remove remnants of single threaded version, ensure pair queue priority is checked before retraining
This commit is contained in:
parent
2a4d1e2d64
commit
e54614fa2f
@ -85,7 +85,7 @@ class IFreqaiModel(ABC):
|
|||||||
# determine what the current pair will do
|
# determine what the current pair will do
|
||||||
if self.live:
|
if self.live:
|
||||||
if (not self.training_on_separate_thread and
|
if (not self.training_on_separate_thread and
|
||||||
self.data_drawer.training_queue == 1):
|
self.data_drawer.training_queue[metadata['pair']] == 1):
|
||||||
|
|
||||||
self.dh = FreqaiDataKitchen(self.config, self.data_drawer,
|
self.dh = FreqaiDataKitchen(self.config, self.data_drawer,
|
||||||
self.live, metadata["pair"])
|
self.live, metadata["pair"])
|
||||||
@ -321,16 +321,26 @@ class IFreqaiModel(ABC):
|
|||||||
base_dataframes,
|
base_dataframes,
|
||||||
metadata)
|
metadata)
|
||||||
|
|
||||||
self.model = self.train(unfiltered_dataframe, metadata, dh)
|
try:
|
||||||
|
model = self.train(unfiltered_dataframe, metadata, dh)
|
||||||
|
except ValueError:
|
||||||
|
logger.warning('Value error encountered during training')
|
||||||
|
self.data_drawer.pair_to_end_of_training_queue(metadata['pair'])
|
||||||
|
self.training_on_separate_thread = False
|
||||||
|
self.retrain = False
|
||||||
|
return
|
||||||
|
|
||||||
self.data_drawer.pair_dict[metadata['pair']][
|
self.data_drawer.pair_dict[metadata['pair']][
|
||||||
'trained_timestamp'] = new_trained_timerange.stopts
|
'trained_timestamp'] = new_trained_timerange.stopts
|
||||||
dh.set_new_model_names(metadata, new_trained_timerange)
|
dh.set_new_model_names(metadata, new_trained_timerange)
|
||||||
self.data_drawer.pair_to_end_of_training_queue(metadata['pair'])
|
logger.info('Training queue'
|
||||||
dh.save_data(self.model, coin=metadata['pair'])
|
f'{sorted(self.data_drawer.training_queue.items(), key=lambda item: item[1])}')
|
||||||
|
dh.save_data(model, coin=metadata['pair'])
|
||||||
|
|
||||||
|
self.data_drawer.pair_to_end_of_training_queue(metadata['pair'])
|
||||||
self.training_on_separate_thread = False
|
self.training_on_separate_thread = False
|
||||||
self.retrain = False
|
self.retrain = False
|
||||||
|
return
|
||||||
|
|
||||||
def train_model_in_series(self, new_trained_timerange: TimeRange, metadata: dict,
|
def train_model_in_series(self, new_trained_timerange: TimeRange, metadata: dict,
|
||||||
strategy: IStrategy, dh: FreqaiDataKitchen):
|
strategy: IStrategy, dh: FreqaiDataKitchen):
|
||||||
@ -344,13 +354,13 @@ class IFreqaiModel(ABC):
|
|||||||
base_dataframes,
|
base_dataframes,
|
||||||
metadata)
|
metadata)
|
||||||
|
|
||||||
self.model = self.train(unfiltered_dataframe, metadata, dh)
|
model = self.train(unfiltered_dataframe, metadata, dh)
|
||||||
|
|
||||||
self.data_drawer.pair_dict[metadata['pair']][
|
self.data_drawer.pair_dict[metadata['pair']][
|
||||||
'trained_timestamp'] = new_trained_timerange.stopts
|
'trained_timestamp'] = new_trained_timerange.stopts
|
||||||
dh.set_new_model_names(metadata, new_trained_timerange)
|
dh.set_new_model_names(metadata, new_trained_timerange)
|
||||||
self.data_drawer.pair_dict[metadata['pair']]['first'] = False
|
self.data_drawer.pair_dict[metadata['pair']]['first'] = False
|
||||||
dh.save_data(self.model, coin=metadata['pair'])
|
dh.save_data(model, coin=metadata['pair'])
|
||||||
self.retrain = False
|
self.retrain = False
|
||||||
|
|
||||||
# Methods which are overridden by user made prediction models.
|
# Methods which are overridden by user made prediction models.
|
||||||
|
Loading…
Reference in New Issue
Block a user