merged with develop
This commit is contained in:
@@ -53,7 +53,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
|
||||
|
||||
if epochs and export_csv:
|
||||
HyperoptTools.export_csv_file(
|
||||
config, epochs, total_epochs, not config.get('hyperopt_list_best', False), export_csv
|
||||
config, epochs, export_csv
|
||||
)
|
||||
|
||||
|
||||
|
@@ -119,7 +119,7 @@ class Edge:
|
||||
)
|
||||
# Download informative pairs too
|
||||
res = defaultdict(list)
|
||||
for p, t in self.strategy.informative_pairs():
|
||||
for p, t in self.strategy.gather_informative_pairs():
|
||||
res[t].append(p)
|
||||
for timeframe, inf_pairs in res.items():
|
||||
timerange_startup = deepcopy(self._timerange)
|
||||
|
@@ -85,10 +85,10 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists)
|
||||
|
||||
# Attach Dataprovider to Strategy baseclass
|
||||
IStrategy.dp = self.dataprovider
|
||||
# Attach Wallets to Strategy baseclass
|
||||
IStrategy.wallets = self.wallets
|
||||
# Attach Dataprovider to strategy instance
|
||||
self.strategy.dp = self.dataprovider
|
||||
# Attach Wallets to strategy instance
|
||||
self.strategy.wallets = self.wallets
|
||||
|
||||
# Initializing Edge only if enabled
|
||||
self.edge = Edge(self.config, self.exchange, self.strategy) if \
|
||||
@@ -162,7 +162,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
# Refreshing candles
|
||||
self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist),
|
||||
self.strategy.informative_pairs())
|
||||
self.strategy.gather_informative_pairs())
|
||||
|
||||
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
|
||||
|
||||
|
@@ -154,7 +154,7 @@ class Backtesting:
|
||||
self.strategy: IStrategy = strategy
|
||||
strategy.dp = self.dataprovider
|
||||
# Attach Wallets to Strategy baseclass
|
||||
IStrategy.wallets = self.wallets
|
||||
strategy.wallets = self.wallets
|
||||
# Set stoploss_on_exchange to false for backtesting,
|
||||
# since a "perfect" stoploss-sell is assumed anyway
|
||||
# And the regular "stoploss" function would not apply to that case
|
||||
|
@@ -8,6 +8,7 @@ from typing import Any, Dict
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.configuration import TimeRange, validate_config_consistency
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.optimize.optimize_reports import generate_edge_table
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
@@ -33,6 +34,7 @@ class EdgeCli:
|
||||
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
|
||||
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
|
||||
self.strategy = StrategyResolver.load_strategy(self.config)
|
||||
self.strategy.dp = DataProvider(config, None)
|
||||
|
||||
validate_config_consistency(self.config)
|
||||
|
||||
|
@@ -7,6 +7,7 @@ from pathlib import Path
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import rapidjson
|
||||
import tabulate
|
||||
from colorama import Fore, Style
|
||||
@@ -298,8 +299,8 @@ class HyperoptTools():
|
||||
f"Objective: {results['loss']:.5f}")
|
||||
|
||||
@staticmethod
|
||||
def prepare_trials_columns(trials, legacy_mode: bool, has_drawdown: bool) -> str:
|
||||
|
||||
def prepare_trials_columns(trials: pd.DataFrame, legacy_mode: bool,
|
||||
has_drawdown: bool) -> pd.DataFrame:
|
||||
trials['Best'] = ''
|
||||
|
||||
if 'results_metrics.winsdrawslosses' not in trials.columns:
|
||||
@@ -435,8 +436,7 @@ class HyperoptTools():
|
||||
return table
|
||||
|
||||
@staticmethod
|
||||
def export_csv_file(config: dict, results: list, total_epochs: int, highlight_best: bool,
|
||||
csv_file: str) -> None:
|
||||
def export_csv_file(config: dict, results: list, csv_file: str) -> None:
|
||||
"""
|
||||
Log result to csv-file
|
||||
"""
|
||||
|
@@ -2,7 +2,7 @@
|
||||
This module contains the class to persist trades into SQLite
|
||||
"""
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from decimal import Decimal
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
@@ -1026,17 +1026,21 @@ class Trade(_DECL_BASE, LocalTrade):
|
||||
return total_open_stake_amount or 0
|
||||
|
||||
@staticmethod
|
||||
def get_overall_performance() -> List[Dict[str, Any]]:
|
||||
def get_overall_performance(minutes=None) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Returns List of dicts containing all Trades, including profit and trade count
|
||||
NOTE: Not supported in Backtesting.
