improve train queue system, ensure crash resilience in train queue.
This commit is contained in:
parent
e5368f5a14
commit
eaa43337d2
@ -27,9 +27,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class pair_info(TypedDict):
|
||||
model_filename: str
|
||||
first: bool
|
||||
trained_timestamp: int
|
||||
priority: int
|
||||
data_path: str
|
||||
extras: dict
|
||||
|
||||
@ -91,7 +89,7 @@ class FreqaiDataDrawer:
|
||||
self.old_DBSCAN_eps: Dict[str, float] = {}
|
||||
self.empty_pair_dict: pair_info = {
|
||||
"model_filename": "", "trained_timestamp": 0,
|
||||
"priority": 1, "first": True, "data_path": "", "extras": {}}
|
||||
"data_path": "", "extras": {}}
|
||||
|
||||
def load_drawer_from_disk(self):
|
||||
"""
|
||||
@ -216,7 +214,6 @@ class FreqaiDataDrawer:
|
||||
self.pair_dict[pair] = self.empty_pair_dict.copy()
|
||||
model_filename = ""
|
||||
trained_timestamp = 0
|
||||
self.pair_dict[pair]["priority"] = len(self.pair_dict)
|
||||
|
||||
if not data_path_set and self.follow_mode:
|
||||
logger.warning(
|
||||
@ -236,18 +233,9 @@ class FreqaiDataDrawer:
|
||||
return
|
||||
else:
|
||||
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
|
||||
self.pair_dict[metadata["pair"]]["priority"] = len(self.pair_dict)
|
||||
|
||||
return
|
||||
|
||||
def pair_to_end_of_training_queue(self, pair: str) -> None:
|
||||
# march all pairs up in the queue
|
||||
with self.pair_dict_lock:
|
||||
for p in self.pair_dict:
|
||||
self.pair_dict[p]["priority"] -= 1
|
||||
# send pair to end of queue
|
||||
self.pair_dict[pair]["priority"] = len(self.pair_dict)
|
||||
|
||||
def set_initial_return_values(self, pair: str, pred_df: DataFrame) -> None:
|
||||
"""
|
||||
Set the initial return values to the historical predictions dataframe. This avoids needing
|
||||
|
@ -3,6 +3,7 @@ import shutil
|
||||
import threading
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from collections import deque
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from threading import Lock
|
||||
@ -80,6 +81,7 @@ class IFreqaiModel(ABC):
|
||||
self.pair_it = 0
|
||||
self.pair_it_train = 0
|
||||
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
|
||||
self.train_queue = self._set_train_queue()
|
||||
self.last_trade_database_summary: DataFrame = {}
|
||||
self.current_trade_database_summary: DataFrame = {}
|
||||
self.analysis_lock = Lock()
|
||||
@ -180,30 +182,36 @@ class IFreqaiModel(ABC):
|
||||
:param strategy: IStrategy = The user defined strategy class
|
||||
"""
|
||||
while not self._stop_event.is_set():
|
||||
time.sleep(1)
|
||||
for pair in self.config.get("exchange", {}).get("pair_whitelist"):
|
||||
pair = self.train_queue[0]
|
||||
|
||||
(_, trained_timestamp, _) = self.dd.get_pair_dict_info(pair)
|
||||
# ensure pair is avaialble in dp
|
||||
if pair not in strategy.dp.current_whitelist():
|
||||
self.train_queue.popleft()
|
||||
logger.warning(f'{pair} not in current whitelist, removing from train queue.')
|
||||
continue
|
||||
|
||||
if self.dd.pair_dict[pair]["priority"] != 1:
|
||||
continue
|
||||
dk = FreqaiDataKitchen(self.config, self.live, pair)
|
||||
dk.set_paths(pair, trained_timestamp)
|
||||
(
|
||||
retrain,
|
||||
new_trained_timerange,
|
||||
data_load_timerange,
|
||||
) = dk.check_if_new_training_required(trained_timestamp)
|
||||
dk.set_paths(pair, new_trained_timerange.stopts)
|
||||
(_, trained_timestamp, _) = self.dd.get_pair_dict_info(pair)
|
||||
|
||||
if retrain:
|
||||
self.train_timer('start')
|
||||
self.extract_data_and_train_model(
|
||||
new_trained_timerange, pair, strategy, dk, data_load_timerange
|
||||
)
|
||||
self.train_timer('stop')
|
||||
dk = FreqaiDataKitchen(self.config, self.live, pair)
|
||||
dk.set_paths(pair, trained_timestamp)
|
||||
(
|
||||
retrain,
|
||||
new_trained_timerange,
|
||||
data_load_timerange,
|
||||
) = dk.check_if_new_training_required(trained_timestamp)
|
||||
dk.set_paths(pair, new_trained_timerange.stopts)
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
if retrain:
|
||||
self.train_timer('start')
|
||||
self.extract_data_and_train_model(
|
||||
new_trained_timerange, pair, strategy, dk, data_load_timerange
|
||||
)
|
||||
self.train_timer('stop')
|
||||
|
||||
# only rotate the queue after the first has been trained.
|
||||
self.train_queue.rotate(-1)
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
|
||||
def start_backtesting(
|
||||
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
|
||||
@ -557,9 +565,6 @@ class IFreqaiModel(ABC):
|
||||
|
||||
self.dd.pair_dict[pair]["trained_timestamp"] = new_trained_timerange.stopts
|
||||
dk.set_new_model_names(pair, new_trained_timerange)
|
||||
self.dd.pair_dict[pair]["first"] = False
|
||||
if self.dd.pair_dict[pair]["priority"] == 1 and self.scanning:
|
||||
self.dd.pair_to_end_of_training_queue(pair)
|
||||
self.dd.save_data(model, pair, dk)
|
||||
|
||||
if self.freqai_info.get("purge_old_models", False):
|
||||
@ -685,6 +690,26 @@ class IFreqaiModel(ABC):
|
||||
|
||||
return init_model
|
||||
|
||||
def _set_train_queue(self):
|
||||
"""
|
||||
Sets train queue from existing train timestamps if they exist
|
||||
otherwise it sets the train queue based on the provided whitelist.
|
||||
"""
|
||||
current_pairlist = self.config.get("exchange", {}).get("pair_whitelist")
|
||||
if not self.dd.pair_dict:
|
||||
logger.info('Set fresh train queue from whitelist.')
|
||||
return deque(current_pairlist)
|
||||
|
||||
best_queue = deque()
|
||||
|
||||
pair_dict_sorted = sorted(self.dd.pair_dict.items(),
|
||||
key=lambda k: k[1]['trained_timestamp'])
|
||||
for pair in pair_dict_sorted:
|
||||
if pair[0] in current_pairlist:
|
||||
best_queue.appendleft(pair[0])
|
||||
logger.info('Set existing queue from trained timestamps.')
|
||||
return best_queue
|
||||
|
||||
# Following methods which are overridden by user made prediction models.
|
||||
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
||||
|
||||
|
@ -45,7 +45,7 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
std_dev_multiplier_buy = CategoricalParameter(
|
||||
[0.75, 1, 1.25, 1.5, 1.75], default=1.25, space="buy", optimize=True)
|
||||
std_dev_multiplier_sell = CategoricalParameter(
|
||||
[0.1, 0.25, 0.4], space="sell", default=0.2, optimize=True)
|
||||
[0.75, 1, 1.25, 1.5, 1.75], space="sell", default=1.25, optimize=True)
|
||||
|
||||
def informative_pairs(self):
|
||||
whitelist_pairs = self.dp.current_whitelist()
|
||||
|
Loading…
Reference in New Issue
Block a user