Remove indicator_helpers.py and test
This commit is contained in:
parent
e93bbd3831
commit
e1b8485b51
@ -1,40 +0,0 @@
|
|||||||
from math import cos, exp, pi, sqrt
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import talib as ta
|
|
||||||
from pandas import Series
|
|
||||||
|
|
||||||
|
|
||||||
def went_up(series: Series) -> bool:
|
|
||||||
return series > series.shift(1)
|
|
||||||
|
|
||||||
|
|
||||||
def went_down(series: Series) -> bool:
|
|
||||||
return series < series.shift(1)
|
|
||||||
|
|
||||||
|
|
||||||
def ehlers_super_smoother(series: Series, smoothing: float = 6) -> Series:
|
|
||||||
magic = pi * sqrt(2) / smoothing
|
|
||||||
a1 = exp(-magic)
|
|
||||||
coeff2 = 2 * a1 * cos(magic)
|
|
||||||
coeff3 = -a1 * a1
|
|
||||||
coeff1 = (1 - coeff2 - coeff3) / 2
|
|
||||||
|
|
||||||
filtered = series.copy()
|
|
||||||
|
|
||||||
for i in range(2, len(series)):
|
|
||||||
filtered.iloc[i] = coeff1 * (series.iloc[i] + series.iloc[i-1]) + \
|
|
||||||
coeff2 * filtered.iloc[i-1] + coeff3 * filtered.iloc[i-2]
|
|
||||||
|
|
||||||
return filtered
|
|
||||||
|
|
||||||
|
|
||||||
def fishers_inverse(series: Series, smoothing: float = 0) -> np.ndarray:
|
|
||||||
""" Does a smoothed fishers inverse transformation.
|
|
||||||
Can be used with any oscillator that goes from 0 to 100 like RSI or MFI """
|
|
||||||
v1 = 0.1 * (series - 50)
|
|
||||||
if smoothing > 0:
|
|
||||||
v2 = ta.WMA(v1.values, timeperiod=smoothing)
|
|
||||||
else:
|
|
||||||
v2 = v1
|
|
||||||
return (np.exp(2 * v2)-1) / (np.exp(2 * v2) + 1)
|
|
@ -1,15 +0,0 @@
|
|||||||
# pragma pylint: disable=missing-docstring
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
from freqtrade.indicator_helpers import went_down, went_up
|
|
||||||
|
|
||||||
|
|
||||||
def test_went_up():
|
|
||||||
series = pd.Series([1, 2, 3, 1])
|
|
||||||
assert went_up(series).equals(pd.Series([False, True, True, False]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_went_down():
|
|
||||||
series = pd.Series([1, 2, 3, 1])
|
|
||||||
assert went_down(series).equals(pd.Series([False, False, False, True]))
|
|
Loading…
Reference in New Issue
Block a user