|
||||
"""
|
||||
filters = [Trade.is_open.is_(False)]
|
||||
if minutes:
|
||||
start_date = datetime.now(timezone.utc) - timedelta(minutes=minutes)
|
||||
filters.append(Trade.close_date >= start_date)
|
||||
pair_rates = Trade.query.with_entities(
|
||||
Trade.pair,
|
||||
func.sum(Trade.close_profit).label('profit_sum'),
|
||||
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
|
||||
func.count(Trade.pair).label('count')
|
||||
).filter(Trade.is_open.is_(False))\
|
||||
).filter(*filters)\
|
||||
.group_by(Trade.pair) \
|
||||
.order_by(desc('profit_sum_abs')) \
|
||||
.all()
|
||||
|
@@ -2,7 +2,7 @@
|
||||
Performance pair list filter
|
||||
"""
|
||||
import logging
|
||||
from typing import Dict, List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import pandas as pd
|
||||
|
||||
@@ -15,6 +15,13 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class PerformanceFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
self._minutes = pairlistconfig.get('minutes', 0)
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
@@ -40,7 +47,7 @@ class PerformanceFilter(IPairList):
|
||||
"""
|
||||
# Get the trading performance for pairs from database
|
||||
try:
|
||||
performance = pd.DataFrame(Trade.get_overall_performance())
|
||||
performance = pd.DataFrame(Trade.get_overall_performance(self._minutes))
|
||||
except AttributeError:
|
||||
# Performancefilter does not work in backtesting.
|
||||
self.log_once("PerformanceFilter is not available in this mode.", logger.warning)
|
||||
|
@@ -46,6 +46,12 @@ class Balances(BaseModel):
|
||||
value: float
|
||||
stake: str
|
||||
note: str
|
||||
starting_capital: float
|
||||
starting_capital_ratio: float
|
||||
starting_capital_pct: float
|
||||
starting_capital_fiat: float
|
||||
starting_capital_fiat_ratio: float
|
||||
starting_capital_fiat_pct: float
|
||||
|
||||
|
||||
class Count(BaseModel):
|
||||
|
@@ -459,6 +459,9 @@ class RPC:
|
||||
raise RPCException('Error getting current tickers.')
|
||||
|
||||
self._freqtrade.wallets.update(require_update=False)
|
||||
starting_capital = self._freqtrade.wallets.get_starting_balance()
|
||||
starting_cap_fiat = self._fiat_converter.convert_amount(
|
||||
starting_capital, stake_currency, fiat_display_currency) if self._fiat_converter else 0
|
||||
|
||||
for coin, balance in self._freqtrade.wallets.get_all_balances().items():
|
||||
if not balance.total:
|
||||
@@ -494,15 +497,25 @@ class RPC:
|
||||
else:
|
||||
raise RPCException('All balances are zero.')
