from freqtrade/develop
This commit is contained in:
809
freqtrade/tests/optimize/test_backtesting.py
Normal file → Executable file
809
freqtrade/tests/optimize/test_backtesting.py
Normal file → Executable file
@@ -1,140 +1,564 @@
|
||||
# pragma pylint: disable=missing-docstring,W0212
|
||||
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
||||
|
||||
import logging
|
||||
import json
|
||||
import math
|
||||
import pandas as pd
|
||||
import random
|
||||
from copy import deepcopy
|
||||
from typing import List
|
||||
from unittest.mock import MagicMock
|
||||
from freqtrade import exchange, optimize
|
||||
from freqtrade.exchange import Bittrex
|
||||
from freqtrade.optimize import preprocess
|
||||
from freqtrade.optimize.backtesting import backtest, generate_text_table, get_timeframe
|
||||
import freqtrade.optimize.backtesting as backtesting
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
from arrow import Arrow
|
||||
|
||||
from freqtrade import DependencyException, constants, optimize
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade.arguments import Arguments, TimeRange
|
||||
from freqtrade.optimize.backtesting import (Backtesting, setup_configuration,
|
||||
start)
|
||||
from freqtrade.tests.conftest import log_has, patch_exchange
|
||||
|
||||
|
||||
def test_generate_text_table():
|
||||
results = pd.DataFrame(
|
||||
{
|
||||
'currency': ['BTC_ETH', 'BTC_ETH'],
|
||||
'profit_percent': [0.1, 0.2],
|
||||
'profit_BTC': [0.2, 0.4],
|
||||
'duration': [10, 30],
|
||||
'profit': [2, 0],
|
||||
'loss': [0, 0]
|
||||
}
|
||||
)
|
||||
print(generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5))
|
||||
assert generate_text_table({'BTC_ETH': {}}, results, 'BTC', 5) == (
|
||||
'pair buy count avg profit % total profit BTC avg duration profit loss\n' # noqa
|
||||
'------- ----------- -------------- ------------------ -------------- -------- ------\n' # noqa
|
||||
'BTC_ETH 2 15.00 0.60000000 100.0 2 0\n' # noqa
|
||||
'TOTAL 2 15.00 0.60000000 100.0 2 0') # noqa
|
||||
def get_args(args) -> List[str]:
|
||||
return Arguments(args, '').get_parsed_arg()
|
||||
|
||||
|
||||
def test_get_timeframe():
|
||||
data = preprocess(optimize.load_data(
|
||||
None, ticker_interval=1, pairs=['BTC_UNITEST']))
|
||||
min_date, max_date = get_timeframe(data)
|
||||
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
||||
assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
|
||||
|
||||
|
||||
def test_backtest(default_conf, mocker):
|
||||
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
||||
|
||||
data = optimize.load_data(None, ticker_interval=5, pairs=['BTC_ETH'])
|
||||
results = backtest(default_conf['stake_amount'],
|
||||
optimize.preprocess(data), 10, True)
|
||||
assert not results.empty
|
||||
|
||||
|
||||
def test_backtest_1min_ticker_interval(default_conf, mocker):
|
||||
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
||||
|
||||
# Run a backtesting for an exiting 5min ticker_interval
|
||||
data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'])
|
||||
results = backtest(default_conf['stake_amount'],
|
||||
optimize.preprocess(data), 1, True)
|
||||
assert not results.empty
|
||||
|
||||
|
||||
def trim_dictlist(dl, num):
|
||||
def trim_dictlist(dict_list, num):
|
||||
new = {}
|
||||
for pair, pair_data in dl.items():
|
||||
for pair, pair_data in dict_list.items():
|
||||
new[pair] = pair_data[num:]
|
||||
return new
|
||||
|
||||
|
||||
def load_data_test(what):
|
||||
data = optimize.load_data(None, ticker_interval=1, pairs=['BTC_UNITEST'])
|
||||
data = trim_dictlist(data, -100)
|
