from freqtrade/develop
This commit is contained in:
490
freqtrade/optimize/backtesting.py
Normal file → Executable file
490
freqtrade/optimize/backtesting.py
Normal file → Executable file
@@ -1,197 +1,369 @@
|
||||
# pragma pylint: disable=missing-docstring,W0212
|
||||
# pragma pylint: disable=missing-docstring, W0212, too-many-arguments
|
||||
|
||||
"""
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
import logging
|
||||
from typing import Dict, Tuple
|
||||
import operator
|
||||
from argparse import Namespace
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame, Series
|
||||
from pandas import DataFrame
|
||||
from tabulate import tabulate
|
||||
|
||||
import freqtrade.misc as misc
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade import exchange
|
||||
from freqtrade.analyze import populate_buy_trend, populate_sell_trend
|
||||
from freqtrade.exchange import Bittrex
|
||||
from freqtrade.main import min_roi_reached
|
||||
from freqtrade.optimize import preprocess
|
||||
from freqtrade import DependencyException, constants
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
class BacktestResult(NamedTuple):
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
NamedTuple Defining BacktestResults inputs.
|
||||
"""
|
||||
all_dates = Series([])
|
||||
for pair, pair_data in data.items():
|
||||
all_dates = all_dates.append(pair_data['date'])
|
||||
all_dates.sort_values(inplace=True)
|
||||
return arrow.get(all_dates.iloc[0]), arrow.get(all_dates.iloc[-1])
|
||||
pair: str
|
||||
profit_percent: float
|
||||
profit_abs: float
|
||||
open_time: datetime
|
||||
close_time: datetime
|
||||
open_index: int
|
||||
close_index: int
|
||||
trade_duration: float
|
||||
open_at_end: bool
|
||||
open_rate: float
|
||||
close_rate: float
|
||||
|
||||
|
||||
def generate_text_table(
|
||||
data: Dict[str, Dict], results: DataFrame, stake_currency, ticker_interval) -> str:
|
||||
class Backtesting(object):
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:return: pretty printed table with tabulate as str
|
||||
Backtesting class, this class contains all the logic to run a backtest
|
||||
|
||||
To run a backtest:
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
||||
"""
|
||||
floatfmt = ('s', 'd', '.2f', '.8f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['pair', 'buy count', 'avg profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for pair in data:
|
||||
result = results[results.currency == pair]
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
self.config = config
|
||||
self.analyze = Analyze(self.config)
|
||||
self.ticker_interval = self.analyze.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.analyze.tickerdata_to_dataframe
|
||||
self.populate_buy_trend = self.analyze.populate_buy_trend
|
||||
self.populate_sell_trend = self.analyze.populate_sell_trend
|
||||
|
||||
# Reset keys for backtesting
|
||||
self.config['exchange']['key'] = ''
|
||||
self.config['exchange']['secret'] = ''
|
||||
self.config['exchange']['password'] = ''
|
||||
self.config['exchange']['uid'] = ''
|
||||
self.config['dry_run'] = True
|
||||
self.exchange = Exchange(self.config)
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
@staticmethod
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
timeframe = [
|
||||
(arrow.get(min(frame.date)), arrow.get(max(frame.date)))
|
||||
for frame in data.values()
|
||||
]
|
||||
return min(timeframe, key=operator.itemgetter(0))[0], \
|
||||
max(timeframe, key=operator.itemgetter(1))[1]
|
||||
|
||||
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:return: pretty printed table with tabulate as str
|
||||
"""
|
||||
stake_currency = str(self.config.get('stake_currency'))
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.8f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['pair', 'buy count', 'avg profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for pair in data:
|
||||
result = results[results.pair == pair]
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_abs.sum(),
|
||||
result.trade_duration.mean(),
|
||||
len(result[result.profit_abs > 0]),
|
||||
len(result[result.profit_abs < 0])
|
||||
])
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_BTC.sum(),
|
||||
result.duration.mean() * ticker_interval,
|
||||
result.profit.sum(),
|
||||
result.loss.sum()
|
||||
'TOTAL',
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
results.trade_duration.mean(),
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
