from freqtrade/develop
This commit is contained in:
490
freqtrade/analyze.py
Normal file → Executable file
490
freqtrade/analyze.py
Normal file → Executable file
@@ -2,314 +2,270 @@
|
||||
Functions to analyze ticker data with indicators and produce buy and sell signals
|
||||
"""
|
||||
import logging
|
||||
from datetime import timedelta
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from typing import Dict, List
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import arrow
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame, to_datetime
|
||||
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.exchange import get_ticker_history
|
||||
from freqtrade import constants
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SignalType(Enum):
|
||||
""" Enum to distinguish between buy and sell signals """
|
||||
"""
|
||||
Enum to distinguish between buy and sell signals
|
||||
"""
|
||||
BUY = "buy"
|
||||
SELL = "sell"
|
||||
|
||||
|
||||
def parse_ticker_dataframe(ticker: list) -> DataFrame:
|
||||
class Analyze(object):
|
||||
"""
|
||||
Analyses the trend for the given ticker history
|
||||
:param ticker: See exchange.get_ticker_history
|
||||
:return: DataFrame
|
||||
Analyze class contains everything the bot need to determine if the situation is good for
|
||||
buying or selling.
|
||||
"""
|
||||
columns = {'C': 'close', 'V': 'volume', 'O': 'open', 'H': 'high', 'L': 'low', 'T': 'date'}
|
||||
frame = DataFrame(ticker) \
|
||||
.drop('BV', 1) \
|
||||
.rename(columns=columns)
|
||||
frame['date'] = to_datetime(frame['date'], utc=True, infer_datetime_format=True)
|
||||
frame.sort_values('date', inplace=True)
|
||||
return frame
|
||||
def __init__(self, config: dict) -> None:
|
||||
"""
|
||||
Init Analyze
|
||||
:param config: Bot configuration (use the one from Configuration())
|
||||
"""
|
||||
self.config = config
|
||||
self.strategy: IStrategy = StrategyResolver(self.config).strategy
|
||||
|
||||
@staticmethod
|
||||
def parse_ticker_dataframe(ticker: list) -> DataFrame:
|
||||
"""
|
||||
Analyses the trend for the given ticker history
|
||||
:param ticker: See exchange.get_ticker_history
|
||||
:return: DataFrame
|
||||
"""
|
||||
cols = ['date', 'open', 'high', 'low', 'close', 'volume']
|
||||
frame = DataFrame(ticker, columns=cols)
|
||||
|
||||
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
frame['date'] = to_datetime(frame['date'],
|
||||
unit='ms',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
"""
|
||||
# group by index and aggregate results to eliminate duplicate ticks
|
||||
frame = frame.groupby(by='date', as_index=False, sort=True).agg({
|
||||
'open': 'first',
|
||||
'high': 'max',
|
||||
'low': 'min',
|
||||
'close': 'last',
|
||||
'volume': 'max',
|
||||
})
|
||||
frame.drop(frame.tail(1).index, inplace=True) # eliminate partial candle
|
||||
return frame
|
||||
|
||||
# Momentum Indicator
|
||||
# ------------------------------------
|
||||
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
||||
# ADX
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
"""
|
||||
return self.strategy.populate_indicators(dataframe=dataframe)
|
||||
|
||||
# Awesome oscillator
|
||||
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
||||
"""
|
||||
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
|
||||
dataframe['cci'] = ta.CCI(dataframe)
|
||||
"""
|
||||
# MACD
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['macdhist'] = macd['macdhist']
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
return self.strategy.populate_buy_trend(dataframe=dataframe)
|
||||
|
||||
# MFI
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
return self.strategy.populate_sell_trend(dataframe=dataframe)
|
||||
|
||||
# Minus Directional Indicator / Movement
|
||||
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
def get_ticker_interval(self) -> str:
|
||||
"""
|
||||
Return ticker interval to use
|
||||
:return: Ticker interval value to use
|
||||
"""
|
||||
return self.strategy.ticker_interval
|
||||
|
||||
# Plus Directional Indicator / Movement
|
||||
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||
"""
|
||||
# ROC
|
||||
dataframe['roc'] = ta.ROC(dataframe)
|
||||
"""
|
||||
# RSI
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
"""
|
||||
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||
rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
||||
def get_stoploss(self) -> float:
|
||||
"""
|
||||
Return stoploss to use
|
||||
:return: Strategy stoploss value to use
|
||||
"""
|
||||
return self.strategy.stoploss
|
||||
|
||||
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||||
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||||
def analyze_ticker(self, ticker_history: List[Dict]) -> DataFrame:
|
||||
"""
|
||||
Parses the given ticker history and returns a populated DataFrame
|
||||
add several TA indicators and buy signal to it
|
||||
:return DataFrame with ticker data and indicator data
|
||||
"""
|
||||
dataframe = self.parse_ticker_dataframe(ticker_history)
|
||||
dataframe = self.populate_indicators(dataframe)
|
||||
dataframe = self.populate_buy_trend(dataframe)
|
||||
dataframe = self.populate_sell_trend(dataframe)
|
||||
return dataframe
|
||||
|
||||
# Stoch
|
||||
stoch = ta.STOCH(dataframe)
|
||||
dataframe['slowd'] = stoch['slowd']
|
||||
dataframe['slowk'] = stoch['slowk']
|
||||
"""
|
||||
# Stoch fast
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['fastk'] = stoch_fast['fastk']
|
||||
"""
|
||||
# Stoch RSI
|
||||
stoch_rsi = ta.STOCHRSI(dataframe)
|
||||
dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
||||
dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
||||
"""
|
||||
def get_signal(self, exchange: Exchange, pair: str, interval: str) -> Tuple[bool, bool]:
|
||||
"""
|
||||
Calculates current signal based several technical analysis indicators
|
||||
:param pair: pair in format ANT/BTC
|
||||
:param interval: Interval to use (in min)
|
||||
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
|
||||
"""
|
||||
ticker_hist = exchange.get_ticker_history(pair, interval)
|
||||
if not ticker_hist:
|
||||
logger.warning('Empty ticker history for pair %s', pair)
|
||||
return False, False
|
||||
|
||||
# Overlap Studies
|
||||
# ------------------------------------
|
||||
try:
|
||||
dataframe = self.analyze_ticker(ticker_hist)
|
||||
except ValueError as error:
|
||||
logger.warning(
|
||||
'Unable to analyze ticker for pair %s: %s',
|
||||
pair,
|
||||
str(error)
|
||||
)
|
||||
return False, False
|
||||
except Exception as error:
|
||||
logger.exception(
|
||||
'Unexpected error when analyzing ticker for pair %s: %s',
|
||||
pair,
|
||||
str(error)
|
||||
)
|
||||
return False, False
|
||||
|
||||
# Previous Bollinger bands
|
||||
# Because ta.BBANDS implementation is broken with small numbers, it actually
|
||||
# returns middle band for all the three bands. Switch to qtpylib.bollinger_bands
|
||||
# and use middle band instead.
|
||||
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
||||
"""
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['bb_middleband'] = bollinger['mid']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
"""
|
||||
if dataframe.empty:
|
||||
logger.warning('Empty dataframe for pair %s', pair)
|
||||
return False, False
|
||||
|
||||
# EMA - Exponential Moving Average
|
||||
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
||||
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
||||
latest = dataframe.iloc[-1]
|
||||
|
||||
# SAR Parabol
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
# Check if dataframe is out of date
|
||||
signal_date = arrow.get(latest['date'])
|
||||
interval_minutes = constants.TICKER_INTERVAL_MINUTES[interval]
|
||||
if signal_date < (arrow.utcnow().shift(minutes=-(interval_minutes * 2 + 5))):
|
||||
logger.warning(
|
||||
'Outdated history for pair %s. Last tick is %s minutes old',
|
||||
pair,
|
||||
(arrow.utcnow() - signal_date).seconds // 60
|
||||
)
|
||||
return False, False
|
||||
|
||||
# SMA - Simple Moving Average
|
||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||||
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
|
||||
logger.debug(
|
||||
'trigger: %s (pair=%s) buy=%s sell=%s',
|
||||
latest['date'],
|
||||
pair,
|
||||
str(buy),
|
||||
str(sell)
|
||||
)
|
||||
return buy, sell
|
||||
|
||||
# TEMA - Triple Exponential Moving Average
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool, sell: bool) -> bool:
|
||||
"""
|
||||
This function evaluate if on the condition required to trigger a sell has been reached
|
||||
if the threshold is reached and updates the trade record.