||||
pair = data['BTC_UNITEST']
|
||||
timerange = TimeRange(None, 'line', 0, -101)
|
||||
data = optimize.load_data(None, ticker_interval='1m',
|
||||
pairs=['UNITTEST/BTC'], timerange=timerange)
|
||||
pair = data['UNITTEST/BTC']
|
||||
datalen = len(pair)
|
||||
# Depending on the what parameter we now adjust the
|
||||
# loaded data looks:
|
||||
# pair :: [{'O': 0.123, 'H': 0.123, 'L': 0.123,
|
||||
# 'C': 0.123, 'V': 123.123,
|
||||
# 'T': '2017-11-04T23:02:00', 'BV': 0.123}]
|
||||
# pair :: [[ 1509836520000, unix timestamp in ms
|
||||
# 0.00162008, open
|
||||
# 0.00162008, high
|
||||
# 0.00162008, low
|
||||
# 0.00162008, close
|
||||
# 108.14853839 base volume
|
||||
# ]]
|
||||
base = 0.001
|
||||
if what == 'raise':
|
||||
return {'BTC_UNITEST':
|
||||
[{'T': pair[x]['T'], # Keep old dates
|
||||
'V': pair[x]['V'], # Keep old volume
|
||||
'BV': pair[x]['BV'], # keep too
|
||||
'O': x * base, # But replace O,H,L,C
|
||||
'H': x * base + 0.0001,
|
||||
'L': x * base - 0.0001,
|
||||
'C': x * base} for x in range(0, datalen)]}
|
||||
return {'UNITTEST/BTC': [
|
||||
[
|
||||
pair[x][0], # Keep old dates
|
||||
x * base, # But replace O,H,L,C
|
||||
x * base + 0.0001,
|
||||
x * base - 0.0001,
|
||||
x * base,
|
||||
pair[x][5], # Keep old volume
|
||||
] for x in range(0, datalen)
|
||||
]}
|
||||
if what == 'lower':
|
||||
return {'BTC_UNITEST':
|
||||
[{'T': pair[x]['T'], # Keep old dates
|
||||
'V': pair[x]['V'], # Keep old volume
|
||||
'BV': pair[x]['BV'], # keep too
|
||||
'O': 1 - x * base, # But replace O,H,L,C
|
||||
'H': 1 - x * base + 0.0001,
|
||||
'L': 1 - x * base - 0.0001,
|
||||
'C': 1 - x * base} for x in range(0, datalen)]}
|
||||
return {'UNITTEST/BTC': [
|
||||
[
|
||||
pair[x][0], # Keep old dates
|
||||
1 - x * base, # But replace O,H,L,C
|
||||
1 - x * base + 0.0001,
|
||||
1 - x * base - 0.0001,
|
||||
1 - x * base,
|
||||
pair[x][5] # Keep old volume
|
||||
] for x in range(0, datalen)
|
||||
]}
|
||||
if what == 'sine':
|
||||
hz = 0.1 # frequency
|
||||
return {'BTC_UNITEST':
|
||||
[{'T': pair[x]['T'], # Keep old dates
|
||||
'V': pair[x]['V'], # Keep old volume
|
||||
'BV': pair[x]['BV'], # keep too
|
||||
# But replace O,H,L,C
|
||||
'O': math.sin(x * hz) / 1000 + base,
|
||||
'H': math.sin(x * hz) / 1000 + base + 0.0001,
|
||||
'L': math.sin(x * hz) / 1000 + base - 0.0001,
|
||||
'C': math.sin(x * hz) / 1000 + base} for x in range(0, datalen)]}
|
||||
return {'UNITTEST/BTC': [
|
||||
[
|
||||
pair[x][0], # Keep old dates
|
||||
math.sin(x * hz) / 1000 + base, # But replace O,H,L,C
|
||||
math.sin(x * hz) / 1000 + base + 0.0001,
|
||||
math.sin(x * hz) / 1000 + base - 0.0001,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
pair[x][5] # Keep old volume
|
||||
] for x in range(0, datalen)
|
||||
]}
|
||||
return data
|
||||
|
||||
|
||||
def simple_backtest(config, contour, num_results):
|
||||
def simple_backtest(config, contour, num_results, mocker) -> None:
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(config)
|
||||
|
||||
data = load_data_test(contour)
|
||||
processed = optimize.preprocess(data)
|
||||
processed = backtesting.tickerdata_to_dataframe(data)
|
||||
assert isinstance(processed, dict)
|
||||
results = backtest(config['stake_amount'], processed, 1, True)
|
||||
results = backtesting.backtest(
|
||||
{
|
||||
'stake_amount': config['stake_amount'],
|
||||
'processed': processed,
|
||||
'max_open_trades': 1,
|
||||
'realistic': True
|
||||
}
|
||||
)
|
||||
# results :: <class 'pandas.core.frame.DataFrame'>
|
||||
assert len(results) == num_results
|
||||
|
||||
|
||||