'TOTAL',
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_BTC.sum(),
|
||||
results.duration.mean() * ticker_interval,
|
||||
results.profit.sum(),
|
||||
results.loss.sum()
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
|
||||
def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None:
|
||||
|
||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end)
|
||||
for index, t in results.iterrows()]
|
||||
|
||||
def backtest(stake_amount: float, processed: Dict[str, DataFrame],
|
||||
max_open_trades: int = 0, realistic: bool = True, sell_profit_only: bool = False,
|
||||
stoploss: int = -1.00, use_sell_signal: bool = False) -> DataFrame:
|
||||
"""
|
||||
Implements backtesting functionality
|
||||
:param stake_amount: btc amount to use for each trade
|
||||
:param processed: a processed dictionary with format {pair, data}
|
||||
:param max_open_trades: maximum number of concurrent trades (default: 0, disabled)
|
||||
:param realistic: do we try to simulate realistic trades? (default: True)
|
||||
:return: DataFrame
|
||||
"""
|
||||
trades = []
|
||||
trade_count_lock: dict = {}
|
||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0
|
||||
ticker = populate_sell_trend(populate_buy_trend(pair_data))
|
||||
# for each buy point
|
||||
lock_pair_until = None
|
||||
buy_subset = ticker[ticker.buy == 1][['buy', 'open', 'close', 'date', 'sell']]
|
||||
for row in buy_subset.itertuples(index=True):
|
||||
if realistic:
|
||||
if lock_pair_until is not None and row.Index <= lock_pair_until:
|
||||
continue
|
||||
if records:
|
||||
logger.info('Dumping backtest results to %s', recordfilename)
|
||||
file_dump_json(recordfilename, records)
|
||||
|
||||
def _get_sell_trade_entry(
|
||||
self, pair: str, buy_row: DataFrame,
|
||||
partial_ticker: List, trade_count_lock: Dict, args: Dict) -> Optional[BacktestResult]:
|
||||
|
||||
stake_amount = args['stake_amount']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
trade = Trade(
|
||||
open_rate=buy_row.close,
|
||||
open_date=buy_row.date,
|
||||
stake_amount=stake_amount,
|
||||
amount=stake_amount / buy_row.open,
|
||||
fee_open=self.fee,
|
||||
fee_close=self.fee
|
||||
)
|
||||
|
||||
# calculate win/lose forwards from buy point
|
||||
for sell_row in partial_ticker:
|
||||
if max_open_trades > 0:
|
||||
# Check if max_open_trades has already been reached for the given date
|
||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
continue
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
|
||||
|
||||
if max_open_trades > 0:
|
||||
# Increase lock
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
buy_signal = sell_row.buy
|
||||
if self.analyze.should_sell(trade, sell_row.close, sell_row.date, buy_signal,
|
||||
sell_row.sell):
|
||||
|
||||
trade = Trade(
|
||||
open_rate=row.close,
|
||||
open_date=row.date,
|
||||
stake_amount=stake_amount,
|
||||
amount=stake_amount / row.open,
|
||||
fee=exchange.get_fee()
|
||||
return BacktestResult(pair=pair,
|
||||
profit_percent=trade.calc_profit_percent(rate=sell_row.close),
|
||||
profit_abs=trade.calc_profit(rate=sell_row.close),
|
||||
open_time=buy_row.date,
|
||||
close_time=sell_row.date,
|
||||
trade_duration=(sell_row.date - buy_row.date).seconds // 60,
|
||||
open_index=buy_row.Index,
|
||||
close_index=sell_row.Index,
|
||||
open_at_end=False,
|
||||
open_rate=buy_row.close,
|
||||
close_rate=sell_row.close
|
||||
)
|
||||
if partial_ticker:
|
||||
# no sell condition found - trade stil open at end of backtest period
|
||||
sell_row = partial_ticker[-1]
|
||||
btr = BacktestResult(pair=pair,
|
||||
profit_percent=trade.calc_profit_percent(rate=sell_row.close),
|
||||
profit_abs=trade.calc_profit(rate=sell_row.close),
|
||||
open_time=buy_row.date,
|
||||
close_time=sell_row.date,
|
||||
trade_duration=(sell_row.date - buy_row.date).seconds // 60,
|
||||
open_index=buy_row.Index,
|
||||
close_index=sell_row.Index,
|
||||
open_at_end=True,
|
||||
open_rate=buy_row.close,
|
||||
close_rate=sell_row.close
|
||||
)
|
||||
logger.debug('Force_selling still open trade %s with %s perc - %s', btr.pair,
|
||||
btr.profit_percent, btr.profit_abs)
|
||||
return btr
|
||||
return None
|
||||
|
||||
def backtest(self, args: Dict) -> DataFrame:
|
||||
"""
|
||||
Implements backtesting functionality
|
||||
|
||||
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
||||
Of course try to not have ugly code. By some accessor are sometime slower than functions.
