Merge branch 'release/0.13.0'

This commit is contained in:
gcarq 2017-11-01 01:15:31 +01:00
commit e2eceaa904
19 changed files with 860 additions and 129 deletions

View File

@ -1,7 +1,5 @@
include LICENSE
include README.md
include config.json.example
include freqtrade/exchange/*.py
include freqtrade/rpc/*.py
include freqtrade/tests/*.py
recursive-include freqtrade *.py
include freqtrade/tests/testdata/*.json

View File

@ -1,3 +1,3 @@
__version__ = '0.12.0'
__version__ = '0.13.0'
from . import main

View File

@ -4,17 +4,18 @@ from datetime import timedelta
import arrow
import talib.abstract as ta
from pandas import DataFrame
from pandas import DataFrame, to_datetime
from freqtrade import exchange
from freqtrade.exchange import Bittrex, get_ticker_history
from freqtrade.vendor.qtpylib.indicators import awesome_oscillator
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def parse_ticker_dataframe(ticker: list, minimum_date: arrow.Arrow) -> DataFrame:
def parse_ticker_dataframe(ticker: list) -> DataFrame:
"""
Analyses the trend for the given pair
:param pair: pair as str in format BTC_ETH or BTC-ETH
@ -22,8 +23,9 @@ def parse_ticker_dataframe(ticker: list, minimum_date: arrow.Arrow) -> DataFrame
"""
df = DataFrame(ticker) \
.drop('BV', 1) \
.rename(columns={'C':'close', 'V':'volume', 'O':'open', 'H':'high', 'L':'low', 'T':'date'}) \
.sort_values('date')
.rename(columns={'C':'close', 'V':'volume', 'O':'open', 'H':'high', 'L':'low', 'T':'date'})
df['date'] = to_datetime(df['date'], utc=True, infer_datetime_format=True)
df.sort_values('date', inplace=True)
return df
@ -41,6 +43,17 @@ def populate_indicators(dataframe: DataFrame) -> DataFrame:
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['cci'] = ta.CCI(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
dataframe['mom'] = ta.MOM(dataframe)
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
dataframe['ao'] = awesome_oscillator(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
return dataframe
@ -50,14 +63,14 @@ def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
dataframe.ix[
(dataframe['close'] < dataframe['sma']) &
(dataframe['tema'] <= dataframe['blower']) &
(dataframe['mfi'] < 25) &
(dataframe['fastd'] < 25) &
(dataframe['adx'] > 30),
'buy'] = 1
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
dataframe.ix[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
return dataframe
@ -70,7 +83,7 @@ def analyze_ticker(pair: str) -> DataFrame:
"""
minimum_date = arrow.utcnow().shift(hours=-24)
data = get_ticker_history(pair, minimum_date)
dataframe = parse_ticker_dataframe(data['result'], minimum_date)
dataframe = parse_ticker_dataframe(data['result'])
if dataframe.empty:
logger.warning('Empty dataframe for pair %s', pair)

View File

@ -85,6 +85,10 @@ def get_balance(currency: str) -> float:
return EXCHANGE.get_balance(currency)
def get_balances():
return EXCHANGE.get_balances()
def get_ticker(pair: str) -> dict:
return EXCHANGE.get_ticker(pair)

View File

@ -54,6 +54,12 @@ class Bittrex(Exchange):
raise RuntimeError('{}: {}'.format(self.name.upper(), data['message']))
return float(data['result']['Balance'] or 0.0)
def get_balances(self):
data = _API.get_balances()
if not data['success']:
raise RuntimeError('{}: {}'.format(self.name.upper(), data['message']))
return data['result']
def get_ticker(self, pair: str) -> dict:
data = _API.get_ticker(pair.replace('_', '-'))
if not data['success']:

View File

@ -49,6 +49,21 @@ class Exchange(ABC):
:return: float
"""
@abstractmethod
def get_balances(self) -> List[dict]:
"""
Gets account balances across currencies
:return: List of dicts, format: [
{
'Currency': str,
'Balance': float,
'Available': float,
'Pending': float,
}
...
]
"""
@abstractmethod
def get_ticker(self, pair: str) -> dict:
"""

View File

@ -6,6 +6,7 @@ import time
import traceback
from datetime import datetime
from typing import Dict, Optional
from signal import signal, SIGINT, SIGABRT, SIGTERM
from jsonschema import validate
@ -223,6 +224,23 @@ def init(config: dict, db_url: Optional[str] = None) -> None:
else:
update_state(State.STOPPED)
# Register signal handlers
for sig in (SIGINT, SIGTERM, SIGABRT):
signal(sig, cleanup)
def cleanup(*args, **kwargs) -> None:
"""
Cleanup the application state und finish all pending tasks
:return: None
"""
telegram.send_msg('*Status:* `Stopping trader...`')
logger.info('Stopping trader and cleaning up modules...')
update_state(State.STOPPED)
persistence.cleanup()
telegram.cleanup()
exit(0)
def app(config: dict) -> None:
"""
@ -251,10 +269,10 @@ def app(config: dict) -> None:
time.sleep(exchange.EXCHANGE.sleep_time)
old_state = new_state
except RuntimeError:
telegram.send_msg('*Status:* Got RuntimeError: ```\n{}\n```'.format(traceback.format_exc()))
telegram.send_msg(
'*Status:* Got RuntimeError:\n```\n{}\n```'.format(traceback.format_exc())
)
logger.exception('RuntimeError. Trader stopped!')
finally:
telegram.send_msg('*Status:* `Trader has stopped`')
def main():

