Adapt tests to new loss-function method
This commit is contained in:
parent
710443d200
commit
e5170582de
@ -18,6 +18,7 @@ from pandas import DataFrame
|
||||
from skopt import Optimizer
|
||||
from skopt.space import Dimension
|
||||
|
||||
from freqtrade import OperationalException
|
||||
from freqtrade.configuration import Arguments
|
||||
from freqtrade.data.history import load_data, get_timeframe
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
@ -71,18 +72,17 @@ class Hyperopt(Backtesting):
|
||||
self.trials: List = []
|
||||
|
||||
# Assign loss function
|
||||
if self.config['loss_function'] == 'legacy':
|
||||
if self.config.get('loss_function', 'legacy') == 'legacy':
|
||||
self.calculate_loss = hyperopt_loss_legacy
|
||||
elif (self.config['loss_function'] == 'custom' and
|
||||
hasattr(self.custom_hyperopt, 'hyperopt_loss_custom')):
|
||||
self.calculate_loss = self.custom_hyperopt.hyperopt_loss_custom # type: ignore
|
||||
|
||||
# Implement fallback to avoid odd crashes when custom-hyperopt fails to load.
|
||||
# TODO: Maybe this should just stop hyperopt completely?
|
||||
if not hasattr(self.custom_hyperopt, 'hyperopt_loss_custom'):
|
||||
logger.warning("Could not load hyperopt configuration. "
|
||||
"Falling back to legacy configuration.")
|
||||
self.calculate_loss = hyperopt_loss_legacy
|
||||
raise OperationalException("Could not load hyperopt loss function.")
|
||||
|
||||
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
|
||||
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
|
||||
|
@ -2,20 +2,24 @@
|
||||
import os
|
||||
from datetime import datetime
|
||||
from unittest.mock import MagicMock
|
||||
from filelock import Timeout
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
from arrow import Arrow
|
||||
from filelock import Timeout
|
||||
|
||||
from freqtrade import DependencyException
|
||||
from freqtrade.data.converter import parse_ticker_dataframe
|
||||
from freqtrade.data.history import load_tickerdata_file
|
||||
from freqtrade.optimize.default_hyperopt import DefaultHyperOpts
|
||||
from freqtrade.optimize.hyperopt import Hyperopt, HYPEROPT_LOCKFILE, TICKERDATA_PICKLE
|
||||
from freqtrade.optimize import setup_configuration, start_hyperopt
|
||||
from freqtrade.optimize.default_hyperopt import DefaultHyperOpts
|
||||
from freqtrade.optimize.hyperopt import (HYPEROPT_LOCKFILE, TICKERDATA_PICKLE,
|
||||
Hyperopt)
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
|
||||
from freqtrade.state import RunMode
|
||||
from freqtrade.tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.tests.conftest import (get_args, log_has, log_has_re,
|
||||
patch_exchange,
|
||||
patched_configuration_load_config_file)
|
||||
|
||||
|
||||
@ -25,6 +29,21 @@ def hyperopt(default_conf, mocker):
|
||||
return Hyperopt(default_conf)
|
||||
|
||||
|
||||
@pytest.fixture(scope='function')
|
||||
def hyperopt_results():
|
||||
return pd.DataFrame(
|
||||
{
|
||||
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [0.1, 0.2, 0.3],
|
||||
'profit_abs': [0.2, 0.4, 0.5],
|
||||
'trade_duration': [10, 30, 10],
|
||||
'profit': [2, 0, 0],
|
||||
'loss': [0, 0, 1],
|
||||
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
# Functions for recurrent object patching
|
||||
def create_trials(mocker, hyperopt) -> None:
|
||||
"""
|
||||
@ -254,26 +273,33 @@ def test_start_filelock(mocker, default_conf, caplog) -> None:
|
||||
)
|
||||
|
||||
|
||||
def test_loss_calculation_prefer_correct_trade_count(hyperopt) -> None:
|
||||
|
||||
correct = hyperopt.calculate_loss(1, hyperopt.target_trades, 20)
|
||||
over = hyperopt.calculate_loss(1, hyperopt.target_trades + 100, 20)
|
||||
under = hyperopt.calculate_loss(1, hyperopt.target_trades - 100, 20)
|
||||
def test_loss_calculation_prefer_correct_trade_count(hyperopt, hyperopt_results) -> None:
|
||||
correct = hyperopt.calculate_loss(hyperopt_results, hyperopt.target_trades)
|
||||
over = hyperopt.calculate_loss(hyperopt_results, hyperopt.target_trades + 100)
|
||||
under = hyperopt.calculate_loss(hyperopt_results, hyperopt.target_trades - 100)
|
||||
assert over > correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_loss_calculation_prefer_shorter_trades(hyperopt) -> None:
|
||||
shorter = hyperopt.calculate_loss(1, 100, 20)
|
||||
longer = hyperopt.calculate_loss(1, 100, 30)
|
||||
def test_loss_calculation_prefer_shorter_trades(hyperopt, hyperopt_results) -> None:
|
||||
resultsb = hyperopt_results.copy()
|
||||
resultsb['trade_duration'][1] = 20
|
||||
|
||||
longer = hyperopt.calculate_loss(hyperopt_results, 100)
|
||||
shorter = hyperopt.calculate_loss(resultsb, 100)
|
||||
assert shorter < longer
|
||||
|
||||
|
||||
def test_loss_calculation_has_limited_profit(hyperopt) -> None:
|
||||
correct = hyperopt.calculate_loss(hyperopt.expected_max_profit, hyperopt.target_trades, 20)
|
||||
over = hyperopt.calculate_loss(hyperopt.expected_max_profit * 2, hyperopt.target_trades, 20)
|
||||
under = hyperopt.calculate_loss(hyperopt.expected_max_profit / 2, hyperopt.target_trades, 20)
|
||||
assert over == correct
|
||||
def test_loss_calculation_has_limited_profit(hyperopt, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
correct = hyperopt.calculate_loss(hyperopt_results, hyperopt.target_trades)
|
||||
over = hyperopt.calculate_loss(results_over, hyperopt.target_trades)
|
||||
under = hyperopt.calculate_loss(results_under, hyperopt.target_trades)
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
@ -472,7 +498,7 @@ def test_generate_optimizer(mocker, default_conf) -> None:
|
||||
)
|
||||
mocker.patch(
|
||||
'freqtrade.optimize.hyperopt.get_timeframe',
|
||||
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
|
||||
MagicMock(return_value=(Arrow(2017, 12, 10), Arrow(2017, 12, 13)))
|
||||
)
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.optimize.hyperopt.load', MagicMock())
|
||||
|
Loading…
Reference in New Issue
Block a user