|
||||
Avoid, logging on this method
|
||||
|
||||
:param args: a dict containing:
|
||||
stake_amount: btc amount to use for each trade
|
||||
processed: a processed dictionary with format {pair, data}
|
||||
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
|
||||
realistic: do we try to simulate realistic trades? (default: True)
|
||||
:return: DataFrame
|
||||
"""
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell']
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
realistic = args.get('realistic', False)
|
||||
trades = []
|
||||
trade_count_lock: Dict = {}
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||
|
||||
ticker_data = self.populate_sell_trend(
|
||||
self.populate_buy_trend(pair_data))[headers].copy()
|
||||
|
||||
# to avoid using data from future, we buy/sell with signal from previous candle
|
||||
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
||||
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
|
||||
|
||||
ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
||||
|
||||
# Convert from Pandas to list for performance reasons
|
||||
# (Looping Pandas is slow.)
|
||||
ticker = [x for x in ticker_data.itertuples()]
|
||||
|
||||
lock_pair_until = None
|
||||
for index, row in enumerate(ticker):
|
||||
if row.buy == 0 or row.sell == 1:
|
||||
continue # skip rows where no buy signal or that would immediately sell off
|
||||
|
||||
if realistic:
|
||||
if lock_pair_until is not None and row.date <= lock_pair_until:
|
||||
continue
|
||||
if max_open_trades > 0:
|
||||
# Check if max_open_trades has already been reached for the given date
|
||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
continue
|
||||
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
|
||||
trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
|
||||
trade_count_lock, args)
|
||||
|
||||
if trade_entry:
|
||||
lock_pair_until = trade_entry.close_time
|
||||
trades.append(trade_entry)
|
||||
else:
|
||||
# Set lock_pair_until to end of testing period if trade could not be closed
|
||||
# This happens only if the buy-signal was with the last candle
|
||||
lock_pair_until = ticker_data.iloc[-1].date
|
||||
|
||||
return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
||||
|
||||
def start(self) -> None:
|
||||
"""
|
||||
Run a backtesting end-to-end
|
||||
:return: None
|
||||
"""
|
||||
data = {}
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
|
||||
|
||||
if self.config.get('live'):
|
||||
logger.info('Downloading data for all pairs in whitelist ...')
|
||||
for pair in pairs:
|
||||
data[pair] = self.exchange.get_ticker_history(pair, self.ticker_interval)
|
||||
else:
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
timerange = Arguments.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
ticker_interval=self.ticker_interval,
|
||||
refresh_pairs=self.config.get('refresh_pairs', False),
|
||||
exchange=self.exchange,
|
||||
timerange=timerange
|
||||
)
|
||||
|
||||
# calculate win/lose forwards from buy point
|
||||
sell_subset = ticker[row.Index + 1:][['close', 'date', 'sell']]
|
||||
for row2 in sell_subset.itertuples(index=True):
|
||||
if max_open_trades > 0:
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1
|
||||
if not data:
|
||||
logger.critical("No data found. Terminating.")
|
||||
return
|
||||
# Ignore max_open_trades in backtesting, except realistic flag was passed
|
||||
if self.config.get('realistic_simulation', False):
|
||||
max_open_trades = self.config['max_open_trades']
|
||||
else:
|
||||
logger.info('Ignoring max_open_trades (realistic_simulation not set) ...')
