from freqtrade/develop

This commit is contained in:
Nullart
2018-07-09 08:19:28 +08:00
parent 70f2aed0a7
commit e5cd756cca
119 changed files with 15166 additions and 6207 deletions

490
freqtrade/optimize/backtesting.py Normal file → Executable file
View File

@@ -1,197 +1,369 @@
# pragma pylint: disable=missing-docstring,W0212
# pragma pylint: disable=missing-docstring, W0212, too-many-arguments
"""
This module contains the backtesting logic
"""
import logging
from typing import Dict, Tuple
import operator
from argparse import Namespace
from datetime import datetime
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
import arrow
from pandas import DataFrame, Series
from pandas import DataFrame
from tabulate import tabulate
import freqtrade.misc as misc
import freqtrade.optimize as optimize
from freqtrade import exchange
from freqtrade.analyze import populate_buy_trend, populate_sell_trend
from freqtrade.exchange import Bittrex
from freqtrade.main import min_roi_reached
from freqtrade.optimize import preprocess
from freqtrade import DependencyException, constants
from freqtrade.analyze import Analyze
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.exchange import Exchange
from freqtrade.misc import file_dump_json
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
class BacktestResult(NamedTuple):
"""
Get the maximum timeframe for the given backtest data
:param data: dictionary with preprocessed backtesting data
:return: tuple containing min_date, max_date
NamedTuple Defining BacktestResults inputs.
"""
all_dates = Series([])
for pair, pair_data in data.items():
all_dates = all_dates.append(pair_data['date'])
all_dates.sort_values(inplace=True)
return arrow.get(all_dates.iloc[0]), arrow.get(all_dates.iloc[-1])
pair: str
profit_percent: float
profit_abs: float
open_time: datetime
close_time: datetime
open_index: int
close_index: int
trade_duration: float
open_at_end: bool
open_rate: float
close_rate: float
def generate_text_table(
data: Dict[str, Dict], results: DataFrame, stake_currency, ticker_interval) -> str:
class Backtesting(object):
"""
Generates and returns a text table for the given backtest data and the results dataframe
:return: pretty printed table with tabulate as str
Backtesting class, this class contains all the logic to run a backtest
To run a backtest:
backtesting = Backtesting(config)
backtesting.start()
"""
floatfmt = ('s', 'd', '.2f', '.8f', '.1f')
tabular_data = []
headers = ['pair', 'buy count', 'avg profit %',
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
for pair in data:
result = results[results.currency == pair]
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.analyze = Analyze(self.config)
self.ticker_interval = self.analyze.strategy.ticker_interval
self.tickerdata_to_dataframe = self.analyze.tickerdata_to_dataframe
self.populate_buy_trend = self.analyze.populate_buy_trend
self.populate_sell_trend = self.analyze.populate_sell_trend
# Reset keys for backtesting
self.config['exchange']['key'] = ''
self.config['exchange']['secret'] = ''
self.config['exchange']['password'] = ''
self.config['exchange']['uid'] = ''
self.config['dry_run'] = True
self.exchange = Exchange(self.config)
self.fee = self.exchange.get_fee()
@staticmethod
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
"""
Get the maximum timeframe for the given backtest data
:param data: dictionary with preprocessed backtesting data
:return: tuple containing min_date, max_date
"""
timeframe = [
(arrow.get(min(frame.date)), arrow.get(max(frame.date)))
for frame in data.values()
]
return min(timeframe, key=operator.itemgetter(0))[0], \
max(timeframe, key=operator.itemgetter(1))[1]
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:return: pretty printed table with tabulate as str
"""
stake_currency = str(self.config.get('stake_currency'))
floatfmt = ('s', 'd', '.2f', '.8f', '.1f')
tabular_data = []
headers = ['pair', 'buy count', 'avg profit %',
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
for pair in data:
result = results[results.pair == pair]
tabular_data.append([
pair,
len(result.index),
result.profit_percent.mean() * 100.0,
result.profit_abs.sum(),
result.trade_duration.mean(),
len(result[result.profit_abs > 0]),
len(result[result.profit_abs < 0])
])