|
||||
:return: True if trade should be sold, False otherwise
|
||||
"""
|
||||
current_profit = trade.calc_profit_percent(rate)
|
||||
if self.stop_loss_reached(current_rate=rate, trade=trade, current_time=date,
|
||||
current_profit=current_profit):
|
||||
return True
|
||||
|
||||
# Cycle Indicator
|
||||
# ------------------------------------
|
||||
# Hilbert Transform Indicator - SineWave
|
||||
hilbert = ta.HT_SINE(dataframe)
|
||||
dataframe['htsine'] = hilbert['sine']
|
||||
dataframe['htleadsine'] = hilbert['leadsine']
|
||||
experimental = self.config.get('experimental', {})
|
||||
|
||||
# Pattern Recognition - Bullish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Hammer: values [0, 100]
|
||||
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
||||
if buy and experimental.get('ignore_roi_if_buy_signal', False):
|
||||
logger.debug('Buy signal still active - not selling.')
|
||||
return False
|
||||
|
||||
# Inverted Hammer: values [0, 100]
|
||||
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
|
||||
# Check if minimal roi has been reached and no longer in buy conditions (avoiding a fee)
|
||||
if self.min_roi_reached(trade=trade, current_profit=current_profit, current_time=date):
|
||||
logger.debug('Required profit reached. Selling..')
|
||||
return True
|
||||
|
||||
# Dragonfly Doji: values [0, 100]
|
||||
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
|
||||
if experimental.get('sell_profit_only', False):
|
||||
logger.debug('Checking if trade is profitable..')
|
||||
if trade.calc_profit(rate=rate) <= 0:
|
||||
return False
|
||||
if sell and not buy and experimental.get('use_sell_signal', False):
|
||||
logger.debug('Sell signal received. Selling..')
|
||||
return True
|
||||
|
||||
# Piercing Line: values [0, 100]
|
||||
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
|
||||
|
||||
# Morningstar: values [0, 100]
|
||||
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
|
||||
|
||||
# Three White Soldiers: values [0, 100]
|
||||
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
|
||||
"""
|
||||
|
||||
# Pattern Recognition - Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Hanging Man: values [0, 100]
|
||||
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
|
||||
|
||||
# Shooting Star: values [0, 100]
|
||||
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
|
||||
|
||||
# Gravestone Doji: values [0, 100]
|
||||
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
|
||||
|
||||
# Dark Cloud Cover: values [0, 100]
|
||||
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
|
||||
|
||||
# Evening Doji Star: values [0, 100]
|
||||
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
|
||||
|
||||
# Evening Star: values [0, 100]
|
||||
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
|
||||
"""
|
||||
|
||||
# Pattern Recognition - Bullish/Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Three Line Strike: values [0, -100, 100]
|
||||
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
|
||||
|
||||
# Spinning Top: values [0, -100, 100]
|
||||
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
|
||||
|
||||
# Engulfing: values [0, -100, 100]
|
||||
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
|
||||
|
||||
# Harami: values [0, -100, 100]
|
||||
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
|
||||
|
||||
# Three Outside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
|
||||
|
||||
# Three Inside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
|
||||
"""
|
||||
|
||||
# Chart type
|
||||
# ------------------------------------
|
||||
"""
|
||||
# Heikinashi stategy
|
||||
heikinashi = qtpylib.heikinashi(dataframe)
|
||||
dataframe['ha_open'] = heikinashi['open']
|
||||
dataframe['ha_close'] = heikinashi['close']
|
||||
dataframe['ha_high'] = heikinashi['high']
|
||||
dataframe['ha_low'] = heikinashi['low']
|
||||
"""
|
||||
|
||||
return dataframe
|
||||
|
||||
|
||||
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['rsi'] < 35) &
|
||||
(dataframe['fastd'] < 35) &
|
||||
(dataframe['adx'] > 30) &
|
||||
(dataframe['plus_di'] > 0.5)
|
||||
) |
|
||||
(
|
||||
(dataframe['adx'] > 65) &
|
||||
(dataframe['plus_di'] > 0.5)
|
||||
),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
|
||||
def populate_sell_trend(dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(
|
||||
(qtpylib.crossed_above(dataframe['rsi'], 70)) |
|
||||
(qtpylib.crossed_above(dataframe['fastd'], 70))
|
||||
) &
|
||||
(dataframe['adx'] > 10) &
|
||||
(dataframe['minus_di'] > 0)
|
||||
) |
|
||||
(