|
||||
max_open_trades = 0
|
||||
|
||||
current_profit_percent = trade.calc_profit_percent(rate=row2.close)
|
||||
if (sell_profit_only and current_profit_percent < 0):
|
||||
continue
|
||||
if min_roi_reached(trade, row2.close, row2.date) or \
|
||||
(row2.sell == 1 and use_sell_signal) or \
|
||||
current_profit_percent <= stoploss:
|
||||
current_profit_btc = trade.calc_profit(rate=row2.close)
|
||||
lock_pair_until = row2.Index
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
|
||||
trades.append(
|
||||
(
|
||||
pair,
|
||||
current_profit_percent,
|
||||
current_profit_btc,
|
||||
row2.Index - row.Index,
|
||||
current_profit_btc > 0,
|
||||
current_profit_btc < 0
|
||||
)
|
||||
)
|
||||
break
|
||||
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration', 'profit', 'loss']
|
||||
return DataFrame.from_records(trades, columns=labels)
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
|
||||
# Execute backtest and print results
|
||||
results = self.backtest(
|
||||
{
|
||||
'stake_amount': self.config.get('stake_amount'),
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'realistic': self.config.get('realistic_simulation', False),
|
||||
}
|
||||
)
|
||||
|
||||
if self.config.get('export', False):
|
||||
self._store_backtest_result(self.config.get('exportfilename'), results)
|
||||
|
||||
logger.info(
|
||||
'\n======================================== '
|
||||
'BACKTESTING REPORT'
|
||||
' =========================================\n'
|
||||
'%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results
|
||||
)
|
||||
)
|
||||
|
||||
logger.info(
|
||||
'\n====================================== '
|
||||
'LEFT OPEN TRADES REPORT'
|
||||
' ======================================\n'
|
||||
'%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results.loc[results.open_at_end]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def start(args):
|
||||
# Initialize logger
|
||||
logging.basicConfig(
|
||||
level=args.loglevel,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
)
|
||||
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for the backtesting
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
configuration = Configuration(args)
|
||||
config = configuration.get_config()
|
||||
|
||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
||||
# Ensure we do not use Exchange credentials
|
||||
config['exchange']['key'] = ''
|
||||
config['exchange']['secret'] = ''
|
||||
|
||||
logger.info('Using config: %s ...', args.config)
|
||||
config = misc.load_config(args.config)
|
||||
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
|
||||
raise DependencyException('stake amount could not be "%s" for backtesting' %
|
||||
constants.UNLIMITED_STAKE_AMOUNT)
|
||||
|
||||
logger.info('Using ticker_interval: %s ...', args.ticker_interval)
|
||||
return config
|
||||
|
||||
data = {}
|
||||
pairs = config['exchange']['pair_whitelist']
|
||||
if args.live:
|
||||
logger.info('Downloading data for all pairs in whitelist ...')
|
||||
for pair in pairs:
|
||||
data[pair] = exchange.get_ticker_history(pair, args.ticker_interval)
|
||||
else:
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
data = optimize.load_data(args.datadir, pairs=pairs, ticker_interval=args.ticker_interval,
|
||||
refresh_pairs=args.refresh_pairs)
|
||||
|
||||
logger.info('Using stake_currency: %s ...', config['stake_currency'])
|
||||
logger.info('Using stake_amount: %s ...', config['stake_amount'])
|
||||
def start(args: Namespace) -> None:
|
||||
"""
|
||||
Start Backtesting script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
# Initialize configuration
|
||||
config = setup_configuration(args)
|
||||
logger.info('Starting freqtrade in Backtesting mode')
|
||||
|
||||
max_open_trades = 0
|
||||
if args.realistic_simulation:
|
||||
logger.info('Using max_open_trades: %s ...', config['max_open_trades'])
|
||||
max_open_trades = config['max_open_trades']
|
||||
|
||||
# Monkey patch config
|
||||
from freqtrade import main
|
||||
main._CONF = config
|
||||
|
||||
preprocessed = preprocess(data)
|
||||
# Print timeframe
|
||||
min_date, max_date = get_timeframe(preprocessed)
|
||||
logger.info('Measuring data from %s up to %s ...', min_date.isoformat(), max_date.isoformat())
|
||||
|
||||
# Execute backtest and print results
|
||||
results = backtest(
|
||||
stake_amount=config['stake_amount'],
|
||||
processed=preprocessed,
|
||||
max_open_trades=max_open_trades,
|
||||
realistic=args.realistic_simulation,
|
||||
sell_profit_only=config.get('experimental', {}).get('sell_profit_only', False),
|
||||
stoploss=config.get('stoploss'),
|
||||
use_sell_signal=config.get('experimental', {}).get('use_sell_signal', False)
|
||||
)
|
||||
logger.info(
|
||||
'\n==================================== BACKTESTING REPORT ====================================\n%s', # noqa
|
||||
generate_text_table(data, results, config['stake_currency'], args.ticker_interval)
|
||||
)
|
||||
# Initialize backtesting object
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
||||
|
||||
Reference in New Issue
Block a user