Add lightgbm classifier, add classifier check test, fix classifier bug.

This commit is contained in:
robcaulk
2022-08-06 17:51:21 +02:00
parent 47a30047eb
commit eb8bde37c1
8 changed files with 249 additions and 6 deletions

View File

@@ -32,9 +32,6 @@ class CatboostClassifier(BaseRegressionModel):
cbr = CatBoostClassifier(
allow_writing_files=False,
gpu_ram_part=0.5,
verbose=100,
early_stopping_rounds=400,
loss_function='MultiClass',
**self.model_training_parameters,
)

View File

@@ -0,0 +1,38 @@
import logging
from typing import Any, Dict
from lightgbm import LGBMClassifier
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
logger = logging.getLogger(__name__)
class LightGBMClassifier(BaseRegressionModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict) -> Any:
"""
User sets up the training and test data to fit their desired model here
:params:
:data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
eval_set = None
else:
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
model = LGBMClassifier(**self.model_training_parameters)
model.fit(X=X, y=y, eval_set=eval_set)
return model