Add lightgbm classifier, add classifier check test, fix classifier bug.
This commit is contained in:
parent
47a30047eb
commit
eb8bde37c1
@ -566,6 +566,8 @@ class IFreqaiModel(ABC):
|
|||||||
num_candles = self.freqai_info.get("fit_live_predictions_candles", 100)
|
num_candles = self.freqai_info.get("fit_live_predictions_candles", 100)
|
||||||
dk.data["labels_mean"], dk.data["labels_std"] = {}, {}
|
dk.data["labels_mean"], dk.data["labels_std"] = {}, {}
|
||||||
for label in dk.label_list:
|
for label in dk.label_list:
|
||||||
|
if self.dd.historic_predictions[dk.pair][label].dtype == object:
|
||||||
|
continue
|
||||||
f = spy.stats.norm.fit(self.dd.historic_predictions[dk.pair][label].tail(num_candles))
|
f = spy.stats.norm.fit(self.dd.historic_predictions[dk.pair][label].tail(num_candles))
|
||||||
dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
|
dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
|
||||||
|
|
||||||
|
@ -32,9 +32,6 @@ class CatboostClassifier(BaseRegressionModel):
|
|||||||
|
|
||||||
cbr = CatBoostClassifier(
|
cbr = CatBoostClassifier(
|
||||||
allow_writing_files=False,
|
allow_writing_files=False,
|
||||||
gpu_ram_part=0.5,
|
|
||||||
verbose=100,
|
|
||||||
early_stopping_rounds=400,
|
|
||||||
loss_function='MultiClass',
|
loss_function='MultiClass',
|
||||||
**self.model_training_parameters,
|
**self.model_training_parameters,
|
||||||
)
|
)
|
||||||
|
38
freqtrade/freqai/prediction_models/LightGBMClassifier.py
Normal file
38
freqtrade/freqai/prediction_models/LightGBMClassifier.py
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
import logging
|
||||||
|
from typing import Any, Dict
|
||||||
|
|
||||||
|
from lightgbm import LGBMClassifier
|
||||||
|
|
||||||
|
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class LightGBMClassifier(BaseRegressionModel):
|
||||||
|
"""
|
||||||
|
User created prediction model. The class needs to override three necessary
|
||||||
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||||
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def fit(self, data_dictionary: Dict) -> Any:
|
||||||
|
"""
|
||||||
|
User sets up the training and test data to fit their desired model here
|
||||||
|
:params:
|
||||||
|
:data_dictionary: the dictionary constructed by DataHandler to hold
|
||||||
|
all the training and test data/labels.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
|
||||||
|
eval_set = None
|
||||||
|
else:
|
||||||
|
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||||||
|
X = data_dictionary["train_features"]
|
||||||
|
y = data_dictionary["train_labels"]
|
||||||
|
|
||||||
|
model = LGBMClassifier(**self.model_training_parameters)
|
||||||
|
|
||||||
|
model.fit(X=X, y=y, eval_set=eval_set)
|
||||||
|
|
||||||
|
return model
|
@ -155,6 +155,10 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
- 1
|
- 1
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Classifiers are typically set up with strings as targets:
|
||||||
|
# df['&s-up_or_down'] = np.where( df["close"].shift(-100) >
|
||||||
|
# df["close"], 'up', 'down')
|
||||||
|
|
||||||
# If user wishes to use multiple targets, they can add more by
|
# If user wishes to use multiple targets, they can add more by
|
||||||
# appending more columns with '&'. User should keep in mind that multi targets
|
# appending more columns with '&'. User should keep in mind that multi targets
|
||||||
# requires a multioutput prediction model such as
|
# requires a multioutput prediction model such as
|
||||||
|
@ -103,6 +103,69 @@ def test_train_model_in_series_Catboost(mocker, freqai_conf):
|
|||||||
shutil.rmtree(Path(freqai.dk.full_path))
|
shutil.rmtree(Path(freqai.dk.full_path))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif("arm" in platform.uname()[-1], reason="no ARM for Catboost ...")