|
||||
|
||||
symbol = fiat_display_currency
|
||||
value = self._fiat_converter.convert_amount(total, stake_currency,
|
||||
symbol) if self._fiat_converter else 0
|
||||
value = self._fiat_converter.convert_amount(
|
||||
total, stake_currency, fiat_display_currency) if self._fiat_converter else 0
|
||||
|
||||
starting_capital_ratio = 0.0
|
||||
starting_capital_ratio = (total / starting_capital) - 1 if starting_capital else 0.0
|
||||
starting_cap_fiat_ratio = (value / starting_cap_fiat) - 1 if starting_cap_fiat else 0.0
|
||||
|
||||
return {
|
||||
'currencies': output,
|
||||
'total': total,
|
||||
'symbol': symbol,
|
||||
'symbol': fiat_display_currency,
|
||||
'value': value,
|
||||
'stake': stake_currency,
|
||||
'starting_capital': starting_capital,
|
||||
'starting_capital_ratio': starting_capital_ratio,
|
||||
'starting_capital_pct': round(starting_capital_ratio * 100, 2),
|
||||
'starting_capital_fiat': starting_cap_fiat,
|
||||
'starting_capital_fiat_ratio': starting_cap_fiat_ratio,
|
||||
'starting_capital_fiat_pct': round(starting_cap_fiat_ratio * 100, 2),
|
||||
'note': 'Simulated balances' if self._freqtrade.config['dry_run'] else ''
|
||||
}
|
||||
|
||||
|
@@ -603,12 +603,15 @@ class Telegram(RPCHandler):
|
||||
|
||||
output = ''
|
||||
if self._config['dry_run']:
|
||||
output += (
|
||||
f"*Warning:* Simulated balances in Dry Mode.\n"
|
||||
"This mode is still experimental!\n"
|
||||
"Starting capital: "
|
||||
f"`{self._config['dry_run_wallet']}` {self._config['stake_currency']}.\n"
|
||||
)
|
||||
output += "*Warning:* Simulated balances in Dry Mode.\n"
|
||||
|
||||
output += ("Starting capital: "
|
||||
f"`{result['starting_capital']}` {self._config['stake_currency']}"
|
||||
)
|
||||
output += (f" `{result['starting_capital_fiat']}` "
|
||||
f"{self._config['fiat_display_currency']}.\n"
|
||||
) if result['starting_capital_fiat'] > 0 else '.\n'
|
||||
|
||||
total_dust_balance = 0
|
||||
total_dust_currencies = 0
|
||||
for curr in result['currencies']:
|
||||
@@ -641,9 +644,12 @@ class Telegram(RPCHandler):
|
||||
f"{round_coin_value(total_dust_balance, result['stake'], False)}`\n")
|
||||
|
||||
output += ("\n*Estimated Value*:\n"
|
||||
f"\t`{result['stake']}: {result['total']: .8f}`\n"
|
||||
f"\t`{result['stake']}: "
|
||||
f"{round_coin_value(result['total'], result['stake'], False)}`"
|
||||
f" `({result['starting_capital_pct']}%)`\n"
|
||||
f"\t`{result['symbol']}: "
|
||||
f"{round_coin_value(result['value'], result['symbol'], False)}`\n")
|
||||
f"{round_coin_value(result['value'], result['symbol'], False)}`"
|
||||
f" `({result['starting_capital_fiat_pct']}%)`\n")
|
||||
self._send_msg(output, reload_able=True, callback_path="update_balance",
|
||||
query=update.callback_query)
|
||||
except RPCException as e:
|
||||
|
@@ -3,5 +3,7 @@ from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timefr
|
||||
timeframe_to_prev_date, timeframe_to_seconds)
|
||||
from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter,
|
||||
IntParameter, RealParameter)
|
||||
from freqtrade.strategy.informative_decorator import informative
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.strategy.strategy_helper import merge_informative_pair, stoploss_from_open
|
||||
from freqtrade.strategy.strategy_helper import (merge_informative_pair, stoploss_from_absolute,
|
||||
stoploss_from_open)
|
||||
|
128
freqtrade/strategy/informative_decorator.py
Normal file
128
freqtrade/strategy/informative_decorator.py
Normal file
@@ -0,0 +1,128 @@
|
||||
from typing import Any, Callable, NamedTuple, Optional, Union
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.strategy.strategy_helper import merge_informative_pair
|
||||
|
||||
|
||||
PopulateIndicators = Callable[[Any, DataFrame, dict], DataFrame]
|
||||
|
||||
|
||||
class InformativeData(NamedTuple):
|
||||
asset: Optional[str]
|
||||
timeframe: str
|
||||
fmt: Union[str, Callable[[Any], str], None]
|
||||
ffill: bool
|
||||
|
||||
|
||||
def informative(timeframe: str, asset: str = '',
|
||||
fmt: Optional[Union[str, Callable[[Any], str]]] = None,
|
||||
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
|
||||
"""
|
||||
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
|
||||
define informative indicators.
|
||||
|
||||
Example usage:
|
||||
|
||||
@informative('1h')
|
||||
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
|
||||
return dataframe
|
||||
|
||||
:param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe.
|
||||
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
|
||||
current pair.