# Append Total
tabular_data.append([
pair,
len(result.index),
result.profit_percent.mean() * 100.0,
result.profit_BTC.sum(),
result.duration.mean() * ticker_interval,
result.profit.sum(),
result.loss.sum()
'TOTAL',
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_abs.sum(),
results.trade_duration.mean(),
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
# Append Total
tabular_data.append([
'TOTAL',
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_BTC.sum(),
results.duration.mean() * ticker_interval,
results.profit.sum(),
results.loss.sum()
])
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None:
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
t.open_rate, t.close_rate, t.open_at_end)
for index, t in results.iterrows()]
def backtest(stake_amount: float, processed: Dict[str, DataFrame],
max_open_trades: int = 0, realistic: bool = True, sell_profit_only: bool = False,
stoploss: int = -1.00, use_sell_signal: bool = False) -> DataFrame:
"""
Implements backtesting functionality
:param stake_amount: btc amount to use for each trade
:param processed: a processed dictionary with format {pair, data}
:param max_open_trades: maximum number of concurrent trades (default: 0, disabled)
:param realistic: do we try to simulate realistic trades? (default: True)
:return: DataFrame
"""
trades = []
trade_count_lock: dict = {}
exchange._API = Bittrex({'key': '', 'secret': ''})
for pair, pair_data in processed.items():
pair_data['buy'], pair_data['sell'] = 0, 0
ticker = populate_sell_trend(populate_buy_trend(pair_data))
# for each buy point
lock_pair_until = None
buy_subset = ticker[ticker.buy == 1][['buy', 'open', 'close', 'date', 'sell']]
for row in buy_subset.itertuples(index=True):
if realistic:
if lock_pair_until is not None and row.Index <= lock_pair_until:
continue
if records:
logger.info('Dumping backtest results to %s', recordfilename)
file_dump_json(recordfilename, records)
def _get_sell_trade_entry(
self, pair: str, buy_row: DataFrame,
partial_ticker: List, trade_count_lock: Dict, args: Dict) -> Optional[BacktestResult]:
stake_amount = args['stake_amount']
max_open_trades = args.get('max_open_trades', 0)
trade = Trade(
open_rate=buy_row.close,
open_date=buy_row.date,
stake_amount=stake_amount,
amount=stake_amount / buy_row.open,
fee_open=self.fee,
fee_close=self.fee
)
# calculate win/lose forwards from buy point
for sell_row in partial_ticker:
if max_open_trades > 0:
# Check if max_open_trades has already been reached for the given date
if not trade_count_lock.get(row.date, 0) < max_open_trades:
continue
# Increase trade_count_lock for every iteration
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
if max_open_trades > 0:
# Increase lock
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
buy_signal = sell_row.buy
if self.analyze.should_sell(trade, sell_row.close, sell_row.date, buy_signal,
sell_row.sell):
trade = Trade(
open_rate=row.close,
open_date=row.date,
stake_amount=stake_amount,
amount=stake_amount / row.open,
fee=exchange.get_fee()
return BacktestResult(pair=pair,
profit_percent=trade.calc_profit_percent(rate=sell_row.close),
profit_abs=trade.calc_profit(rate=sell_row.close),
open_time=buy_row.date,
close_time=sell_row.date,
trade_duration=(sell_row.date - buy_row.date).seconds // 60,
open_index=buy_row.Index,
close_index=sell_row.Index,
open_at_end=False,
open_rate=buy_row.close,
close_rate=sell_row.close
)
if partial_ticker:
# no sell condition found - trade stil open at end of backtest period
sell_row = partial_ticker[-1]
btr = BacktestResult(pair=pair,
profit_percent=trade.calc_profit_percent(rate=sell_row.close),
profit_abs=trade.calc_profit(rate=sell_row.close),
open_time=buy_row.date,
close_time=sell_row.date,
trade_duration=(sell_row.date - buy_row.date).seconds // 60,
open_index=buy_row.Index,
close_index=sell_row.Index,
open_at_end=True,
open_rate=buy_row.close,
close_rate=sell_row.close
)
logger.debug('Force_selling still open trade %s with %s perc - %s', btr.pair,
btr.profit_percent, btr.profit_abs)
return btr
return None
def backtest(self, args: Dict) -> DataFrame:
"""
Implements backtesting functionality
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
Of course try to not have ugly code. By some accessor are sometime slower than functions.
