Add lightgbm classifier, add classifier check test, fix classifier bug.

This commit is contained in:
robcaulk
2022-08-06 17:51:21 +02:00
parent 47a30047eb
commit eb8bde37c1
8 changed files with 249 additions and 6 deletions

View File

@@ -103,6 +103,69 @@ def test_train_model_in_series_Catboost(mocker, freqai_conf):
shutil.rmtree(Path(freqai.dk.full_path))
@pytest.mark.skipif("arm" in platform.uname()[-1], reason="no ARM for Catboost ...")
def test_train_model_in_series_CatboostClassifier(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180110-20180130"})
freqai_conf.update({"freqaimodel": "CatboostClassifier"})
freqai_conf.update({"strategy": "freqai_test_classifier"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
new_timerange = TimeRange.parse_timerange("20180120-20180130")
freqai.train_model_in_series(new_timerange, "ADA/BTC",
strategy, freqai.dk, data_load_timerange)
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").exists()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").exists()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").exists()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").exists()
shutil.rmtree(Path(freqai.dk.full_path))
def test_train_model_in_series_LightGBMClassifier(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180110-20180130"})
freqai_conf.update({"freqaimodel": "LightGBMClassifier"})
freqai_conf.update({"strategy": "freqai_test_classifier"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
new_timerange = TimeRange.parse_timerange("20180120-20180130")
freqai.train_model_in_series(new_timerange, "ADA/BTC",
strategy, freqai.dk, data_load_timerange)
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").exists()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").exists()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").exists()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_svm_model.joblib").exists()
shutil.rmtree(Path(freqai.dk.full_path))
def test_start_backtesting(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180120-20180130"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)

View File

@@ -1403,6 +1403,7 @@ def test_api_strategies(botclient):
'StrategyTestV2',
'StrategyTestV3',
'StrategyTestV3Futures',
'freqai_test_classifier',
'freqai_test_multimodel_strat',
'freqai_test_strat'
]}

View File

@@ -0,0 +1,138 @@
import logging
from functools import reduce
import pandas as pd
import talib.abstract as ta
from pandas import DataFrame
import numpy as np
from freqtrade.strategy import DecimalParameter, IntParameter, IStrategy, merge_informative_pair
logger = logging.getLogger(__name__)
class freqai_test_classifier(IStrategy):
"""
Test strategy - used for testing freqAI functionalities.
DO not use in production.
"""
minimal_roi = {"0": 0.1, "240": -1}
plot_config = {
"main_plot": {},
"subplots": {
"prediction": {"prediction": {"color": "blue"}},
"target_roi": {
"target_roi": {"color": "brown"},
},
"do_predict": {
"do_predict": {"color": "brown"},
},
},
}
process_only_new_candles = True
stoploss = -0.05
use_exit_signal = True
startup_candle_count: int = 300
can_short = False
linear_roi_offset = DecimalParameter(
0.00, 0.02, default=0.005, space="sell", optimize=False, load=True
)
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
def informative_pairs(self):
whitelist_pairs = self.dp.current_whitelist()
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
informative_pairs = []
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
for pair in whitelist_pairs:
informative_pairs.append((pair, tf))
for pair in corr_pairs:
if pair in whitelist_pairs:
continue # avoid duplication
informative_pairs.append((pair, tf))
return informative_pairs
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
coin = pair.split('/')[0]
with self.freqai.lock:
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
informative[f"%-{coin}pct-change"] = informative["close"].pct_change()
informative[f"%-{coin}raw_volume"] = informative["volume"]
informative[f"%-{coin}raw_price"] = informative["close"]
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df['&s-up_or_down'] = np.where(df["close"].shift(-100) > df["close"], 'up', 'down')
return df
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
self.freqai_info = self.config["freqai"]
dataframe = self.freqai.start(dataframe, metadata, self)
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [df['&s-up_or_down'] == 'up']
if enter_long_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
] = (1, "long")
enter_short_conditions = [df['&s-up_or_down'] == 'down']
if enter_short_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"]
] = (1, "short")
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
return df

View File

@@ -34,7 +34,7 @@ def test_search_all_strategies_no_failed():
directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
assert isinstance(strategies, list)
assert len(strategies) == 8
assert len(strategies) == 9
assert isinstance(strategies[0], dict)
@@ -42,10 +42,10 @@ def test_search_all_strategies_with_failed():
directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
assert isinstance(strategies, list)
assert len(strategies) == 9
assert len(strategies) == 10
# with enum_failed=True search_all_objects() shall find 2 good strategies
# and 1 which fails to load
assert len([x for x in strategies if x['class'] is not None]) == 8
assert len([x for x in strategies if x['class'] is not None]) == 9
assert len([x for x in strategies if x['class'] is None]) == 1