|
||||
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
|
||||
specified, defaults to:
|
||||
* {base}_{quote}_{column}_{timeframe} if asset is specified.
|
||||
* {column}_{timeframe} if asset is not specified.
|
||||
Format string supports these format variables:
|
||||
* {asset} - full name of the asset, for example 'BTC/USDT'.
|
||||
* {base} - base currency in lower case, for example 'eth'.
|
||||
* {BASE} - same as {base}, except in upper case.
|
||||
* {quote} - quote currency in lower case, for example 'usdt'.
|
||||
* {QUOTE} - same as {quote}, except in upper case.
|
||||
* {column} - name of dataframe column.
|
||||
* {timeframe} - timeframe of informative dataframe.
|
||||
:param ffill: ffill dataframe after merging informative pair.
|
||||
"""
|
||||
_asset = asset
|
||||
_timeframe = timeframe
|
||||
_fmt = fmt
|
||||
_ffill = ffill
|
||||
|
||||
def decorator(fn: PopulateIndicators):
|
||||
informative_pairs = getattr(fn, '_ft_informative', [])
|
||||
informative_pairs.append(InformativeData(_asset, _timeframe, _fmt, _ffill))
|
||||
setattr(fn, '_ft_informative', informative_pairs)
|
||||
return fn
|
||||
return decorator
|
||||
|
||||
|
||||
def _format_pair_name(config, pair: str) -> str:
|
||||
return pair.format(stake_currency=config['stake_currency'],
|
||||
stake=config['stake_currency']).upper()
|
||||
|
||||
|
||||
def _create_and_merge_informative_pair(strategy, dataframe: DataFrame, metadata: dict,
|
||||
inf_data: InformativeData,
|
||||
populate_indicators: PopulateIndicators):
|
||||
asset = inf_data.asset or ''
|
||||
timeframe = inf_data.timeframe
|
||||
fmt = inf_data.fmt
|
||||
config = strategy.config
|
||||
|
||||
if asset:
|
||||
# Insert stake currency if needed.
|
||||
asset = _format_pair_name(config, asset)
|
||||
else:
|
||||
# Not specifying an asset will define informative dataframe for current pair.
|
||||
asset = metadata['pair']
|
||||
|
||||
if '/' in asset:
|
||||
base, quote = asset.split('/')
|
||||
else:
|
||||
# When futures are supported this may need reevaluation.
|
||||
# base, quote = asset, ''
|
||||
raise OperationalException('Not implemented.')
|
||||
|
||||
# Default format. This optimizes for the common case: informative pairs using same stake
|
||||
# currency. When quote currency matches stake currency, column name will omit base currency.
|
||||
# This allows easily reconfiguring strategy to use different base currency. In a rare case
|
||||
# where it is desired to keep quote currency in column name at all times user should specify
|
||||
# fmt='{base}_{quote}_{column}_{timeframe}' format or similar.
|
||||
if not fmt:
|
||||
fmt = '{column}_{timeframe}' # Informatives of current pair
|
||||
if inf_data.asset:
|
||||
fmt = '{base}_{quote}_' + fmt # Informatives of other pairs
|
||||
|
||||
inf_metadata = {'pair': asset, 'timeframe': timeframe}
|
||||
inf_dataframe = strategy.dp.get_pair_dataframe(asset, timeframe)
|
||||
inf_dataframe = populate_indicators(strategy, inf_dataframe, inf_metadata)
|
||||
|
||||
formatter: Any = None
|
||||
if callable(fmt):
|
||||
formatter = fmt # A custom user-specified formatter function.
|
||||
else:
|
||||
formatter = fmt.format # A default string formatter.
|
||||
|
||||
fmt_args = {
|
||||
'BASE': base.upper(),
|
||||
'QUOTE': quote.upper(),
|
||||
'base': base.lower(),
|
||||
'quote': quote.lower(),
|
||||
'asset': asset,
|
||||
'timeframe': timeframe,
|
||||
}
|
||||
inf_dataframe.rename(columns=lambda column: formatter(column=column, **fmt_args),
|
||||
inplace=True)
|
||||
|
||||
date_column = formatter(column='date', **fmt_args)
|
||||
if date_column in dataframe.columns:
|
||||
raise OperationalException(f'Duplicate column name {date_column} exists in '
|
||||
f'dataframe! Ensure column names are unique!')
