Merge branch 'lev-strat' into lev-freqtradebot
This commit is contained in:
commit
e13b0414d8
@ -159,7 +159,8 @@ class Edge:
|
||||
logger.info(f'Measuring data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(max_date - min_date).days} days)..')
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
|
||||
# TODO-lev: Should edge support shorts? needs to be investigated further...
|
||||
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long']
|
||||
|
||||
trades: list = []
|
||||
for pair, pair_data in preprocessed.items():
|
||||
@ -168,7 +169,12 @@ class Edge:
|
||||
pair_data = pair_data.reset_index(drop=True)
|
||||
|
||||
df_analyzed = self.strategy.advise_sell(
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
dataframe=self.strategy.advise_buy(
|
||||
dataframe=pair_data,
|
||||
metadata={'pair': pair}
|
||||
),
|
||||
metadata={'pair': pair}
|
||||
)[headers].copy()
|
||||
|
||||
trades += self._find_trades_for_stoploss_range(df_analyzed, pair, self._stoploss_range)
|
||||
|
||||
@ -382,8 +388,8 @@ class Edge:
|
||||
return final
|
||||
|
||||
def _find_trades_for_stoploss_range(self, df, pair, stoploss_range):
|
||||
buy_column = df['buy'].values
|
||||
sell_column = df['sell'].values
|
||||
buy_column = df['enter_long'].values
|
||||
sell_column = df['exit_long'].values
|
||||
date_column = df['date'].values
|
||||
ohlc_columns = df[['open', 'high', 'low', 'close']].values
|
||||
|
||||
|
@ -4,6 +4,6 @@ from freqtrade.enums.collateral import Collateral
|
||||
from freqtrade.enums.rpcmessagetype import RPCMessageType
|
||||
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
|
||||
from freqtrade.enums.selltype import SellType
|
||||
from freqtrade.enums.signaltype import SignalTagType, SignalType
|
||||
from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType
|
||||
from freqtrade.enums.state import State
|
||||
from freqtrade.enums.tradingmode import TradingMode
|
||||
|
@ -5,8 +5,10 @@ class SignalType(Enum):
|
||||
"""
|
||||
Enum to distinguish between buy and sell signals
|
||||
"""
|
||||
BUY = "buy"
|
||||
SELL = "sell"
|
||||
ENTER_LONG = "enter_long"
|
||||
EXIT_LONG = "exit_long"
|
||||
ENTER_SHORT = "enter_short"
|
||||
EXIT_SHORT = "exit_short"
|
||||
|
||||
|
||||
class SignalTagType(Enum):
|
||||
@ -14,3 +16,9 @@ class SignalTagType(Enum):
|
||||
Enum for signal columns
|
||||
"""
|
||||
BUY_TAG = "buy_tag"
|
||||
SHORT_TAG = "short_tag"
|
||||
|
||||
|
||||
class SignalDirection(Enum):
|
||||
LONG = 'long'
|
||||
SHORT = 'short'
|
||||
|
@ -420,24 +420,25 @@ class FreqtradeBot(LoggingMixin):
|
||||
return False
|
||||
|
||||
# running get_signal on historical data fetched
|
||||
(buy, sell, buy_tag) = self.strategy.get_signal(
|
||||
pair,
|
||||
self.strategy.timeframe,
|
||||
analyzed_df
|
||||
(side, enter_tag) = self.strategy.get_entry_signal(
|
||||
pair, self.strategy.timeframe, analyzed_df
|
||||
)
|
||||
|
||||
if buy and not sell:
|
||||
if side:
|
||||
stake_amount = self.wallets.get_trade_stake_amount(pair, self.edge)
|
||||
|
||||
bid_check_dom = self.config.get('bid_strategy', {}).get('check_depth_of_market', {})
|
||||
if ((bid_check_dom.get('enabled', False)) and
|
||||
(bid_check_dom.get('bids_to_ask_delta', 0) > 0)):