View File

@ -5,7 +5,6 @@ from sqlalchemy import Boolean, Column, DateTime, Float, Integer, String, create
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm.scoping import scoped_session
from sqlalchemy.orm.session import sessionmaker
from sqlalchemy.types import Enum
from freqtrade import exchange
@ -37,6 +36,14 @@ def init(config: dict, db_url: Optional[str] = None) -> None:
Base.metadata.create_all(engine)
def cleanup() -> None:
"""
Flushes all pending operations to disk.
:return: None
"""
Trade.session.flush()
class Trade(Base):
__tablename__ = 'trades'

View File

@ -17,7 +17,7 @@ logging.getLogger('requests.packages.urllib3').setLevel(logging.INFO)
logging.getLogger('telegram').setLevel(logging.INFO)
logger = logging.getLogger(__name__)
_updater = None
_updater: Updater = None
_CONF = {}
@ -41,6 +41,7 @@ def init(config: dict) -> None:
handles = [
CommandHandler('status', _status),
CommandHandler('profit', _profit),
CommandHandler('balance', _balance),
CommandHandler('start', _start),
CommandHandler('stop', _stop),
CommandHandler('forcesell', _forcesell),
@ -61,6 +62,14 @@ def init(config: dict) -> None:
)
def cleanup() -> None:
"""
Stops all running telegram threads.
:return: None
"""
_updater.stop()
def authorized_only(command_handler: Callable[[Bot, Update], None]) -> Callable[..., Any]:
"""
Decorator to check if the message comes from the correct chat_id
@ -194,6 +203,27 @@ def _profit(bot: Bot, update: Update) -> None:
send_msg(markdown_msg, bot=bot)
@authorized_only
def _balance(bot: Bot, update: Update) -> None:
"""
Handler for /balance
Returns current account balance per crypto
"""
output = ""
balances = exchange.get_balances()
for currency in balances:
if not currency['Balance'] and not currency['Available'] and not currency['Pending']:
continue
output += """*Currency*: {Currency}
*Available*: {Available}
*Balance*: {Balance}
*Pending*: {Pending}
""".format(**currency)
send_msg(output)
@authorized_only
def _start(bot: Bot, update: Update) -> None:
"""
@ -318,6 +348,7 @@ def _help(bot: Bot, update: Update) -> None:
*/profit:* `Lists cumulative profit from all finished trades`
*/forcesell <trade_id>:* `Instantly sells the given trade, regardless of profit`
*/performance:* `Show performance of each finished trade grouped by pair`
*/balance:* `Show account balance per currency`
*/help:* `This help message`
"""
send_msg(message, bot=bot)

View File

@ -1,47 +1,41 @@
# pragma pylint: disable=missing-docstring
from datetime import datetime
import json
import pytest
import arrow
from pandas import DataFrame
from freqtrade.analyze import parse_ticker_dataframe, populate_buy_trend, populate_indicators, \
get_buy_signal
RESULT_BITTREX = {
'success': True,
'message': '',
'result': [
{'O': 0.00065311, 'H': 0.00065311, 'L': 0.00065311, 'C': 0.00065311, 'V': 22.17210568, 'T': '2017-08-30T10:40:00', 'BV': 0.01448082},
{'O': 0.00066194, 'H': 0.00066195, 'L': 0.00066194, 'C': 0.00066195, 'V': 33.4727437, 'T': '2017-08-30T10:34:00', 'BV': 0.02215696},
{'O': 0.00065311, 'H': 0.00065311, 'L': 0.00065311, 'C': 0.00065311, 'V': 53.85127609, 'T': '2017-08-30T10:37:00', 'BV': 0.0351708},
{'O': 0.00066194, 'H': 0.00066194, 'L': 0.00065311, 'C': 0.00065311, 'V': 46.29210665, 'T': '2017-08-30T10:42:00', 'BV': 0.03063118},
]
}
@pytest.fixture
def result():
return parse_ticker_dataframe(RESULT_BITTREX['result'], arrow.get('2017-08-30T10:00:00'))
with open('freqtrade/tests/testdata/btc-eth.json') as data_file:
data = json.load(data_file)
return parse_ticker_dataframe(data['result'])
def test_dataframe_has_correct_columns(result):
assert result.columns.tolist() == \
['close', 'high', 'low', 'open', 'date', 'volume']
def test_orders_by_date(result):
assert result['date'].tolist() == \
['2017-08-30T10:34:00',
'2017-08-30T10:37:00',
'2017-08-30T10:40:00',
'2017-08-30T10:42:00']
def test_dataframe_has_correct_length(result):
assert len(result.index) == 5751
def test_populates_buy_trend(result):
dataframe = populate_buy_trend(populate_indicators(result))
assert 'buy' in dataframe.columns
assert 'buy_price' in dataframe.columns
def test_returns_latest_buy_signal(mocker):
buydf = DataFrame([{'buy': 1, 'date': arrow.utcnow()}])
buydf = DataFrame([{'buy': 1, 'date': datetime.today()}])
mocker.patch('freqtrade.analyze.analyze_ticker', return_value=buydf)
assert get_buy_signal('BTC-ETH')
buydf = DataFrame([{'buy': 0, 'date': arrow.utcnow()}])
buydf = DataFrame([{'buy': 0, 'date': datetime.today()}])
mocker.patch('freqtrade.analyze.analyze_ticker', return_value=buydf)
assert not get_buy_signal('BTC-ETH')