Avoid, logging on this method
:param args: a dict containing:
stake_amount: btc amount to use for each trade
processed: a processed dictionary with format {pair, data}
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
realistic: do we try to simulate realistic trades? (default: True)
:return: DataFrame
"""
headers = ['date', 'buy', 'open', 'close', 'sell']
processed = args['processed']
max_open_trades = args.get('max_open_trades', 0)
realistic = args.get('realistic', False)
trades = []
trade_count_lock: Dict = {}
for pair, pair_data in processed.items():
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
ticker_data = self.populate_sell_trend(
self.populate_buy_trend(pair_data))[headers].copy()
# to avoid using data from future, we buy/sell with signal from previous candle
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
ticker_data.drop(ticker_data.head(1).index, inplace=True)
# Convert from Pandas to list for performance reasons
# (Looping Pandas is slow.)
ticker = [x for x in ticker_data.itertuples()]
lock_pair_until = None
for index, row in enumerate(ticker):
if row.buy == 0 or row.sell == 1:
continue # skip rows where no buy signal or that would immediately sell off
if realistic:
if lock_pair_until is not None and row.date <= lock_pair_until:
continue
if max_open_trades > 0:
# Check if max_open_trades has already been reached for the given date
if not trade_count_lock.get(row.date, 0) < max_open_trades:
continue
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
trade_count_lock, args)
if trade_entry:
lock_pair_until = trade_entry.close_time
trades.append(trade_entry)
else:
# Set lock_pair_until to end of testing period if trade could not be closed
# This happens only if the buy-signal was with the last candle
lock_pair_until = ticker_data.iloc[-1].date
return DataFrame.from_records(trades, columns=BacktestResult._fields)
def start(self) -> None:
"""
Run a backtesting end-to-end
:return: None
"""
data = {}
pairs = self.config['exchange']['pair_whitelist']
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
if self.config.get('live'):
logger.info('Downloading data for all pairs in whitelist ...')
for pair in pairs:
data[pair] = self.exchange.get_ticker_history(pair, self.ticker_interval)
else:
logger.info('Using local backtesting data (using whitelist in given config) ...')
timerange = Arguments.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = optimize.load_data(
self.config['datadir'],
pairs=pairs,
ticker_interval=self.ticker_interval,
refresh_pairs=self.config.get('refresh_pairs', False),
exchange=self.exchange,
timerange=timerange
)
# calculate win/lose forwards from buy point
sell_subset = ticker[row.Index + 1:][['close', 'date', 'sell']]
for row2 in sell_subset.itertuples(index=True):
if max_open_trades > 0:
# Increase trade_count_lock for every iteration
trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1
if not data:
logger.critical("No data found. Terminating.")
return
# Ignore max_open_trades in backtesting, except realistic flag was passed
if self.config.get('realistic_simulation', False):
max_open_trades = self.config['max_open_trades']
else:
logger.info('Ignoring max_open_trades (realistic_simulation not set) ...')
