a trigger # If the indicator is a trigger
elif usage == "trigger": elif usage == "trigger":
@ -222,7 +206,7 @@ def custom_hyperopt_sellelements(sell_indicators: Dict[str, str]):
sell_guards = "" sell_guards = ""
sell_triggers = "" sell_triggers = ""
sell_space = "" sell_space = ""
print(sell_indicators)
for indicator_info in sell_indicators: for indicator_info in sell_indicators:
indicator = indicator_info[0] indicator = indicator_info[0]
aim = indicator_info[1] aim = indicator_info[1]
@ -230,11 +214,20 @@ def custom_hyperopt_sellelements(sell_indicators: Dict[str, str]):
# If the indicator is a guard # If the indicator is a guard
if usage == "guard": if usage == "guard":
value = indicator_info[3]
if value >= -1 and value <= 1:
lower_bound = value - 0.3
upper_bound = value + 0.3
else:
lower_bound = value - 30
upper_bound = value + 30
# add the guard to its argument # add the guard to its argument
sell_guards += f"if params.get('sell-{indicator}-enabled'):\n conditions.append(dataframe['{indicator}'] {aim} params['sell-{indicator}-value'])\n" sell_guards += f"if params.get('sell-{indicator}-enabled'):\n conditions.append(dataframe['{indicator}'] {aim} params['sell-{indicator}-value'])\n"
# add the space to its argument # add the space to its argument
sell_space += f"Integer(10, 90, name='sell-{indicator}-value'),\nCategorical([True, False], name='sell-{indicator}-enabled'),\n" sell_space += f"Integer({lower_bound}, {upper_bound}, name='sell-{indicator}-value'),\nCategorical([True, False], name='sell-{indicator}-enabled'),\n"
# If the indicator is a trigger # If the indicator is a trigger
elif usage == "trigger": elif usage == "trigger":
@ -272,7 +265,7 @@ def deploy_custom_hyperopt(hyperopt_name: str, hyperopt_path: Path, buy_indicato
sell_args = custom_hyperopt_sellelements(sell_indicators) sell_args = custom_hyperopt_sellelements(sell_indicators)
# Build the final template # Build the final template
strategy_text = render_template(templatefile='base_hyperopt.py.j2', strategy_text = render_template(templatefile='base_custom_hyperopt.py.j2',
arguments={"hyperopt": hyperopt_name, arguments={"hyperopt": hyperopt_name,
"buy_guards": buy_args["buy_guards"], "buy_guards": buy_args["buy_guards"],
"buy_triggers": buy_args["buy_triggers"], "buy_triggers": buy_args["buy_triggers"],
@ -315,11 +308,6 @@ def start_custom_hyperopt(args: Dict[str, Any]) -> None:
# --------------------------------------------------build-hyperopt------------------------------------------------------ # --------------------------------------------------build-hyperopt------------------------------------------------------
'''
TODO
-hyperopt optional (door bv standaard naming toe te passen)
'''
def start_build_hyperopt(args: Dict[str, Any]) -> None: def start_build_hyperopt(args: Dict[str, Any]) -> None:
""" """
@ -331,7 +319,7 @@ def start_build_hyperopt(args: Dict[str, Any]) -> None:
if not 'strategy' in args or not args['strategy']: if not 'strategy' in args or not args['strategy']:
raise OperationalException("`build-hyperopt` requires --strategy to be set.") raise OperationalException("`build-hyperopt` requires --strategy to be set.")
if not 'hyperopt' in args or not args['hyperopt']: if not 'hyperopt' in args or not args['hyperopt']:
raise OperationalException("`build-hyperopt` requires --hyperopt to be set.") args['hyperopt'] = args['strategy'] + "opt"
else: else:
if args['hyperopt'] == 'DefaultHyperopt': if args['hyperopt'] == 'DefaultHyperopt':
raise OperationalException("DefaultHyperopt is not allowed as name.") raise OperationalException("DefaultHyperopt is not allowed as name.")
@ -347,7 +335,7 @@ def start_build_hyperopt(args: Dict[str, Any]) -> None:
# extract the buy and sell indicators as dicts # extract the buy and sell indicators as dicts
extracted_lists = extract_lists(strategy_path) extracted_lists = extract_lists(strategy_path)
print(extracted_lists)
buy_indicators = extracted_lists[0] buy_indicators = extracted_lists[0]
sell_indicators = extracted_lists[1] sell_indicators = extracted_lists[1]