View File

@ -13,19 +13,27 @@ from freqtrade.persistence import Trade
logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot
def print_results(results):
print('Made {} buys. Average profit {:.2f}%. Total profit was {:.3f}. Average duration {:.1f} mins.'.format(
def format_results(results):
return 'Made {} buys. Average profit {:.2f}%. Total profit was {:.3f}. Average duration {:.1f} mins.'.format(
len(results.index),
results.profit.mean() * 100.0,
results.profit.sum(),
results.duration.mean() * 5
))
)
def print_pair_results(pair, results):
print('For currency {}:'.format(pair))
print(format_results(results[results.currency == pair]))
@pytest.fixture
def pairs():
return ['btc-neo', 'btc-eth', 'btc-omg', 'btc-edg', 'btc-pay',
'btc-pivx', 'btc-qtum', 'btc-mtl', 'btc-etc', 'btc-ltc']
@pytest.fixture
def conf():
return {
@ -39,39 +47,36 @@ def conf():
}
@pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set")
def test_backtest(conf, pairs, mocker):
def backtest(conf, pairs, mocker):
trades = []
mocked_history = mocker.patch('freqtrade.analyze.get_ticker_history')
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch('arrow.utcnow', return_value=arrow.get('2017-08-20T14:50:00'))
for pair in pairs:
with open('freqtrade/tests/testdata/'+pair+'.json') as data_file:
data = json.load(data_file)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=data)
mocker.patch('arrow.utcnow', return_value=arrow.get('2017-08-20T14:50:00'))
ticker = analyze_ticker(pair)
mocked_history.return_value = data
ticker = analyze_ticker(pair)[['close', 'date', 'buy']].copy()
# for each buy point
for index, row in ticker[ticker.buy == 1].iterrows():
trade = Trade(
open_rate=row['close'],
open_date=arrow.get(row['date']).datetime,
amount=1,
)
for row in ticker[ticker.buy == 1].itertuples(index=True):
trade = Trade(open_rate=row.close, open_date=row.date, amount=1)
# calculate win/lose forwards from buy point
for index2, row2 in ticker[index:].iterrows():
if should_sell(trade, row2['close'], arrow.get(row2['date']).datetime):
current_profit = (row2['close'] - trade.open_rate) / trade.open_rate
for row2 in ticker[row.Index:].itertuples(index=True):
if should_sell(trade, row2.close, row2.date):
current_profit = (row2.close - trade.open_rate) / trade.open_rate
trades.append((pair, current_profit, index2 - index))
trades.append((pair, current_profit, row2.Index - row.Index))
break
labels = ['currency', 'profit', 'duration']
results = DataFrame.from_records(trades, columns=labels)
return results
@pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set")
def test_backtest(conf, pairs, mocker, report=True):
results = backtest(conf, pairs, mocker)
print('====================== BACKTESTING REPORT ================================')
for pair in pairs:
print('For currency {}:'.format(pair))
print_results(results[results.currency == pair])
[print_pair_results(pair, results) for pair in pairs]
print('TOTAL OVER ALL TRADES:')
print_results(results)
print(format_results(results))

