cosmetics in sample_hyperopt and default_hyperopt

This commit is contained in:
hroff-1902
2019-08-12 02:19:50 +03:00
parent 85094a59e6
commit e5dcd520ba
2 changed files with 55 additions and 30 deletions

View File

@@ -14,36 +14,48 @@ from freqtrade.optimize.hyperopt_interface import IHyperOpt
class DefaultHyperOpts(IHyperOpt):
"""
Default hyperopt provided by the Freqtrade bot.
You can override it with your own hyperopt
You can override it with your own Hyperopt
"""
@staticmethod
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Add several indicators needed for buy and sell strategies defined below.
"""
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Stochastic Fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
# Minus-DI
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_upperband'] = bollinger['upper']
# SAR
dataframe['sar'] = ta.SAR(dataframe)
return dataframe
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by hyperopt
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use
Buy strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
if 'mfi-enabled' in params and params['mfi-enabled']:
conditions.append(dataframe['mfi'] < params['mfi-value'])
@@ -79,7 +91,7 @@ class DefaultHyperOpts(IHyperOpt):
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching strategy parameters
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
Integer(10, 25, name='mfi-value'),
@@ -96,14 +108,14 @@ class DefaultHyperOpts(IHyperOpt):
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by hyperopt
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use
Sell strategy Hyperopt will build and use.
"""
# print(params)
conditions = []
# GUARDS AND TRENDS
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
@@ -139,7 +151,7 @@ class DefaultHyperOpts(IHyperOpt):
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
Integer(75, 100, name='sell-mfi-value'),
@@ -157,9 +169,9 @@ class DefaultHyperOpts(IHyperOpt):
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators. Should be a copy of from strategy
must align to populate_indicators in this file
Only used when --spaces does not include buy
Based on TA indicators. Should be a copy of same method from strategy.
Must align to populate_indicators in this file.
Only used when --spaces does not include buy space.
"""
dataframe.loc[
(
@@ -174,9 +186,9 @@ class DefaultHyperOpts(IHyperOpt):
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators. Should be a copy of from strategy
must align to populate_indicators in this file
Only used when --spaces does not include sell
Based on TA indicators. Should be a copy of same method from strategy.
Must align to populate_indicators in this file.
Only used when --spaces does not include sell space.
"""
dataframe.loc[
(
@@ -186,4 +198,5 @@ class DefaultHyperOpts(IHyperOpt):
(dataframe['fastd'] > 54)
),
'sell'] = 1
return dataframe