# Test backtest on offline data
|
||||
# loaded by freqdata/optimize/__init__.py::load_data()
|
||||
def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=False,
|
||||
timerange=None, exchange=None):
|
||||
tickerdata = optimize.load_tickerdata_file(datadir, 'UNITTEST/BTC', '1m', timerange=timerange)
|
||||
pairdata = {'UNITTEST/BTC': tickerdata}
|
||||
return pairdata
|
||||
|
||||
|
||||
def test_backtest2(default_conf, mocker):
|
||||
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
||||
data = optimize.load_data(None, ticker_interval=5, pairs=['BTC_ETH'])
|
||||
results = backtest(default_conf['stake_amount'],
|
||||
optimize.preprocess(data), 10, True)
|
||||
# use for mock freqtrade.exchange.get_ticker_history'
|
||||
def _load_pair_as_ticks(pair, tickfreq):
|
||||
ticks = optimize.load_data(None, ticker_interval=tickfreq, pairs=[pair])
|
||||
ticks = trim_dictlist(ticks, -201)
|
||||
return ticks[pair]
|
||||
|
||||
|
||||
# FIX: fixturize this?
|
||||
def _make_backtest_conf(mocker, conf=None, pair='UNITTEST/BTC', record=None):
|
||||
data = optimize.load_data(None, ticker_interval='8m', pairs=[pair])
|
||||
data = trim_dictlist(data, -201)
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(conf)
|
||||
return {
|
||||
'stake_amount': conf['stake_amount'],
|
||||
'processed': backtesting.tickerdata_to_dataframe(data),
|
||||
'max_open_trades': 10,
|
||||
'realistic': True,
|
||||
'record': record
|
||||
}
|
||||
|
||||
|
||||
def _trend(signals, buy_value, sell_value):
|
||||
n = len(signals['low'])
|
||||
buy = np.zeros(n)
|
||||
sell = np.zeros(n)
|
||||
for i in range(0, len(signals['buy'])):
|
||||
if random.random() > 0.5: # Both buy and sell signals at same timeframe
|
||||
buy[i] = buy_value
|
||||
sell[i] = sell_value
|
||||
signals['buy'] = buy
|
||||
signals['sell'] = sell
|
||||
return signals
|
||||
|
||||
|
||||
def _trend_alternate(dataframe=None):
|
||||
signals = dataframe
|
||||
low = signals['low']
|
||||
n = len(low)
|
||||
buy = np.zeros(n)
|
||||
sell = np.zeros(n)
|
||||
for i in range(0, len(buy)):
|
||||
if i % 2 == 0:
|
||||
buy[i] = 1
|
||||
else:
|
||||
sell[i] = 1
|
||||
signals['buy'] = buy
|
||||
signals['sell'] = sell
|
||||
return dataframe
|
||||
|
||||
|
||||
# Unit tests
|
||||
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
||||
"""
|
||||
Test setup_configuration() function
|
||||
"""
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(default_conf)
|
||||
))
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'backtesting'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args))
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert log_has(
|
||||
'Using data folder: {} ...'.format(config['datadir']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert 'ticker_interval' in config
|
||||
assert not log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
|
||||
|
||||
assert 'live' not in config
|
||||
assert not log_has('Parameter -l/--live detected ...', caplog.record_tuples)
|
||||
|
||||
assert 'realistic_simulation' not in config
|
||||
assert not log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
|
||||
|
||||
assert 'refresh_pairs' not in config
|
||||
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
|
||||
|
||||
assert 'timerange' not in config
|
||||
assert 'export' not in config
|
||||
|
||||
|
||||
def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> None:
|
||||
"""
|
||||
Test setup_configuration() function
|
||||
"""
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(default_conf)
|
||||
))
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'--datadir', '/foo/bar',