View File

@ -1,34 +1,29 @@
# pragma pylint: disable=missing-docstring
import json
import logging
import os
from functools import reduce
from math import exp
from operator import itemgetter
import pytest
import arrow
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK
from pandas import DataFrame
from hyperopt import fmin, tpe, hp
from freqtrade.analyze import analyze_ticker
from freqtrade.main import should_sell
from freqtrade.persistence import Trade
from freqtrade.tests.test_backtesting import backtest, format_results
from freqtrade.vendor.qtpylib.indicators import crossed_above
logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot
def print_results(results):
print('Made {} buys. Average profit {:.2f}%. Total profit was {:.3f}. Average duration {:.1f} mins.'.format(
len(results.index),
results.profit.mean() * 100.0,
results.profit.sum(),
results.duration.mean() * 5
))
# set TARGET_TRADES to suit your number concurrent trades so its realistic to 20days of data
TARGET_TRADES = 1200
@pytest.fixture
def pairs():
return ['btc-neo', 'btc-eth', 'btc-omg', 'btc-edg', 'btc-pay',
'btc-pivx', 'btc-qtum', 'btc-mtl', 'btc-etc', 'btc-ltc']
@pytest.fixture
def conf():
return {
@ -42,52 +37,14 @@ def conf():
}
def backtest(conf, pairs, mocker, buy_strategy):
trades = []
mocker.patch.dict('freqtrade.main._CONF', conf)
for pair in pairs:
with open('freqtrade/tests/testdata/'+pair+'.json') as data_file:
data = json.load(data_file)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=data)
mocker.patch('arrow.utcnow', return_value=arrow.get('2017-08-20T14:50:00'))
mocker.patch('freqtrade.analyze.populate_buy_trend', side_effect=buy_strategy)
ticker = analyze_ticker(pair)
# for each buy point
for index, row in ticker[ticker.buy == 1].iterrows():
trade = Trade(
open_rate=row['close'],
open_date=arrow.get(row['date']).datetime,
amount=1,
)
# calculate win/lose forwards from buy point
for index2, row2 in ticker[index:].iterrows():
if should_sell(trade, row2['close'], arrow.get(row2['date']).datetime):
current_profit = (row2['close'] - trade.open_rate) / trade.open_rate
trades.append((pair, current_profit, index2 - index))
break
labels = ['currency', 'profit', 'duration']
results = DataFrame.from_records(trades, columns=labels)
print_results(results)
# set the value below to suit your number concurrent trades so its realistic to 20days of data
TARGET_TRADES = 1200
if results.profit.sum() == 0 or results.profit.mean() == 0:
return 49999999999 # avoid division by zero, return huge value to discard result
return abs(len(results.index) - 1200.1) / (results.profit.sum() ** 2) * results.duration.mean() # the smaller the better
def buy_strategy_generator(params):
print(params)
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if params['below_sma']['enabled']:
conditions.append(dataframe['close'] < dataframe['sma'])
if params['over_sma']['enabled']:
conditions.append(dataframe['close'] > dataframe['sma'])
if params['uptrend_long_ema']['enabled']:
conditions.append(dataframe['ema50'] > dataframe['ema100'])
if params['mfi']['enabled']:
conditions.append(dataframe['mfi'] < params['mfi']['value'])
if params['fastd']['enabled']:
@ -96,6 +53,8 @@ def buy_strategy_generator(params):
conditions.append(dataframe['adx'] > params['adx']['value'])
if params['cci']['enabled']:
conditions.append(dataframe['cci'] < params['cci']['value'])
if params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
if params['over_sar']['enabled']:
conditions.append(dataframe['close'] > dataframe['sar'])
if params['uptrend_sma']['enabled']:
@ -107,6 +66,9 @@ def buy_strategy_generator(params):
triggers = {
'lower_bb': dataframe['tema'] <= dataframe['blower'],
'faststoch10': (dataframe['fastd'] >= 10) & (prev_fastd < 10),
'ao_cross_zero': (crossed_above(dataframe['ao'], 0.0)),
'ema5_cross_ema10': (crossed_above(dataframe['ema5'], dataframe['ema10'])),
'macd_cross_signal': (crossed_above(dataframe['macd'], dataframe['macdsignal'])),
}
conditions.append(triggers.get(params['trigger']['type']))
@ -118,34 +80,53 @@ def buy_strategy_generator(params):
return dataframe
return populate_buy_trend
@pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set")
def test_hyperopt(conf, pairs, mocker):
mocked_buy_trend = mocker.patch('freqtrade.analyze.populate_buy_trend')
def optimizer(params):
return backtest(conf, pairs, mocker, buy_strategy_generator(params))
mocked_buy_trend.side_effect = buy_strategy_generator(params)
results = backtest(conf, pairs, mocker)
result = format_results(results)
print(result)
total_profit = results.profit.sum() * 1000
trade_count = len(results.index)
trade_loss = 1 - 0.8 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5)
profit_loss = exp(-total_profit**3 / 10**11)
return {
'loss': trade_loss + profit_loss,
'status': STATUS_OK,
'result': result
}
space = {
'mfi': hp.choice('mfi', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('mfi-value', 2, 40)}
{'enabled': True, 'value': hp.uniform('mfi-value', 5, 15)}
]),
'fastd': hp.choice('fastd', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('fastd-value', 2, 40)}
{'enabled': True, 'value': hp.uniform('fastd-value', 5, 40)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('adx-value', 2, 40)}
{'enabled': True, 'value': hp.uniform('adx-value', 10, 30)}
]),
'cci': hp.choice('cci', [
{'enabled': False},
{'enabled': True, 'value': hp.uniform('cci-value', -200, -100)}
{'enabled': True, 'value': hp.uniform('cci-value', -150, -100)}
]),
'below_sma': hp.choice('below_sma', [
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True}
{'enabled': True, 'value': hp.uniform('rsi-value', 20, 30)}
]),
'over_sma': hp.choice('over_sma', [
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
{'enabled': False},
{'enabled': True}
]),
@ -159,8 +140,15 @@ def test_hyperopt(conf, pairs, mocker):
]),
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'faststoch10'}
{'type': 'faststoch10'},
{'type': 'ao_cross_zero'},
{'type': 'ema5_cross_ema10'},
{'type': 'macd_cross_signal'},
]),
}
print('Best parameters {}'.format(fmin(fn=optimizer, space=space, algo=tpe.suggest, max_evals=40)))
trials = Trials()
best = fmin(fn=optimizer, space=space, algo=tpe.suggest, max_evals=40, trials=trials)
print('\n\n\n\n====================== HYPEROPT BACKTESTING REPORT ================================')
print('Best parameters {}'.format(best))
newlist = sorted(trials.results, key=itemgetter('loss'))
print('Result: {}'.format(newlist[0]['result']))