|
||||||
|
def test_train_model_in_series_CatboostClassifier(mocker, freqai_conf):
|
||||||
|
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||||
|
freqai_conf.update({"freqaimodel": "CatboostClassifier"})
|
||||||
|
freqai_conf.update({"strategy": "freqai_test_classifier"})
|
||||||
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||||
|
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||||
|
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||||
|
|
||||||
|
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||||
|
freqai = strategy.freqai
|
||||||
|
freqai.live = True
|
||||||
|
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||||
|
timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||||
|
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||||
|
|
||||||
|
freqai.dd.pair_dict = MagicMock()
|
||||||
|
|
||||||
|
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||||
|
new_timerange = TimeRange.parse_timerange("20180120-20180130")
|
||||||
|
|
||||||
|
freqai.train_model_in_series(new_timerange, "ADA/BTC",
|
||||||
|
strategy, freqai.dk, data_load_timerange)
|
||||||
|
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").exists()
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").exists()
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").exists()
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").exists()
|
||||||
|
|
||||||
|
shutil.rmtree(Path(freqai.dk.full_path))
|
||||||
|
|
||||||
|
|
||||||
|
def test_train_model_in_series_LightGBMClassifier(mocker, freqai_conf):
|
||||||
|
freqai_conf.update({"timerange": "20180110-20180130"})
|
||||||
|
freqai_conf.update({"freqaimodel": "LightGBMClassifier"})
|
||||||
|
freqai_conf.update({"strategy": "freqai_test_classifier"})
|
||||||
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||||
|
exchange = get_patched_exchange(mocker, freqai_conf)
|
||||||
|
strategy.dp = DataProvider(freqai_conf, exchange)
|
||||||
|
|
||||||
|
strategy.freqai_info = freqai_conf.get("freqai", {})
|
||||||
|
freqai = strategy.freqai
|
||||||
|
freqai.live = True
|
||||||
|
freqai.dk = FreqaiDataKitchen(freqai_conf)
|
||||||
|
timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||||
|
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||||
|
|
||||||
|
freqai.dd.pair_dict = MagicMock()
|
||||||
|
|
||||||
|
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
|
||||||
|
new_timerange = TimeRange.parse_timerange("20180120-20180130")
|
||||||
|
|
||||||
|
freqai.train_model_in_series(new_timerange, "ADA/BTC",
|
||||||
|
strategy, freqai.dk, data_load_timerange)
|
||||||
|
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").exists()
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").exists()
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").exists()
|
||||||
|
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").exists()
|
||||||
|
|
||||||
|
shutil.rmtree(Path(freqai.dk.full_path))
|
||||||
|
|
||||||
|
|
||||||
def test_start_backtesting(mocker, freqai_conf):
|
def test_start_backtesting(mocker, freqai_conf):
|
||||||
freqai_conf.update({"timerange": "20180120-20180130"})
|
freqai_conf.update({"timerange": "20180120-20180130"})
|
||||||
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
|
||||||
|
@ -1403,6 +1403,7 @@ def test_api_strategies(botclient):
|
|||||||
'StrategyTestV2',
|
'StrategyTestV2',
|
||||||
'StrategyTestV3',
|
'StrategyTestV3',
|
||||||
'StrategyTestV3Futures',
|
'StrategyTestV3Futures',
|
||||||
|
'freqai_test_classifier',
|
||||||
'freqai_test_multimodel_strat',
|
'freqai_test_multimodel_strat',
|
||||||
'freqai_test_strat'
|
'freqai_test_strat'
|
||||||
]}
|
]}
|
||||||
|
138
tests/strategy/strats/freqai_test_classifier.py
Normal file
138
tests/strategy/strats/freqai_test_classifier.py
Normal file
@ -0,0 +1,138 @@
|
|||||||
|
import logging
|
||||||
|
from functools import reduce
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import talib.abstract as ta
|
||||||
|
from pandas import DataFrame
|
||||||
|
import numpy as np
|
||||||
|
from freqtrade.strategy import DecimalParameter, IntParameter, IStrategy, merge_informative_pair
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class freqai_test_classifier(IStrategy):
|
||||||
|
"""
|
||||||
|
Test strategy - used for testing freqAI functionalities.
|
||||||
|
DO not use in production.