|
||||
'backtesting',
|
||||
'--ticker-interval', '1m',
|
||||
'--live',
|
||||
'--realistic-simulation',
|
||||
'--refresh-pairs-cached',
|
||||
'--timerange', ':100',
|
||||
'--export', '/bar/foo',
|
||||
'--export-filename', 'foo_bar.json'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args))
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert log_has(
|
||||
'Using data folder: {} ...'.format(config['datadir']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert 'ticker_interval' in config
|
||||
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
|
||||
assert log_has(
|
||||
'Using ticker_interval: 1m ...',
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
assert 'live' in config
|
||||
assert log_has('Parameter -l/--live detected ...', caplog.record_tuples)
|
||||
|
||||
assert 'realistic_simulation' in config
|
||||
assert log_has('Parameter --realistic-simulation detected ...', caplog.record_tuples)
|
||||
assert log_has('Using max_open_trades: 1 ...', caplog.record_tuples)
|
||||
|
||||
assert 'refresh_pairs' in config
|
||||
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
|
||||
assert 'timerange' in config
|
||||
assert log_has(
|
||||
'Parameter --timerange detected: {} ...'.format(config['timerange']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
assert 'export' in config
|
||||
assert log_has(
|
||||
'Parameter --export detected: {} ...'.format(config['export']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert 'exportfilename' in config
|
||||
assert log_has(
|
||||
'Storing backtest results to {} ...'.format(config['exportfilename']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
|
||||
def test_setup_configuration_unlimited_stake_amount(mocker, default_conf, caplog) -> None:
|
||||
"""
|
||||
Test setup_configuration() function
|
||||
"""
|
||||
|
||||
conf = deepcopy(default_conf)
|
||||
conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
|
||||
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(conf)
|
||||
))
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'backtesting'
|
||||
]
|
||||
|
||||
with pytest.raises(DependencyException, match=r'.*stake amount.*'):
|
||||
setup_configuration(get_args(args))
|
||||
|
||||
|
||||
def test_start(mocker, fee, default_conf, caplog) -> None:
|
||||
"""
|
||||
Test start() function
|
||||
"""
|
||||
start_mock = MagicMock()
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock)
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(default_conf)
|
||||
))
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'backtesting'
|
||||
]
|
||||
args = get_args(args)
|
||||
start(args)
|
||||
assert log_has(
|
||||
'Starting freqtrade in Backtesting mode',
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert start_mock.call_count == 1
|
||||
|
||||
|
||||
def test_backtesting_init(mocker, default_conf) -> None:
|
||||
"""
|
||||
Test Backtesting._init() method
|
||||
"""
|
||||
patch_exchange(mocker)
|
||||
get_fee = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
|
||||
backtesting = Backtesting(default_conf)
|
||||
assert backtesting.config == default_conf
|
||||
assert isinstance(backtesting.analyze, Analyze)
|
||||
assert backtesting.ticker_interval == '5m'
|
||||
assert callable(backtesting.tickerdata_to_dataframe)
|
||||
assert callable(backtesting.populate_buy_trend)
|
||||
assert callable(backtesting.populate_sell_trend)
|
||||
get_fee.assert_called()
|
||||
assert backtesting.fee == 0.5
|
||||
|
||||
|
||||
def test_tickerdata_to_dataframe(default_conf, mocker) -> None:
|
||||
"""
|
||||