View File

@ -48,6 +48,7 @@ def conf():
validate(configuration, CONF_SCHEMA)
return configuration
def test_create_trade(conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
buy_signal = mocker.patch('freqtrade.main.get_buy_signal', side_effect=lambda _: True)
@ -82,6 +83,7 @@ def test_create_trade(conf, mocker):
[call('BTC_ETH'), call('BTC_TKN'), call('BTC_TRST'), call('BTC_SWT')]
)
def test_handle_trade(conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch.multiple('freqtrade.main.telegram', init=MagicMock(), send_msg=MagicMock())
@ -101,6 +103,7 @@ def test_handle_trade(conf, mocker):
assert trade.close_date is not None
assert trade.open_order_id == 'dry_run'
def test_close_trade(conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
trade = Trade.query.filter(Trade.is_open.is_(True)).first()
@ -113,14 +116,17 @@ def test_close_trade(conf, mocker):
assert closed
assert not trade.is_open
def test_balance_fully_ask_side(mocker):
mocker.patch.dict('freqtrade.main._CONF', {'bid_strategy': {'ask_last_balance': 0.0}})
assert get_target_bid({'ask': 20, 'last': 10}) == 20
def test_balance_fully_last_side(mocker):
mocker.patch.dict('freqtrade.main._CONF', {'bid_strategy': {'ask_last_balance': 1.0}})
assert get_target_bid({'ask': 20, 'last': 10}) == 10
def test_balance_when_last_bigger_than_ask(mocker):
mocker.patch.dict('freqtrade.main._CONF', {'bid_strategy': {'ask_last_balance': 1.0}})
assert get_target_bid({'ask': 5, 'last': 10}) == 5

View File

@ -2,6 +2,7 @@
from freqtrade.exchange import Exchanges
from freqtrade.persistence import Trade
def test_exec_sell_order(mocker):
api_mock = mocker.patch('freqtrade.main.exchange.sell', side_effect='mocked_order_id')
trade = Trade(

View File

@ -9,7 +9,7 @@ from telegram import Bot, Update, Message, Chat
from freqtrade.main import init, create_trade
from freqtrade.misc import update_state, State, get_state, CONF_SCHEMA
from freqtrade.persistence import Trade
from freqtrade.rpc.telegram import _status, _profit, _forcesell, _performance, _start, _stop
from freqtrade.rpc.telegram import _status, _profit, _forcesell, _performance, _start, _stop, _balance
@pytest.fixture
@ -82,6 +82,7 @@ def test_status_handle(conf, update, mocker):
assert msg_mock.call_count == 2
assert '[BTC_ETH]' in msg_mock.call_args_list[-1][0][0]
def test_profit_handle(conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch('freqtrade.main.get_buy_signal', side_effect=lambda _: True)
@ -112,6 +113,7 @@ def test_profit_handle(conf, update, mocker):
assert msg_mock.call_count == 2
assert '(100.00%)' in msg_mock.call_args_list[-1][0][0]
def test_forcesell_handle(conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch('freqtrade.main.get_buy_signal', side_effect=lambda _: True)
@ -140,6 +142,7 @@ def test_forcesell_handle(conf, update, mocker):
assert 'Selling [BTC/ETH]' in msg_mock.call_args_list[-1][0][0]
assert '0.072561' in msg_mock.call_args_list[-1][0][0]
def test_performance_handle(conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch('freqtrade.main.get_buy_signal', side_effect=lambda _: True)
@ -171,6 +174,7 @@ def test_performance_handle(conf, update, mocker):
assert 'Performance' in msg_mock.call_args_list[-1][0][0]
assert 'BTC_ETH 100.00%' in msg_mock.call_args_list[-1][0][0]
def test_start_handle(conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
msg_mock = MagicMock()
@ -184,6 +188,7 @@ def test_start_handle(conf, update, mocker):
assert get_state() == State.RUNNING
assert msg_mock.call_count == 0
def test_stop_handle(conf, update, mocker):
mocker.patch.dict('freqtrade.main._CONF', conf)
msg_mock = MagicMock()
@ -197,3 +202,22 @@ def test_stop_handle(conf, update, mocker):
assert get_state() == State.STOPPED
assert msg_mock.call_count == 1
assert 'Stopping trader' in msg_mock.call_args_list[0][0][0]
def test_balance_handle(conf, update, mocker):
mock_balance = [{
'Currency': 'BTC',
'Balance': 10.0,
'Available': 12.0,
'Pending': 0.0,
'CryptoAddress': 'XXXX'}]
mocker.patch.dict('freqtrade.main._CONF', conf)
msg_mock = MagicMock()
mocker.patch.multiple('freqtrade.main.telegram', _CONF=conf, init=MagicMock(), send_msg=msg_mock)
mocker.patch.multiple('freqtrade.main.exchange',
get_balances=MagicMock(return_value=mock_balance))
_balance(bot=MagicBot(), update=update)
assert msg_mock.call_count == 1
assert '*Currency*: BTC' in msg_mock.call_args_list[0][0][0]
assert 'Balance' in msg_mock.call_args_list[0][0][0]

View File

@ -5,6 +5,7 @@
from urllib.request import urlopen
CURRENCIES = ["ok", "neo", "dash", "etc", "eth", "snt"]
OUTPUT_DIR = 'freqtrade/tests/testdata/'
for cur in CURRENCIES:
url1 = 'https://bittrex.com/Api/v2.0/pub/market/GetTicks?marketName=BTC-'
@ -12,5 +13,6 @@ for cur in CURRENCIES:
x = urlopen(url)
json_data = x.read()
json_str = str(json_data, 'utf-8')
with open('btc-'+cur+'.json', 'w') as file:
output = OUTPUT_DIR + 'btc-'+cur+'.json'
with open(output, 'w') as file:
file.write(json_str)