|
||||
# TODO-lev: Does the below need to be adjusted for shorts?
|
||||
if self._check_depth_of_market_buy(pair, bid_check_dom):
|
||||
return self.execute_entry(pair, stake_amount, buy_tag=buy_tag)
|
||||
# TODO-lev: pass in "enter" as side.
|
||||
|
||||
return self.execute_entry(pair, stake_amount, enter_tag=enter_tag)
|
||||
else:
|
||||
return False
|
||||
|
||||
return self.execute_entry(pair, stake_amount, buy_tag=buy_tag)
|
||||
return self.execute_entry(pair, stake_amount, enter_tag=enter_tag)
|
||||
else:
|
||||
return False
|
||||
|
||||
@ -466,7 +467,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
return False
|
||||
|
||||
def execute_entry(self, pair: str, stake_amount: float, price: Optional[float] = None,
|
||||
forcebuy: bool = False, buy_tag: Optional[str] = None) -> bool:
|
||||
forcebuy: bool = False, enter_tag: Optional[str] = None) -> bool:
|
||||
"""
|
||||
Executes a limit buy for the given pair
|
||||
:param pair: pair for which we want to create a LIMIT_BUY
|
||||
@ -575,7 +576,8 @@ class FreqtradeBot(LoggingMixin):
|
||||
exchange=self.exchange.id,
|
||||
open_order_id=order_id,
|
||||
strategy=self.strategy.get_strategy_name(),
|
||||
buy_tag=buy_tag,
|
||||
# TODO-lev: compatibility layer for buy_tag (!)
|
||||
buy_tag=enter_tag,
|
||||
timeframe=timeframe_to_minutes(self.config['timeframe'])
|
||||
)
|
||||
trade.orders.append(order_obj)
|
||||
@ -699,22 +701,22 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
logger.debug('Handling %s ...', trade)
|
||||
|
||||
(buy, sell) = (False, False)
|
||||
(enter, exit_) = (False, False)
|
||||
|
||||
if (self.config.get('use_sell_signal', True) or
|
||||
self.config.get('ignore_roi_if_buy_signal', False)):
|
||||
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(trade.pair,
|
||||
self.strategy.timeframe)
|
||||
|
||||
(buy, sell, _) = self.strategy.get_signal(
|
||||
(enter, exit_) = self.strategy.get_exit_signal(
|
||||
trade.pair,
|
||||
self.strategy.timeframe,
|
||||
analyzed_df
|
||||
analyzed_df, is_short=trade.is_short
|
||||
)
|
||||
|
||||
logger.debug('checking sell')
|
||||
# TODO-lev: side should depend on trade side.
|
||||
sell_rate = self.exchange.get_rate(trade.pair, refresh=True, side="sell")
|
||||
if self._check_and_execute_sell(trade, sell_rate, buy, sell):
|
||||
if self._check_and_execute_exit(trade, sell_rate, enter, exit_):
|
||||
return True
|
||||
|
||||
logger.debug('Found no sell signal for %s.', trade)
|
||||
@ -855,19 +857,19 @@ class FreqtradeBot(LoggingMixin):
|
||||
logger.warning(f"Could not create trailing stoploss order "
|
||||
f"for pair {trade.pair}.")