Test Backtesting.tickerdata_to_dataframe() method
|
||||
"""
|
||||
patch_exchange(mocker)
|
||||
timerange = TimeRange(None, 'line', 0, -100)
|
||||
tick = optimize.load_tickerdata_file(None, 'UNITTEST/BTC', '1m', timerange=timerange)
|
||||
tickerlist = {'UNITTEST/BTC': tick}
|
||||
|
||||
backtesting = Backtesting(default_conf)
|
||||
data = backtesting.tickerdata_to_dataframe(tickerlist)
|
||||
assert len(data['UNITTEST/BTC']) == 99
|
||||
|
||||
# Load Analyze to compare the result between Backtesting function and Analyze are the same
|
||||
analyze = Analyze(default_conf)
|
||||
data2 = analyze.tickerdata_to_dataframe(tickerlist)
|
||||
assert data['UNITTEST/BTC'].equals(data2['UNITTEST/BTC'])
|
||||
|
||||
|
||||
def test_get_timeframe(default_conf, mocker) -> None:
|
||||
"""
|
||||
Test Backtesting.get_timeframe() method
|
||||
"""
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
|
||||
data = backtesting.tickerdata_to_dataframe(
|
||||
optimize.load_data(
|
||||
None,
|
||||
ticker_interval='1m',
|
||||
pairs=['UNITTEST/BTC']
|
||||
)
|
||||
)
|
||||
min_date, max_date = backtesting.get_timeframe(data)
|
||||
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
||||
assert max_date.isoformat() == '2017-11-14T22:58:00+00:00'
|
||||
|
||||
|
||||
def test_generate_text_table(default_conf, mocker):
|
||||
"""
|
||||
Test Backtesting.generate_text_table() method
|
||||
"""
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
|
||||
results = pd.DataFrame(
|
||||
{
|
||||
'pair': ['ETH/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [0.1, 0.2],
|
||||
'profit_abs': [0.2, 0.4],
|
||||
'trade_duration': [10, 30],
|
||||
'profit': [2, 0],
|
||||
'loss': [0, 0]
|
||||
}
|
||||
)
|
||||
|
||||
result_str = (
|
||||
'| pair | buy count | avg profit % | '
|
||||
'total profit BTC | avg duration | profit | loss |\n'
|
||||
'|:--------|------------:|---------------:|'
|
||||
'-------------------:|---------------:|---------:|-------:|\n'
|
||||
'| ETH/BTC | 2 | 15.00 | '
|
||||
'0.60000000 | 20.0 | 2 | 0 |\n'
|
||||
'| TOTAL | 2 | 15.00 | '
|
||||
'0.60000000 | 20.0 | 2 | 0 |'
|
||||
)
|
||||
assert backtesting._generate_text_table(data={'ETH/BTC': {}}, results=results) == result_str
|
||||
|
||||
|
||||
def test_backtesting_start(default_conf, mocker, caplog) -> None:
|
||||
"""
|
||||
Test Backtesting.start() method
|
||||
"""
|
||||
|
||||
def get_timeframe(input1, input2):
|
||||
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
|
||||
|
||||
mocker.patch('freqtrade.freqtradebot.Analyze', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.load_data', mocked_load_data)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history')
|
||||
patch_exchange(mocker)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.optimize.backtesting.Backtesting',
|
||||
backtest=MagicMock(),
|
||||
_generate_text_table=MagicMock(return_value='1'),
|
||||
get_timeframe=get_timeframe,
|
||||
)
|
||||
|
||||
conf = deepcopy(default_conf)
|
||||
conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
conf['ticker_interval'] = 1
|
||||
conf['live'] = False
|
||||
conf['datadir'] = None
|
||||
conf['export'] = None
|
||||
conf['timerange'] = '-100'
|
||||
|
||||
backtesting = Backtesting(conf)
|
||||
backtesting.start()
|
||||
# check the logs, that will contain the backtest result
|
||||
exists = [
|
||||
'Using local backtesting data (using whitelist in given config) ...',
|
||||
'Using stake_currency: BTC ...',
|
||||
'Using stake_amount: 0.001 ...',
|
||||
'Measuring data from 2017-11-14T21:17:00+00:00 '
|
||||
'up to 2017-11-14T22:59:00+00:00 (0 days)..'