0
freqtrade/vendor/__init__.py vendored Normal file
View File

0
freqtrade/vendor/qtpylib/__init__.py vendored Normal file
View File

619
freqtrade/vendor/qtpylib/indicators.py vendored Normal file
View File

@ -0,0 +1,619 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# QTPyLib: Quantitative Trading Python Library
# https://github.com/ranaroussi/qtpylib
#
# Copyright 2016 Ran Aroussi
#
# Licensed under the GNU Lesser General Public License, v3.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.gnu.org/licenses/lgpl-3.0.en.html
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import pandas as pd
import warnings
import sys
from datetime import datetime, timedelta
from pandas.core.base import PandasObject
# =============================================
# check min, python version
if sys.version_info < (3, 4):
raise SystemError("QTPyLib requires Python version >= 3.4")
# =============================================
warnings.simplefilter(action="ignore", category=RuntimeWarning)
# =============================================
def numpy_rolling_window(data, window):
shape = data.shape[:-1] + (data.shape[-1] - window + 1, window)
strides = data.strides + (data.strides[-1],)
return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides)
def numpy_rolling_series(func):
def func_wrapper(data, window, as_source=False):
series = data.values if isinstance(data, pd.Series) else data
new_series = np.empty(len(series)) * np.nan
calculated = func(series, window)
new_series[-len(calculated):] = calculated
if as_source and isinstance(data, pd.Series):
return pd.Series(index=data.index, data=new_series)
return new_series
return func_wrapper
@numpy_rolling_series
def numpy_rolling_mean(data, window, as_source=False):
return np.mean(numpy_rolling_window(data, window), -1)
@numpy_rolling_series
def numpy_rolling_std(data, window, as_source=False):
return np.std(numpy_rolling_window(data, window), -1)
# ---------------------------------------------
def session(df, start='17:00', end='16:00'):
""" remove previous globex day from df """
if len(df) == 0:
return df
# get start/end/now as decimals
int_start = list(map(int, start.split(':')))
int_start = (int_start[0] + int_start[1] - 1 / 100) - 0.0001
int_end = list(map(int, end.split(':')))
int_end = int_end[0] + int_end[1] / 100
int_now = (df[-1:].index.hour[0] + (df[:1].index.minute[0]) / 100)
# same-dat session?
is_same_day = int_end > int_start
# set pointers
curr = prev = df[-1:].index[0].strftime('%Y-%m-%d')
# globex/forex session
if is_same_day == False:
prev = (datetime.strptime(curr, '%Y-%m-%d') -
timedelta(1)).strftime('%Y-%m-%d')
# slice
if int_now >= int_start:
df = df[df.index >= curr + ' ' + start]
else:
df = df[df.index >= prev + ' ' + start]
return df.copy()
# ---------------------------------------------
def heikinashi(bars):
bars = bars.copy()
bars['ha_close'] = (bars['open'] + bars['high'] +
bars['low'] + bars['close']) / 4
bars['ha_open'] = (bars['open'].shift(1) + bars['close'].shift(1)) / 2
bars.loc[:1, 'ha_open'] = bars['open'].values[0]
bars.loc[1:, 'ha_open'] = (
(bars['ha_open'].shift(1) + bars['ha_close'].shift(1)) / 2)[1:]
bars['ha_high'] = bars.loc[:, ['high', 'ha_open', 'ha_close']].max(axis=1)
bars['ha_low'] = bars.loc[:, ['low', 'ha_open', 'ha_close']].min(axis=1)
return pd.DataFrame(index=bars.index, data={'open': bars['ha_open'],
'high': bars['ha_high'], 'low': bars['ha_low'], 'close': bars['ha_close']})
# ---------------------------------------------
def tdi(series, rsi_len=13, bollinger_len=34, rsi_smoothing=2, rsi_signal_len=7, bollinger_std=1.6185):
rsi_series = rsi(series, rsi_len)
bb_series = bollinger_bands(rsi_series, bollinger_len, bollinger_std)
signal = sma(rsi_series, rsi_signal_len)
rsi_series = sma(rsi_series, rsi_smoothing)
return pd.DataFrame(index=series.index, data={
"rsi": rsi_series,
"signal": signal,
"bbupper": bb_series['upper'],
"bblower": bb_series['lower'],
"bbmid": bb_series['mid']
})
# ---------------------------------------------
def awesome_oscillator(df, weighted=False, fast=5, slow=34):
midprice = (df['high'] + df['low']) / 2
if weighted:
ao = (midprice.ewm(fast).mean() - midprice.ewm(slow).mean()).values
else:
ao = numpy_rolling_mean(midprice, fast) - \
numpy_rolling_mean(midprice, slow)
return pd.Series(index=df.index, data=ao)
# ---------------------------------------------
def nans(len=1):
mtx = np.empty(len)
mtx[:] = np.nan
return mtx
# ---------------------------------------------
def typical_price(bars):
res = (bars['high'] + bars['low'] + bars['close']) / 3.
return pd.Series(index=bars.index, data=res)
# ---------------------------------------------
def mid_price(bars):
res = (bars['high'] + bars['low']) / 2.
return pd.Series(index=bars.index, data=res)
# ---------------------------------------------
def ibs(bars):
""" Internal bar strength """
res = np.round((bars['close'] - bars['low']) /
(bars['high'] - bars['low']), 2)
return pd.Series(index=bars.index, data=res)
# ---------------------------------------------
def true_range(bars):
return pd.DataFrame({
"hl": bars['high'] - bars['low'],
"hc": abs(bars['high'] - bars['close'].shift(1)),
"lc": abs(bars['low'] - bars['close'].shift(1))