View File

@ -279,14 +279,16 @@ AVAILABLE_CLI_OPTIONS = {
"buy_indicators": Arg( "buy_indicators": Arg(
'-b', '--buy-indicators', '-b', '--buy-indicators',
help='Specify the buy indicators the hyperopt should build. ' help='Specify the buy indicators the hyperopt should build. '
'Example: --buy-indicators `{"rsi":"<","bb_lowerband":">"}`', 'Example: --buy-indicators `[["rsi","<","trigger",30.0],["bb_lowerband",">","guard","close"]]`'
metavar='DICT', 'Check the documentation for specific requirements for the lists.',
metavar='LIST',
), ),
"sell_indicators": Arg( "sell_indicators": Arg(
'-s', '--sell-indicators', '-s', '--sell-indicators',
help='Specify the sell indicators the hyperopt should build. ' help='Specify the sell indicators the hyperopt should build. '
'Example: --sell-indicators `{"rsi":">","bb_lowerband":"<"}`', 'Example: --sell-indicators [["rsi",">","trigger",70.0],["bb_lowerband","<","guard","close"]]'
metavar='DICT', 'Check the documentation for specific requirements for the lists.',
metavar='LIST',
), ),
"extract_name": Arg( "extract_name": Arg(
'--extract-name', '--extract-name',

View File

@ -0,0 +1,164 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# --- Do not remove these libs ---
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real # noqa
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# --------------------------------
# Add your lib to import here
import talib.abstract as ta # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
class {{ hyperopt }}(IHyperOpt):
"""
This is a Hyperopt template to get you started.
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
You should:
- Add any lib you need to build your hyperopt.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The methods roi_space, generate_roi_table and stoploss_space are not required
and are provided by default.
However, you may override them if you need 'roi' and 'stoploss' spaces that
differ from the defaults offered by Freqtrade.
Sample implementation of these methods will be copied to `user_data/hyperopts` when
creating the user-data directory using `freqtrade create-userdir --userdir user_data`,
or is available online under the following URL:
https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py.
"""
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
{{ buy_guards | indent(12) }}
# TRIGGERS
if 'trigger' in params:
{{ buy_triggers | indent(16) }}
# Check that the candle had volume
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
{{ buy_space | indent(12) }}
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
{{ sell_guards | indent(12) }}
# TRIGGERS
if 'sell-trigger' in params:
{{ sell_triggers | indent(16) }}
# Check that the candle had volume
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe
return populate_sell_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
{{ sell_space | indent(12) }}
]
@ staticmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
"""
Generate the ROI table that will be used by Hyperopt
This implementation generates the default legacy Freqtrade ROI tables.
Change it if you need different number of steps in the generated
ROI tables or other structure of the ROI tables.
Please keep it aligned with parameters in the 'roi' optimization
hyperspace defined by the roi_space method.
"""
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
@ staticmethod
def roi_space() -> List[Dimension]:
"""
Values to search for each ROI steps
Override it if you need some different ranges for the parameters in the
'roi' optimization hyperspace.
Please keep it aligned with the implementation of the
generate_roi_table method.
"""
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
Real(0.01, 0.04, name='roi_p1'),
Real(0.01, 0.07, name='roi_p2'),
Real(0.01, 0.20, name='roi_p3'),
]
@ staticmethod
def stoploss_space() -> List[Dimension]:
"""
Stoploss Value to search
Override it if you need some different range for the parameter in the
'stoploss' optimization hyperspace.
"""
return [
Real(-0.35, -0.02, name='stoploss'),
]

View File

@ -55,7 +55,16 @@ class {{ hyperopt }}(IHyperOpt):
# TRIGGERS # TRIGGERS
if 'trigger' in params: if 'trigger' in params:
{{ buy_triggers | indent(16) }} if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
))
# Check that the candle had volume # Check that the candle had volume
conditions.append(dataframe['volume'] > 0) conditions.append(dataframe['volume'] > 0)
@ -94,7 +103,16 @@ class {{ hyperopt }}(IHyperOpt):
# TRIGGERS # TRIGGERS
if 'sell-trigger' in params: if 'sell-trigger' in params:
{{ sell_triggers | indent(16) }} if params['sell-trigger'] == 'sell-bb_upper':
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
if params['sell-trigger'] == 'sell-macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macdsignal'], dataframe['macd']
))
if params['sell-trigger'] == 'sell-sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['sar'], dataframe['close']
))
# Check that the candle had volume # Check that the candle had volume
conditions.append(dataframe['volume'] > 0) conditions.append(dataframe['volume'] > 0)
@ -115,4 +133,4 @@ class {{ hyperopt }}(IHyperOpt):
""" """
return [ return [
{{ sell_space | indent(12) }} {{ sell_space | indent(12) }}
] ]