diff --git a/freqtrade/edge/edge_positioning.py b/freqtrade/edge/edge_positioning.py index a24e29efb..256b67383 100644 --- a/freqtrade/edge/edge_positioning.py +++ b/freqtrade/edge/edge_positioning.py @@ -137,10 +137,10 @@ class Edge: pair_data = pair_data.sort_values(by=['date']) pair_data = pair_data.reset_index(drop=True) - dataframe = self.strategy.advise_sell( + df_analyzed = self.strategy.advise_sell( self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy() - trades += self._find_trades_for_stoploss_range(dataframe, pair, self._stoploss_range) + trades += self._find_trades_for_stoploss_range(df_analyzed, pair, self._stoploss_range) # If no trade found then exit if len(trades) == 0: @@ -359,11 +359,11 @@ class Edge: # Returning a list of pairs in order of "expectancy" return final - def _find_trades_for_stoploss_range(self, dataframe, pair, stoploss_range): - buy_column = dataframe['buy'].values - sell_column = dataframe['sell'].values - date_column = dataframe['date'].values - ohlc_columns = dataframe[['open', 'high', 'low', 'close']].values + def _find_trades_for_stoploss_range(self, df, pair, stoploss_range): + buy_column = df['buy'].values + sell_column = df['sell'].values + date_column = df['date'].values + ohlc_columns = df[['open', 'high', 'low', 'close']].values result: list = [] for stoploss in stoploss_range: diff --git a/freqtrade/optimize/backtesting.py b/freqtrade/optimize/backtesting.py index 949c072c5..210fe3c66 100644 --- a/freqtrade/optimize/backtesting.py +++ b/freqtrade/optimize/backtesting.py @@ -164,19 +164,19 @@ class Backtesting: pair_data.loc[:, 'buy'] = 0 # cleanup from previous run pair_data.loc[:, 'sell'] = 0 # cleanup from previous run - dataframe = self.strategy.advise_sell( + df_analyzed = self.strategy.advise_sell( self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy() # To avoid using data from future, we use buy/sell signals shifted # from the previous candle - dataframe.loc[:, 'buy'] = dataframe['buy'].shift(1) - dataframe.loc[:, 'sell'] = dataframe['sell'].shift(1) + df_analyzed.loc[:, 'buy'] = df_analyzed['buy'].shift(1) + df_analyzed.loc[:, 'sell'] = df_analyzed['sell'].shift(1) - dataframe.drop(dataframe.head(1).index, inplace=True) + df_analyzed.drop(df_analyzed.head(1).index, inplace=True) # Convert from Pandas to list for performance reasons # (Looping Pandas is slow.) - data[pair] = [x for x in dataframe.itertuples()] + data[pair] = [x for x in df_analyzed.itertuples()] return data def _get_close_rate(self, sell_row, trade: Trade, sell: SellCheckTuple,