|
||||||
|
"""
|
||||||
|
|
||||||
|
minimal_roi = {"0": 0.1, "240": -1}
|
||||||
|
|
||||||
|
plot_config = {
|
||||||
|
"main_plot": {},
|
||||||
|
"subplots": {
|
||||||
|
"prediction": {"prediction": {"color": "blue"}},
|
||||||
|
"target_roi": {
|
||||||
|
"target_roi": {"color": "brown"},
|
||||||
|
},
|
||||||
|
"do_predict": {
|
||||||
|
"do_predict": {"color": "brown"},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
process_only_new_candles = True
|
||||||
|
stoploss = -0.05
|
||||||
|
use_exit_signal = True
|
||||||
|
startup_candle_count: int = 300
|
||||||
|
can_short = False
|
||||||
|
|
||||||
|
linear_roi_offset = DecimalParameter(
|
||||||
|
0.00, 0.02, default=0.005, space="sell", optimize=False, load=True
|
||||||
|
)
|
||||||
|
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
|
||||||
|
|
||||||
|
def informative_pairs(self):
|
||||||
|
whitelist_pairs = self.dp.current_whitelist()
|
||||||
|
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
|
||||||
|
informative_pairs = []
|
||||||
|
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
|
||||||
|
for pair in whitelist_pairs:
|
||||||
|
informative_pairs.append((pair, tf))
|
||||||
|
for pair in corr_pairs:
|
||||||
|
if pair in whitelist_pairs:
|
||||||
|
continue # avoid duplication
|
||||||
|
informative_pairs.append((pair, tf))
|
||||||
|
return informative_pairs
|
||||||
|
|
||||||
|
def populate_any_indicators(
|
||||||
|
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
||||||
|
):
|
||||||
|
|
||||||
|
coin = pair.split('/')[0]
|
||||||
|
|
||||||
|
with self.freqai.lock:
|
||||||
|
if informative is None:
|
||||||
|
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||||
|
|
||||||
|
# first loop is automatically duplicating indicators for time periods
|
||||||
|
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
||||||
|
|
||||||
|
t = int(t)
|
||||||
|
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
||||||
|
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
||||||
|
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
|
||||||
|
|
||||||
|
informative[f"%-{coin}pct-change"] = informative["close"].pct_change()
|
||||||
|
informative[f"%-{coin}raw_volume"] = informative["volume"]
|
||||||
|
informative[f"%-{coin}raw_price"] = informative["close"]
|
||||||
|
|
||||||
|
indicators = [col for col in informative if col.startswith("%")]
|
||||||
|
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
||||||
|
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
||||||
|
if n == 0:
|
||||||
|
continue
|
||||||
|
informative_shift = informative[indicators].shift(n)
|
||||||
|
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
||||||
|
informative = pd.concat((informative, informative_shift), axis=1)
|
||||||
|
|
||||||
|
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
||||||
|
skip_columns = [
|
||||||
|
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
||||||
|
]
|
||||||
|
df = df.drop(columns=skip_columns)
|
||||||
|
|
||||||
|
# Add generalized indicators here (because in live, it will call this
|
||||||
|
# function to populate indicators during training). Notice how we ensure not to
|
||||||
|
# add them multiple times
|
||||||
|
if set_generalized_indicators:
|
||||||
|
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
|
||||||
|
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
||||||
|
|
||||||
|
# user adds targets here by prepending them with &- (see convention below)
|
||||||
|
# If user wishes to use multiple targets, a multioutput prediction model
|
||||||
|
# needs to be used such as templates/CatboostPredictionMultiModel.py
|
||||||
|
df['&s-up_or_down'] = np.where(df["close"].shift(-100) > df["close"], 'up', 'down')
|
||||||
|
|
||||||
|
return df
|
||||||
|
|
||||||
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
|
||||||
|
self.freqai_info = self.config["freqai"]
|
||||||
|
|
||||||
|
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
|
||||||
|
enter_long_conditions = [df['&s-up_or_down'] == 'up']
|
||||||
|
|
||||||
|
if enter_long_conditions:
|
||||||
|
df.loc[
|
||||||
|
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
|
||||||
|
] = (1, "long")
|
||||||
|
|
||||||
|
enter_short_conditions = [df['&s-up_or_down'] == 'down']
|
||||||
|
|
||||||
|
if enter_short_conditions:
|
||||||
|
df.loc[
|
||||||
|
reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"]
|
||||||
|
] = (1, "short")
|
||||||
|
|
||||||
|
return df
|
||||||
|
|
||||||
|
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
|
||||||
|
return df
|
@ -34,7 +34,7 @@ def test_search_all_strategies_no_failed():
|
|||||||
directory = Path(__file__).parent / "strats"
|
directory = Path(__file__).parent / "strats"
|
||||||
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
|
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
|
||||||
assert isinstance(strategies, list)
|
assert isinstance(strategies, list)
|
||||||
assert len(strategies) == 8
|
assert len(strategies) == 9
|
||||||
assert isinstance(strategies[0], dict)
|
assert isinstance(strategies[0], dict)
|
||||||
|
|
||||||
|
|
||||||
@ -42,10 +42,10 @@ def test_search_all_strategies_with_failed():
|
|||||||
directory = Path(__file__).parent / "strats"
|
directory = Path(__file__).parent / "strats"
|
||||||
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
|
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
|
||||||
assert isinstance(strategies, list)
|
assert isinstance(strategies, list)
|
||||||
assert len(strategies) == 9
|
assert len(strategies) == 10
|
||||||
# with enum_failed=True search_all_objects() shall find 2 good strategies
|
# with enum_failed=True search_all_objects() shall find 2 good strategies
|
||||||
# and 1 which fails to load
|
# and 1 which fails to load
|
||||||
assert len([x for x in strategies if x['class'] is not None]) == 8
|
assert len([x for x in strategies if x['class'] is not None]) == 9
|
||||||
assert len([x for x in strategies if x['class'] is None]) == 1
|
assert len([x for x in strategies if x['class'] is None]) == 1
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user