|
||||
(dataframe['adx'] > 70) &
|
||||
(dataframe['minus_di'] > 0.5)
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
|
||||
|
||||
def analyze_ticker(ticker_history: List[Dict]) -> DataFrame:
|
||||
"""
|
||||
Parses the given ticker history and returns a populated DataFrame
|
||||
add several TA indicators and buy signal to it
|
||||
:return DataFrame with ticker data and indicator data
|
||||
"""
|
||||
dataframe = parse_ticker_dataframe(ticker_history)
|
||||
dataframe = populate_indicators(dataframe)
|
||||
dataframe = populate_buy_trend(dataframe)
|
||||
dataframe = populate_sell_trend(dataframe)
|
||||
return dataframe
|
||||
|
||||
|
||||
def get_signal(pair: str, signal: SignalType) -> bool:
|
||||
"""
|
||||
Calculates current signal based several technical analysis indicators
|
||||
:param pair: pair in format BTC_ANT or BTC-ANT
|
||||
:return: True if pair is good for buying, False otherwise
|
||||
"""
|
||||
ticker_hist = get_ticker_history(pair)
|
||||
if not ticker_hist:
|
||||
logger.warning('Empty ticker history for pair %s', pair)
|
||||
return False
|
||||
|
||||
try:
|
||||
dataframe = analyze_ticker(ticker_hist)
|
||||
except ValueError as ex:
|
||||
logger.warning('Unable to analyze ticker for pair %s: %s', pair, str(ex))
|
||||
return False
|
||||
except Exception as ex:
|
||||
logger.exception('Unexpected error when analyzing ticker for pair %s: %s', pair, str(ex))
|
||||
def stop_loss_reached(self, current_rate: float, trade: Trade, current_time: datetime,
|
||||
current_profit: float) -> bool:
|
||||
"""
|
||||
Based on current profit of the trade and configured (trailing) stoploss,
|
||||
decides to sell or not
|
||||
"""
|
||||
|
||||
trailing_stop = self.config.get('trailing_stop', False)
|
||||
|
||||
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
|
||||
|
||||
# evaluate if the stoploss was hit
|
||||
if self.strategy.stoploss is not None and trade.stop_loss >= current_rate:
|
||||
|
||||
if trailing_stop:
|
||||
logger.debug(
|
||||
f"HIT STOP: current price at {current_rate:.6f}, "
|
||||
f"stop loss is {trade.stop_loss:.6f}, "
|
||||
f"initial stop loss was at {trade.initial_stop_loss:.6f}, "
|
||||
f"trade opened at {trade.open_rate:.6f}")
|
||||
logger.debug(f"trailing stop saved {trade.stop_loss - trade.initial_stop_loss:.6f}")
|
||||
|
||||
logger.debug('Stop loss hit.')
|
||||
return True
|
||||
|
||||
# update the stop loss afterwards, after all by definition it's supposed to be hanging
|
||||
if trailing_stop:
|
||||
|
||||
# check if we have a special stop loss for positive condition
|
||||
# and if profit is positive
|
||||
stop_loss_value = self.strategy.stoploss
|
||||
if 'trailing_stop_positive' in self.config and current_profit > 0:
|
||||
|
||||
# Ignore mypy error check in configuration that this is a float
|
||||
stop_loss_value = self.config.get('trailing_stop_positive') # type: ignore
|
||||
logger.debug(f"using positive stop loss mode: {stop_loss_value} "
|
||||
f"since we have profit {current_profit}")
|
||||
|
||||
trade.adjust_stop_loss(current_rate, stop_loss_value)
|
||||
|
||||
return False
|
||||
|
||||
if dataframe.empty:
|
||||
def min_roi_reached(self, trade: Trade, current_profit: float, current_time: datetime) -> bool:
|
||||
"""
|
||||
Based an earlier trade and current price and ROI configuration, decides whether bot should
|
||||
sell
|
||||
:return True if bot should sell at current rate
|
||||
"""
|
||||
|
||||
# Check if time matches and current rate is above threshold
|
||||
time_diff = (current_time.timestamp() - trade.open_date.timestamp()) / 60
|
||||
for duration, threshold in self.strategy.minimal_roi.items():
|
||||
if time_diff <= duration:
|
||||
return False
|
||||
if current_profit > threshold:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
latest = dataframe.iloc[-1]
|
||||
|
||||
# Check if dataframe is out of date
|
||||
signal_date = arrow.get(latest['date'])
|
||||
if signal_date < arrow.now() - timedelta(minutes=10):
|
||||
return False
|
||||
|
||||
result = latest[signal.value] == 1
|
||||
logger.debug('%s_trigger: %s (pair=%s, signal=%s)', signal.value, latest['date'], pair, result)
|
||||
return result
|
||||
def tickerdata_to_dataframe(self, tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
|
||||
"""
|
||||
Creates a dataframe and populates indicators for given ticker data
|
||||
"""
|
||||
return {pair: self.populate_indicators(self.parse_ticker_dataframe(pair_data))
|
||||
for pair, pair_data in tickerdata.items()}
|
||||
|
||||
Reference in New Issue
Block a user