}).max(axis=1)
# ---------------------------------------------
def atr(bars, window=14, exp=False):
tr = true_range(bars)
if exp:
res = rolling_weighted_mean(tr, window)
else:
res = rolling_mean(tr, window)
res = pd.Series(res)
return (res.shift(1) * (window - 1) + res) / window
# ---------------------------------------------
def crossed(series1, series2, direction=None):
if isinstance(series1, np.ndarray):
series1 = pd.Series(series1)
if isinstance(series2, int) or isinstance(series2, float) or isinstance(series2, np.ndarray):
series2 = pd.Series(index=series1.index, data=series2)
if direction is None or direction == "above":
above = pd.Series((series1 > series2) & (
series1.shift(1) <= series2.shift(1)))
if direction is None or direction == "below":
below = pd.Series((series1 < series2) & (
series1.shift(1) >= series2.shift(1)))
if direction is None:
return above or below
return above if direction is "above" else below
def crossed_above(series1, series2):
return crossed(series1, series2, "above")
def crossed_below(series1, series2):
return crossed(series1, series2, "below")
# ---------------------------------------------
def rolling_std(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
if min_periods == window:
return numpy_rolling_std(series, window, True)
else:
try:
return series.rolling(window=window, min_periods=min_periods).std()
except:
return pd.Series(series).rolling(window=window, min_periods=min_periods).std()
except:
return pd.rolling_std(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def rolling_mean(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
if min_periods == window:
return numpy_rolling_mean(series, window, True)
else:
try:
return series.rolling(window=window, min_periods=min_periods).mean()
except:
return pd.Series(series).rolling(window=window, min_periods=min_periods).mean()
except:
return pd.rolling_mean(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def rolling_min(series, window=14, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
try:
return series.rolling(window=window, min_periods=min_periods).min()
except:
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
except:
return pd.rolling_min(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def rolling_max(series, window=14, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
try:
return series.rolling(window=window, min_periods=min_periods).min()
except:
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
except:
return pd.rolling_min(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def rolling_weighted_mean(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
return series.ewm(span=window, min_periods=min_periods).mean()
except:
return pd.ewma(series, span=window, min_periods=min_periods)
# ---------------------------------------------
def hull_moving_average(series, window=200):
wma = (2 * rolling_weighted_mean(series, window=window / 2)) - \
rolling_weighted_mean(series, window=window)
return rolling_weighted_mean(wma, window=np.sqrt(window))
# ---------------------------------------------
def sma(series, window=200, min_periods=None):
return rolling_mean(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def wma(series, window=200, min_periods=None):
return rolling_weighted_mean(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def hma(series, window=200):
return hull_moving_average(series, window=window)
# ---------------------------------------------
def vwap(bars):
"""
calculate vwap of entire time series
(input can be pandas series or numpy array)
bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ]
"""
typical = ((bars['high'] + bars['low'] + bars['close']) / 3).values
volume = bars['volume'].values
return pd.Series(index=bars.index,
data=np.cumsum(volume * typical) / np.cumsum(volume))
# ---------------------------------------------
def rolling_vwap(bars, window=200, min_periods=None):
"""
calculate vwap using moving window
(input can be pandas series or numpy array)
bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ]
"""
min_periods = window if min_periods is None else min_periods
typical = ((bars['high'] + bars['low'] + bars['close']) / 3)
volume = bars['volume']
left = (volume * typical).rolling(window=window,
min_periods=min_periods).sum()
right = volume.rolling(window=window, min_periods=min_periods).sum()
return pd.Series(index=bars.index, data=(left / right))
# ---------------------------------------------
def rsi(series, window=14):
"""
compute the n period relative strength indicator
"""
# 100-(100/relative_strength)
deltas = np.diff(series)
seed = deltas[:window + 1]
# default values
ups = seed[seed > 0].sum() / window
downs = -seed[seed < 0].sum() / window
rsival = np.zeros_like(series)
rsival[:window] = 100. - 100. / (1. + ups / downs)
# period values
for i in range(window, len(series)):
delta = deltas[i - 1]
if delta > 0:
upval = delta
downval = 0
else:
upval = 0
downval = -delta
ups = (ups * (window - 1) + upval) / window
downs = (downs * (window - 1.) + downval) / window
rsival[i] = 100. - 100. / (1. + ups / downs)
# return rsival
return pd.Series(index=series.index, data=rsival)
# ---------------------------------------------
def macd(series, fast=3, slow=10, smooth=16):