|
||||
dataframe = merge_informative_pair(dataframe, inf_dataframe, strategy.timeframe, timeframe,
|
||||
ffill=inf_data.ffill, append_timeframe=False,
|
||||
date_column=date_column)
|
||||
return dataframe
|
@@ -19,6 +19,9 @@ from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.exchange.exchange import timeframe_to_next_date
|
||||
from freqtrade.persistence import PairLocks, Trade
|
||||
from freqtrade.strategy.hyper import HyperStrategyMixin
|
||||
from freqtrade.strategy.informative_decorator import (InformativeData, PopulateIndicators,
|
||||
_create_and_merge_informative_pair,
|
||||
_format_pair_name)
|
||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||
from freqtrade.wallets import Wallets
|
||||
|
||||
@@ -118,7 +121,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
# Class level variables (intentional) containing
|
||||
# the dataprovider (dp) (access to other candles, historic data, ...)
|
||||
# and wallets - access to the current balance.
|
||||
dp: Optional[DataProvider] = None
|
||||
dp: Optional[DataProvider]
|
||||
wallets: Optional[Wallets] = None
|
||||
# Filled from configuration
|
||||
stake_currency: str
|
||||
@@ -134,6 +137,24 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
self._last_candle_seen_per_pair: Dict[str, datetime] = {}
|
||||
super().__init__(config)
|
||||
|
||||
# Gather informative pairs from @informative-decorated methods.
|
||||
self._ft_informative: List[Tuple[InformativeData, PopulateIndicators]] = []
|
||||
for attr_name in dir(self.__class__):
|
||||
cls_method = getattr(self.__class__, attr_name)
|
||||
if not callable(cls_method):
|
||||
continue
|
||||
informative_data_list = getattr(cls_method, '_ft_informative', None)
|
||||
if not isinstance(informative_data_list, list):
|
||||
# Type check is required because mocker would return a mock object that evaluates to
|
||||
# True, confusing this code.
|
||||
continue
|
||||
strategy_timeframe_minutes = timeframe_to_minutes(self.timeframe)
|
||||
for informative_data in informative_data_list:
|
||||
if timeframe_to_minutes(informative_data.timeframe) < strategy_timeframe_minutes:
|
||||
raise OperationalException('Informative timeframe must be equal or higher than '
|
||||
'strategy timeframe!')
|
||||
self._ft_informative.append((informative_data, cls_method))
|
||||
|
||||
@abstractmethod
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
@@ -377,6 +398,23 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
# END - Intended to be overridden by strategy
|
||||
###
|
||||
|
||||
def gather_informative_pairs(self) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Internal method which gathers all informative pairs (user or automatically defined).
|
||||
"""
|
||||
informative_pairs = self.informative_pairs()
|
||||
for inf_data, _ in self._ft_informative:
|
||||
if inf_data.asset:
|
||||
pair_tf = (_format_pair_name(self.config, inf_data.asset), inf_data.timeframe)
|
||||
informative_pairs.append(pair_tf)
|
||||
else:
|
||||
if not self.dp:
|
||||
raise OperationalException('@informative decorator with unspecified asset '
|
||||
'requires DataProvider instance.')
|
||||
for pair in self.dp.current_whitelist():
|
||||
informative_pairs.append((pair, inf_data.timeframe))
|
||||
return list(set(informative_pairs))
|
||||
|
||||
def get_strategy_name(self) -> str:
|
||||
"""
|
||||
Returns strategy class name
|
||||
@@ -802,6 +840,12 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
logger.debug(f"Populating indicators for pair {metadata.get('pair')}.")
|
||||
|
||||
# call populate_indicators_Nm() which were tagged with @informative decorator.
|
||||
for inf_data, populate_fn in self._ft_informative:
|
||||
dataframe = _create_and_merge_informative_pair(
|
||||
self, dataframe, metadata, inf_data, populate_fn)
|
||||
|
||||
if self._populate_fun_len == 2:
|
||||
warnings.warn("deprecated - check out the Sample strategy to see "
|
||||
"the current function headers!", DeprecationWarning)
|
||||
|
@@ -4,7 +4,9 @@ from freqtrade.exchange import timeframe_to_minutes
|
||||
|
||||
|
||||
def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
timeframe: str, timeframe_inf: str, ffill: bool = True) -> pd.DataFrame:
|
||||
timeframe: str, timeframe_inf: str, ffill: bool = True,
|
||||
append_timeframe: bool = True,
|
||||
date_column: str = 'date') -> pd.DataFrame:
|
||||
"""
|
||||
Correctly merge informative samples to the original dataframe, avoiding lookahead bias.
