Add plot_feature_importance to schema definition
This commit is contained in:
parent
225f7cd5f8
commit
ea58c29ded
@ -78,7 +78,7 @@
|
|||||||
10,
|
10,
|
||||||
20
|
20
|
||||||
],
|
],
|
||||||
"plot_feature_importance": true
|
"plot_feature_importance": false
|
||||||
},
|
},
|
||||||
"data_split_parameters": {
|
"data_split_parameters": {
|
||||||
"test_size": 0.33,
|
"test_size": 0.33,
|
||||||
|
@ -109,7 +109,8 @@ Mandatory parameters are marked as **Required**, which means that they are requi
|
|||||||
| `indicator_max_period_candles` | **No longer used**. User must use the strategy set `startup_candle_count` which defines the maximum *period* used in `populate_any_indicators()` for indicator creation (timeframe independent). FreqAI uses this information in combination with the maximum timeframe to calculate how many data points it should download so that the first data point does not have a NaN <br> **Datatype:** positive integer.
|
| `indicator_max_period_candles` | **No longer used**. User must use the strategy set `startup_candle_count` which defines the maximum *period* used in `populate_any_indicators()` for indicator creation (timeframe independent). FreqAI uses this information in combination with the maximum timeframe to calculate how many data points it should download so that the first data point does not have a NaN <br> **Datatype:** positive integer.
|
||||||
| `indicator_periods_candles` | Calculate indicators for `indicator_periods_candles` time periods and add them to the feature set. <br> **Datatype:** List of positive integers.
|
| `indicator_periods_candles` | Calculate indicators for `indicator_periods_candles` time periods and add them to the feature set. <br> **Datatype:** List of positive integers.
|
||||||
| `stratify_training_data` | This value is used to indicate the grouping of the data. For example, 2 would set every 2nd data point into a separate dataset to be pulled from during training/testing. See details about how it works [here](#stratifying-the-data-for-training-and-testing-the-model) <br> **Datatype:** Positive integer.
|
| `stratify_training_data` | This value is used to indicate the grouping of the data. For example, 2 would set every 2nd data point into a separate dataset to be pulled from during training/testing. See details about how it works [here](#stratifying-the-data-for-training-and-testing-the-model) <br> **Datatype:** Positive integer.
|
||||||
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean.
|
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis)
|
||||||
|
| `plot_feature_importance` | Create an interactive feature importance plot for each model.<br> **Datatype:** Boolean.<br> **Datatype:** Boolean, defaults to `False`
|
||||||
| `DI_threshold` | Activates the Dissimilarity Index for outlier detection when > 0. See details about how it works [here](#removing-outliers-with-the-dissimilarity-index). <br> **Datatype:** Positive float (typically < 1).
|
| `DI_threshold` | Activates the Dissimilarity Index for outlier detection when > 0. See details about how it works [here](#removing-outliers-with-the-dissimilarity-index). <br> **Datatype:** Positive float (typically < 1).
|
||||||
| `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training data set, as well as from incoming data points. See details about how it works [here](#removing-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean.
|
| `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training data set, as well as from incoming data points. See details about how it works [here](#removing-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean.
|
||||||
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](#removing-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary.
|
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](#removing-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary.
|
||||||
|
@ -504,6 +504,7 @@ CONF_SCHEMA = {
|
|||||||
"weight_factor": {"type": "number", "default": 0},
|
"weight_factor": {"type": "number", "default": 0},
|
||||||
"principal_component_analysis": {"type": "boolean", "default": False},
|
"principal_component_analysis": {"type": "boolean", "default": False},
|
||||||
"use_SVM_to_remove_outliers": {"type": "boolean", "default": False},
|
"use_SVM_to_remove_outliers": {"type": "boolean", "default": False},
|
||||||
|
"plot_feature_importance": {"type": "boolean", "default": False},
|
||||||
"svm_params": {"type": "object",
|
"svm_params": {"type": "object",
|
||||||
"properties": {
|
"properties": {
|
||||||
"shuffle": {"type": "boolean", "default": False},
|
"shuffle": {"type": "boolean", "default": False},
|
||||||
|
@ -563,7 +563,7 @@ class IFreqaiModel(ABC):
|
|||||||
self.dd.pair_to_end_of_training_queue(pair)
|
self.dd.pair_to_end_of_training_queue(pair)
|
||||||
self.dd.save_data(model, pair, dk)
|
self.dd.save_data(model, pair, dk)
|
||||||
|
|
||||||
if self.freqai_info["feature_parameters"].get("plot_feature_importance", True):
|
if self.freqai_info["feature_parameters"].get("plot_feature_importance", False):
|
||||||
plot_feature_importance(model, pair, dk)
|
plot_feature_importance(model, pair, dk)
|
||||||
|
|
||||||
if self.freqai_info.get("purge_old_models", False):
|
if self.freqai_info.get("purge_old_models", False):
|
||||||
|
Loading…
Reference in New Issue
Block a user