"""
compute the MACD (Moving Average Convergence/Divergence)
using a fast and slow exponential moving avg'
return value is emaslow, emafast, macd which are len(x) arrays
"""
macd = rolling_weighted_mean(series, window=fast) - \
rolling_weighted_mean(series, window=slow)
signal = rolling_weighted_mean(macd, window=smooth)
histogram = macd - signal
# return macd, signal, histogram
return pd.DataFrame(index=series.index, data={
'macd': macd.values,
'signal': signal.values,
'histogram': histogram.values
})
# ---------------------------------------------
def bollinger_bands(series, window=20, stds=2):
sma = rolling_mean(series, window=window)
std = rolling_std(series, window=window)
upper = sma + std * stds
lower = sma - std * stds
return pd.DataFrame(index=series.index, data={
'upper': upper,
'mid': sma,
'lower': lower
})
# ---------------------------------------------
def weighted_bollinger_bands(series, window=20, stds=2):
ema = rolling_weighted_mean(series, window=window)
std = rolling_std(series, window=window)
upper = ema + std * stds
lower = ema - std * stds
return pd.DataFrame(index=series.index, data={
'upper': upper.values,
'mid': ema.values,
'lower': lower.values
})
# ---------------------------------------------
def returns(series):
try:
res = (series / series.shift(1) -
1).replace([np.inf, -np.inf], float('NaN'))
except:
res = nans(len(series))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def log_returns(series):
try:
res = np.log(series / series.shift(1)
).replace([np.inf, -np.inf], float('NaN'))
except:
res = nans(len(series))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def implied_volatility(series, window=252):
try:
logret = np.log(series / series.shift(1)
).replace([np.inf, -np.inf], float('NaN'))
res = numpy_rolling_std(logret, window) * np.sqrt(window)
except:
res = nans(len(series))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def keltner_channel(bars, window=14, atrs=2):
typical_mean = rolling_mean(typical_price(bars), window)
atrval = atr(bars, window) * atrs
upper = typical_mean + atrval
lower = typical_mean - atrval
return pd.DataFrame(index=bars.index, data={
'upper': upper.values,
'mid': typical_mean.values,
'lower': lower.values
})
# ---------------------------------------------
def roc(series, window=14):
"""
compute rate of change
"""
res = (series - series.shift(window)) / series.shift(window)
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def cci(series, window=14):
"""
compute commodity channel index
"""
price = typical_price(series)
typical_mean = rolling_mean(price, window)
res = (price - typical_mean) / (.015 * np.std(typical_mean))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def stoch(df, window=14, d=3, k=3, fast=False):
"""
compute the n period relative strength indicator
http://excelta.blogspot.co.il/2013/09/stochastic-oscillator-technical.html
"""
highs_ma = pd.concat([df['high'].shift(i)
for i in np.arange(window)], 1).apply(list, 1)
highs_ma = highs_ma.T.max().T
lows_ma = pd.concat([df['low'].shift(i)
for i in np.arange(window)], 1).apply(list, 1)
lows_ma = lows_ma.T.min().T
fast_k = ((df['close'] - lows_ma) / (highs_ma - lows_ma)) * 100
fast_d = numpy_rolling_mean(fast_k, d)
if fast:
data = {
'k': fast_k,
'd': fast_d
}
else:
slow_k = numpy_rolling_mean(fast_k, k)
slow_d = numpy_rolling_mean(slow_k, d)
data = {
'k': slow_k,
'd': slow_d
}
return pd.DataFrame(index=df.index, data=data)
# ---------------------------------------------
def zscore(bars, window=20, stds=1, col='close'):
""" get zscore of price """
std = numpy_rolling_std(bars[col], window)
mean = numpy_rolling_mean(bars[col], window)
return (bars[col] - mean) / (std * stds)
# ---------------------------------------------
def pvt(bars):
""" Price Volume Trend """
pvt = ((bars['close'] - bars['close'].shift(1)) /
bars['close'].shift(1)) * bars['volume']
return pvt.cumsum()
# =============================================
PandasObject.session = session
PandasObject.atr = atr
PandasObject.bollinger_bands = bollinger_bands
PandasObject.cci = cci
PandasObject.crossed = crossed
PandasObject.crossed_above = crossed_above
PandasObject.crossed_below = crossed_below
PandasObject.heikinashi = heikinashi
PandasObject.hull_moving_average = hull_moving_average
PandasObject.ibs = ibs
PandasObject.implied_volatility = implied_volatility
PandasObject.keltner_channel = keltner_channel
PandasObject.log_returns = log_returns
PandasObject.macd = macd
PandasObject.returns = returns
PandasObject.roc = roc
PandasObject.rolling_max = rolling_max
PandasObject.rolling_min = rolling_min
PandasObject.rolling_mean = rolling_mean
PandasObject.rolling_std = rolling_std
PandasObject.rsi = rsi
PandasObject.stoch = stoch
PandasObject.zscore = zscore
PandasObject.pvt = pvt
PandasObject.tdi = tdi
PandasObject.true_range = true_range
PandasObject.mid_price = mid_price
PandasObject.typical_price = typical_price
PandasObject.vwap = vwap
PandasObject.rolling_vwap = rolling_vwap
PandasObject.weighted_bollinger_bands = weighted_bollinger_bands
PandasObject.rolling_weighted_mean = rolling_weighted_mean
PandasObject.sma = sma
PandasObject.wma = wma
PandasObject.hma = hma