|
||||
|
||||
@@ -24,6 +26,8 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
:param timeframe: Timeframe of the original pair sample.
|
||||
:param timeframe_inf: Timeframe of the informative pair sample.
|
||||
:param ffill: Forwardfill missing values - optional but usually required
|
||||
:param append_timeframe: Rename columns by appending timeframe.
|
||||
:param date_column: A custom date column name.
|
||||
:return: Merged dataframe
|
||||
:raise: ValueError if the secondary timeframe is shorter than the dataframe timeframe
|
||||
"""
|
||||
@@ -32,25 +36,29 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
minutes = timeframe_to_minutes(timeframe)
|
||||
if minutes == minutes_inf:
|
||||
# No need to forwardshift if the timeframes are identical
|
||||
informative['date_merge'] = informative["date"]
|
||||
informative['date_merge'] = informative[date_column]
|
||||
elif minutes < minutes_inf:
|
||||
# Subtract "small" timeframe so merging is not delayed by 1 small candle
|
||||
# Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073
|
||||
informative['date_merge'] = (
|
||||
informative["date"] + pd.to_timedelta(minutes_inf, 'm') - pd.to_timedelta(minutes, 'm')
|
||||
informative[date_column] + pd.to_timedelta(minutes_inf, 'm') -
|
||||
pd.to_timedelta(minutes, 'm')
|
||||
)
|
||||
else:
|
||||
raise ValueError("Tried to merge a faster timeframe to a slower timeframe."
|
||||
"This would create new rows, and can throw off your regular indicators.")
|
||||
|
||||
# Rename columns to be unique
|
||||
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
|
||||
date_merge = 'date_merge'
|
||||
if append_timeframe:
|
||||
date_merge = f'date_merge_{timeframe_inf}'
|
||||
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
|
||||
|
||||
# Combine the 2 dataframes
|
||||
# all indicators on the informative sample MUST be calculated before this point
|
||||
dataframe = pd.merge(dataframe, informative, left_on='date',
|
||||
right_on=f'date_merge_{timeframe_inf}', how='left')
|
||||
dataframe = dataframe.drop(f'date_merge_{timeframe_inf}', axis=1)
|
||||
right_on=date_merge, how='left')
|
||||
dataframe = dataframe.drop(date_merge, axis=1)
|
||||
|
||||
if ffill:
|
||||
dataframe = dataframe.ffill()
|
||||
@@ -83,3 +91,28 @@ def stoploss_from_open(open_relative_stop: float, current_profit: float) -> floa
|
||||
|
||||
# negative stoploss values indicate the requested stop price is higher than the current price
|
||||
return max(stoploss, 0.0)
|
||||
|
||||
|
||||
def stoploss_from_absolute(stop_rate: float, current_rate: float) -> float:
|
||||
"""
|
||||
Given current price and desired stop price, return a stop loss value that is relative to current
|
||||
price.
|
||||
|
||||
The requested stop can be positive for a stop above the open price, or negative for
|
||||
a stop below the open price. The return value is always >= 0.
|
||||
|
||||
Returns 0 if the resulting stop price would be above the current price.
|
||||
|
||||
:param stop_rate: Stop loss price.
|
||||
:param current_rate: Current asset price.
|
||||
:return: Positive stop loss value relative to current price
|
||||
"""
|
||||
|
||||
# formula is undefined for current_rate 0, return maximum value
|
||||
if current_rate == 0:
|
||||
return 1
|
||||
|
||||
stoploss = 1 - (stop_rate / current_rate)
|
||||
|
||||
# negative stoploss values indicate the requested stop price is higher than the current price
|
||||
return max(stoploss, 0.0)
|
||||
|
Reference in New Issue
Block a user