max_open_trades = 0
current_profit_percent = trade.calc_profit_percent(rate=row2.close)
if (sell_profit_only and current_profit_percent < 0):
continue
if min_roi_reached(trade, row2.close, row2.date) or \
(row2.sell == 1 and use_sell_signal) or \
current_profit_percent <= stoploss:
current_profit_btc = trade.calc_profit(rate=row2.close)
lock_pair_until = row2.Index
preprocessed = self.tickerdata_to_dataframe(data)
trades.append(
(
pair,
current_profit_percent,
current_profit_btc,
row2.Index - row.Index,
current_profit_btc > 0,
current_profit_btc < 0
)
)
break
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration', 'profit', 'loss']
return DataFrame.from_records(trades, columns=labels)
# Print timeframe
min_date, max_date = self.get_timeframe(preprocessed)
logger.info(
'Measuring data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
# Execute backtest and print results
results = self.backtest(
{
'stake_amount': self.config.get('stake_amount'),
'processed': preprocessed,
'max_open_trades': max_open_trades,
'realistic': self.config.get('realistic_simulation', False),
}
)
if self.config.get('export', False):
self._store_backtest_result(self.config.get('exportfilename'), results)
logger.info(
'\n======================================== '
'BACKTESTING REPORT'
' =========================================\n'
'%s',
self._generate_text_table(
data,
results
)
)
logger.info(
'\n====================================== '
'LEFT OPEN TRADES REPORT'
' ======================================\n'
'%s',
self._generate_text_table(
data,
results.loc[results.open_at_end]
)
)
def start(args):
# Initialize logger
logging.basicConfig(
level=args.loglevel,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
def setup_configuration(args: Namespace) -> Dict[str, Any]:
"""
Prepare the configuration for the backtesting
:param args: Cli args from Arguments()
:return: Configuration
"""
configuration = Configuration(args)
config = configuration.get_config()
exchange._API = Bittrex({'key': '', 'secret': ''})
# Ensure we do not use Exchange credentials
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
logger.info('Using config: %s ...', args.config)
config = misc.load_config(args.config)
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
raise DependencyException('stake amount could not be "%s" for backtesting' %
constants.UNLIMITED_STAKE_AMOUNT)
logger.info('Using ticker_interval: %s ...', args.ticker_interval)
return config
data = {}
pairs = config['exchange']['pair_whitelist']
if args.live:
logger.info('Downloading data for all pairs in whitelist ...')
for pair in pairs:
data[pair] = exchange.get_ticker_history(pair, args.ticker_interval)
else:
logger.info('Using local backtesting data (using whitelist in given config) ...')
data = optimize.load_data(args.datadir, pairs=pairs, ticker_interval=args.ticker_interval,
refresh_pairs=args.refresh_pairs)
logger.info('Using stake_currency: %s ...', config['stake_currency'])
logger.info('Using stake_amount: %s ...', config['stake_amount'])
def start(args: Namespace) -> None:
"""
Start Backtesting script
:param args: Cli args from Arguments()
:return: None
"""
# Initialize configuration
config = setup_configuration(args)
logger.info('Starting freqtrade in Backtesting mode')
max_open_trades = 0
if args.realistic_simulation:
logger.info('Using max_open_trades: %s ...', config['max_open_trades'])
max_open_trades = config['max_open_trades']
# Monkey patch config
from freqtrade import main
main._CONF = config
preprocessed = preprocess(data)
# Print timeframe
min_date, max_date = get_timeframe(preprocessed)
logger.info('Measuring data from %s up to %s ...', min_date.isoformat(), max_date.isoformat())
# Execute backtest and print results
results = backtest(
stake_amount=config['stake_amount'],
processed=preprocessed,
max_open_trades=max_open_trades,
realistic=args.realistic_simulation,
sell_profit_only=config.get('experimental', {}).get('sell_profit_only', False),
stoploss=config.get('stoploss'),
use_sell_signal=config.get('experimental', {}).get('use_sell_signal', False)
)
logger.info(
'\n==================================== BACKTESTING REPORT ====================================\n%s', # noqa
generate_text_table(data, results, config['stake_currency'], args.ticker_interval)
)
# Initialize backtesting object
backtesting = Backtesting(config)
backtesting.start()