|
||||
]
|
||||
for line in exists:
|
||||
assert log_has(line, caplog.record_tuples)
|
||||
|
||||
|
||||
def test_backtesting_start_no_data(default_conf, mocker, caplog) -> None:
|
||||
"""
|
||||
Test Backtesting.start() method if no data is found
|
||||
"""
|
||||
|
||||
def get_timeframe(input1, input2):
|
||||
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
|
||||
|
||||
mocker.patch('freqtrade.freqtradebot.Analyze', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.load_data', MagicMock(return_value={}))
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history')
|
||||
patch_exchange(mocker)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.optimize.backtesting.Backtesting',
|
||||
backtest=MagicMock(),
|
||||
_generate_text_table=MagicMock(return_value='1'),
|
||||
get_timeframe=get_timeframe,
|
||||
)
|
||||
|
||||
conf = deepcopy(default_conf)
|
||||
conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
conf['ticker_interval'] = "1m"
|
||||
conf['live'] = False
|
||||
conf['datadir'] = None
|
||||
conf['export'] = None
|
||||
conf['timerange'] = '20180101-20180102'
|
||||
|
||||
backtesting = Backtesting(conf)
|
||||
backtesting.start()
|
||||
# check the logs, that will contain the backtest result
|
||||
|
||||
assert log_has('No data found. Terminating.', caplog.record_tuples)
|
||||
|
||||
|
||||
def test_backtest(default_conf, fee, mocker) -> None:
|
||||
"""
|
||||
Test Backtesting.backtest() method
|
||||
"""
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
pair = 'UNITTEST/BTC'
|
||||
data = optimize.load_data(None, ticker_interval='5m', pairs=['UNITTEST/BTC'])
|
||||
data = trim_dictlist(data, -200)
|
||||
data_processed = backtesting.tickerdata_to_dataframe(data)
|
||||
results = backtesting.backtest(
|
||||
{
|
||||
'stake_amount': default_conf['stake_amount'],
|
||||
'processed': data_processed,
|
||||
'max_open_trades': 10,
|
||||
'realistic': True
|
||||
}
|
||||
)
|
||||
assert not results.empty
|
||||
assert len(results) == 2
|
||||
|
||||
expected = pd.DataFrame(
|
||||
{'pair': [pair, pair],
|
||||
'profit_percent': [0.00148826, 0.00075313],
|
||||
'profit_abs': [1.49e-06, 7.6e-07],
|
||||
'open_time': [Arrow(2018, 1, 29, 18, 40, 0).datetime,
|
||||
Arrow(2018, 1, 30, 3, 30, 0).datetime],
|
||||
'close_time': [Arrow(2018, 1, 29, 23, 15, 0).datetime,
|
||||
Arrow(2018, 1, 30, 4, 20, 0).datetime],
|
||||
'open_index': [77, 183],
|
||||
'close_index': [132, 193],
|
||||
'trade_duration': [275, 50],
|
||||
'open_at_end': [False, False],
|
||||
'open_rate': [0.10432, 0.103364],
|
||||
'close_rate': [0.104999, 0.10396]})
|
||||
pd.testing.assert_frame_equal(results, expected)
|
||||
data_pair = data_processed[pair]
|
||||
for _, t in results.iterrows():
|
||||
ln = data_pair.loc[data_pair["date"] == t["open_time"]]
|
||||
# Check open trade
|
||||
assert ln is not None
|
||||
assert round(ln.iloc[0]["close"], 6) == round(t["open_rate"], 6)
|
||||
# check close trade
|
||||
ln = data_pair.loc[data_pair["date"] == t["close_time"]]
|
||||
assert round(ln.iloc[0]["close"], 6) == round(t["close_rate"], 6)
|
||||
|
||||
|
||||
def test_processed(default_conf, mocker):
|
||||
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
||||
def test_backtest_1min_ticker_interval(default_conf, fee, mocker) -> None:
|
||||
"""
|
||||
Test Backtesting.backtest() method with 1 min ticker
|
||||
"""
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
|
||||
# Run a backtesting for an exiting 5min ticker_interval
|
||||
data = optimize.load_data(None, ticker_interval='1m', pairs=['UNITTEST/BTC'])
|
||||
data = trim_dictlist(data, -200)
|
||||
results = backtesting.backtest(
|
||||
{
|
||||
'stake_amount': default_conf['stake_amount'],
|
||||
'processed': backtesting.tickerdata_to_dataframe(data),
|
||||
'max_open_trades': 1,
|
||||
'realistic': True
|
||||
}
|
||||
)
|
||||
assert not results.empty
|
||||
assert len(results) == 1
|
||||
|
||||
|
||||
def test_processed(default_conf, mocker) -> None:
|
||||
"""
|
||||
Test Backtesting.backtest() method with offline data
|
||||
"""
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
|
||||
dict_of_tickerrows = load_data_test('raise')
|
||||
dataframes = optimize.preprocess(dict_of_tickerrows)
|
||||
dataframe = dataframes['BTC_UNITEST']
|
||||
dataframes = backtesting.tickerdata_to_dataframe(dict_of_tickerrows)
|
||||
dataframe = dataframes['UNITTEST/BTC']
|
||||
cols = dataframe.columns
|
||||
# assert the dataframe got some of the indicator columns
|
||||
for col in ['close', 'high', 'low', 'open', 'date',
|
||||
@@ -142,36 +566,175 @@ def test_processed(default_conf, mocker):
|
||||
assert col in cols
|
||||
|
||||
|
||||
def test_backtest_pricecontours(default_conf, mocker):
|
||||
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
||||
tests = [['raise', 17], ['lower', 0], ['sine', 17]]
|
||||
def test_backtest_pricecontours(default_conf, fee, mocker) -> None:
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
tests = [['raise', 18], ['lower', 0], ['sine', 16]]
|
||||
for [contour, numres] in tests:
|
||||
simple_backtest(default_conf, contour, numres)
|
||||
simple_backtest(default_conf, contour, numres, mocker)
|
||||
|
||||
|
||||
def mocked_load_data(datadir, pairs=[], ticker_interval=0, refresh_pairs=False):
|
||||
tickerdata = optimize.load_tickerdata_file(datadir, 'BTC_UNITEST', 1)
|
||||
pairdata = {'BTC_UNITEST': tickerdata}
|
||||
return trim_dictlist(pairdata, -100)
|
||||
# Test backtest using offline data (testdata directory)
|
||||
def test_backtest_ticks(default_conf, fee, mocker):
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
ticks = [1, 5]
|
||||
fun = Backtesting(default_conf).populate_buy_trend
|
||||
for _ in ticks:
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.populate_buy_trend = fun # Override
|
||||
backtesting.populate_sell_trend = fun # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
assert not results.empty
|
||||
|
||||
|
||||
def test_backtest_start(default_conf, mocker, caplog):
|
||||
default_conf['exchange']['pair_whitelist'] = ['BTC_UNITEST']
|
||||
mocker.patch.dict('freqtrade.main._CONF', default_conf)
|
||||
mocker.patch('freqtrade.misc.load_config', new=lambda s: default_conf)
|
||||
mocker.patch.multiple('freqtrade.optimize',
|
||||
load_data=mocked_load_data)
|
||||
def test_backtest_clash_buy_sell(mocker, default_conf):
|
||||
# Override the default buy trend function in our default_strategy
|
||||
def fun(dataframe=None):
|
||||
buy_value = 1
|
||||
sell_value = 1
|
||||
return _trend(dataframe, buy_value, sell_value)
|
||||
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.populate_buy_trend = fun # Override
|
||||
backtesting.populate_sell_trend = fun # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
assert results.empty
|
||||
|
||||
|
||||
def test_backtest_only_sell(mocker, default_conf):
|
||||
# Override the default buy trend function in our default_strategy
|
||||
def fun(dataframe=None):
|
||||
buy_value = 0
|
||||
sell_value = 1
|
||||
return _trend(dataframe, buy_value, sell_value)
|
||||
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf)
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.populate_buy_trend = fun # Override
|
||||
backtesting.populate_sell_trend = fun # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
assert results.empty
|
||||
|
||||
|
||||
def test_backtest_alternate_buy_sell(default_conf, fee, mocker):
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, pair='UNITTEST/BTC')
|
||||
backtesting = Backtesting(default_conf)
|
||||
backtesting.populate_buy_trend = _trend_alternate # Override
|
||||
backtesting.populate_sell_trend = _trend_alternate # Override
|
||||
results = backtesting.backtest(backtest_conf)
|
||||
backtesting._store_backtest_result("test_.json", results)
|
||||
assert len(results) == 4
|
||||
# One trade was force-closed at the end
|
||||
assert len(results.loc[results.open_at_end]) == 1
|
||||
|
||||
|
||||
def test_backtest_record(default_conf, fee, mocker):
|
||||
names = []
|
||||
records = []
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.backtesting.file_dump_json',
|
||||
new=lambda n, r: (names.append(n), records.append(r))
|
||||
)
|
||||
|
||||
backtesting = Backtesting(default_conf)
|
||||
results = pd.DataFrame({"pair": ["UNITTEST/BTC", "UNITTEST/BTC",
|
||||
"UNITTEST/BTC", "UNITTEST/BTC"],
|
||||
"profit_percent": [0.003312, 0.010801, 0.013803, 0.002780],
|
||||
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
|
||||
"open_time": [Arrow(2017, 11, 14, 19, 32, 00).datetime,
|
||||
Arrow(2017, 11, 14, 21, 36, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 12, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 44, 00).datetime],
|
||||
"close_time": [Arrow(2017, 11, 14, 21, 35, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 10, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 43, 00).datetime,
|
||||
Arrow(2017, 11, 14, 22, 58, 00).datetime],
|
||||
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
|
||||
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
|
||||
"open_index": [1, 119, 153, 185],
|
||||
"close_index": [118, 151, 184, 199],
|
||||
"trade_duration": [123, 34, 31, 14],
|
||||
"open_at_end": [False, False, False, True]
|
||||
})
|
||||
backtesting._store_backtest_result("backtest-result.json", results)
|
||||
assert len(results) == 4
|
||||
# Assert file_dump_json was only called once
|
||||
assert names == ['backtest-result.json']
|
||||
records = records[0]
|
||||
# Ensure records are of correct type
|
||||
assert len(records) == 4
|
||||
# ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117)
|
||||
# Below follows just a typecheck of the schema/type of trade-records
|
||||
oix = None
|
||||
for (pair, profit, date_buy, date_sell, buy_index, dur,
|
||||
openr, closer, open_at_end) in records:
|
||||
assert pair == 'UNITTEST/BTC'
|
||||
assert isinstance(profit, float)
|
||||
# FIX: buy/sell should be converted to ints
|
||||
assert isinstance(date_buy, float)
|
||||
assert isinstance(date_sell, float)
|
||||
assert isinstance(openr, float)
|
||||
assert isinstance(closer, float)
|
||||
assert isinstance(open_at_end, bool)
|
||||
isinstance(buy_index, pd._libs.tslib.Timestamp)
|
||||
if oix:
|
||||
assert buy_index > oix
|
||||
oix = buy_index
|
||||
assert dur > 0
|
||||
|
||||
|
||||
def test_backtest_start_live(default_conf, mocker, caplog):
|
||||
conf = deepcopy(default_conf)
|
||||
conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_ticker_history',
|
||||
new=lambda s, n, i: _load_pair_as_ticks(n, i))
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', MagicMock())
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', MagicMock())
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(conf)
|
||||
))
|
||||
|
||||
args = MagicMock()
|
||||
args.ticker_interval = 1
|
||||
args.level = 10
|
||||
args.live = False
|
||||
args.live = True
|
||||
args.datadir = None
|
||||
backtesting.start(args)
|
||||
args.export = None
|
||||
args.strategy = 'DefaultStrategy'
|
||||
args.timerange = '-100' # needed due to MagicMock malleability
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'--datadir', 'freqtrade/tests/testdata',
|
||||
'backtesting',
|
||||
'--ticker-interval', '1m',
|
||||
'--live',
|
||||
'--timerange', '-100',
|
||||
'--realistic-simulation'
|
||||
]
|
||||
args = get_args(args)
|
||||
start(args)
|
||||
# check the logs, that will contain the backtest result
|
||||
exists = ['Using max_open_trades: 1 ...',
|
||||
'Using stake_amount: 0.001 ...',
|
||||
'Measuring data from 2017-11-14T21:17:00+00:00 up to 2017-11-14T22:59:00+00:00 ...']
|
||||
exists = [
|
||||
'Parameter -i/--ticker-interval detected ...',
|
||||
'Using ticker_interval: 1m ...',
|
||||
'Parameter -l/--live detected ...',
|
||||
'Using max_open_trades: 1 ...',
|
||||
'Parameter --timerange detected: -100 ...',
|
||||
'Using data folder: freqtrade/tests/testdata ...',
|
||||
'Using stake_currency: BTC ...',
|
||||
'Using stake_amount: 0.001 ...',
|
||||
'Downloading data for all pairs in whitelist ...',
|
||||
'Measuring data from 2017-11-14T19:31:00+00:00 up to 2017-11-14T22:58:00+00:00 (0 days)..',
|
||||
'Parameter --realistic-simulation detected ...'
|
||||
]
|
||||
|
||||
for line in exists:
|
||||
assert ('freqtrade.optimize.backtesting',
|
||||
logging.INFO,
|
||||
line) in caplog.record_tuples
|
||||
assert log_has(line, caplog.record_tuples)
|
||||
|
||||
Reference in New Issue
Block a user