|
||||
|
||||
def _check_and_execute_sell(self, trade: Trade, sell_rate: float,
|
||||
buy: bool, sell: bool) -> bool:
|
||||
def _check_and_execute_exit(self, trade: Trade, sell_rate: float,
|
||||
enter: bool, exit_: bool) -> bool:
|
||||
"""
|
||||
Check and execute sell
|
||||
Check and execute trade exit
|
||||
"""
|
||||
should_sell = self.strategy.should_sell(
|
||||
trade, sell_rate, datetime.now(timezone.utc), buy, sell,
|
||||
should_exit: SellCheckTuple = self.strategy.should_exit(
|
||||
trade, sell_rate, datetime.now(timezone.utc), enter=enter, exit_=exit_,
|
||||
force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0
|
||||
)
|
||||
|
||||
if should_sell.sell_flag:
|
||||
logger.info(f'Executing Sell for {trade.pair}. Reason: {should_sell.sell_type}')
|
||||
self.execute_trade_exit(trade, sell_rate, should_sell)
|
||||
if should_exit.sell_flag:
|
||||
logger.info(f'Exit for {trade.pair} detected. Reason: {should_exit.sell_type}')
|
||||
self.execute_trade_exit(trade, sell_rate, should_exit)
|
||||
return True
|
||||
return False
|
||||
|
||||
|
@ -37,13 +37,16 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
# Indexes for backtest tuples
|
||||
DATE_IDX = 0
|
||||
BUY_IDX = 1
|
||||
OPEN_IDX = 2
|
||||
CLOSE_IDX = 3
|
||||
SELL_IDX = 4
|
||||
LOW_IDX = 5
|
||||
HIGH_IDX = 6
|
||||
BUY_TAG_IDX = 7
|
||||
OPEN_IDX = 1
|
||||
HIGH_IDX = 2
|
||||
LOW_IDX = 3
|
||||
CLOSE_IDX = 4
|
||||
LONG_IDX = 5
|
||||
ELONG_IDX = 6 # Exit long
|
||||
SHORT_IDX = 7
|
||||
ESHORT_IDX = 8 # Exit short
|
||||
BUY_TAG_IDX = 9
|
||||
SHORT_TAG_IDX = 10
|
||||
|
||||
|
||||
class Backtesting:
|
||||
@ -65,8 +68,8 @@ class Backtesting:
|
||||
remove_credentials(self.config)
|
||||
self.strategylist: List[IStrategy] = []
|
||||
self.all_results: Dict[str, Dict] = {}
|
||||
|
||||
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
|
||||
self._exchange_name = self.config['exchange']['name']
|
||||
self.exchange = ExchangeResolver.load_exchange(self._exchange_name, self.config)
|
||||
self.dataprovider = DataProvider(self.config, None)
|
||||
|
||||
if self.config.get('strategy_list', None):
|
||||
@ -246,7 +249,8 @@ class Backtesting:
|
||||
"""
|
||||
# Every change to this headers list must evaluate further usages of the resulting tuple
|
||||
# and eventually change the constants for indexes at the top
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high', 'buy_tag']
|
||||
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
|
||||
'enter_short', 'exit_short', 'long_tag', 'short_tag']
|
||||
data: Dict = {}
|
||||
self.progress.init_step(BacktestState.CONVERT, len(processed))
|
||||
|
||||
@ -254,10 +258,18 @@ class Backtesting:
|
||||
for pair, pair_data in processed.items():
|
||||
self.check_abort()
|
||||
self.progress.increment()
|
||||
|
||||
if not pair_data.empty:
|
||||
pair_data.loc[:, 'buy'] = 0 # cleanup if buy_signal is exist
|
||||
pair_data.loc[:, 'sell'] = 0 # cleanup if sell_signal is exist
|
||||
pair_data.loc[:, 'buy_tag'] = None # cleanup if buy_tag is exist
|
||||
# Cleanup from prior runs
|
||||
# TODO-lev: The below is not 100% compatible with the interface compatibility layer
|
||||
if 'enter_long' in pair_data.columns:
|
||||
pair_data.loc[:, 'enter_long'] = 0
|
||||
pair_data.loc[:, 'enter_short'] = 0
|
||||
if 'exit_long' in pair_data.columns:
|
||||
pair_data.loc[:, 'exit_long'] = 0
|
||||
pair_data.loc[:, 'exit_short'] = 0
|
||||
pair_data.loc[:, 'long_tag'] = None
|
||||
pair_data.loc[:, 'short_tag'] = None
|
||||
|
||||
df_analyzed = self.strategy.advise_sell(
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}),
|
||||
@ -268,9 +280,11 @@ class Backtesting:
|
||||
startup_candles=self.required_startup)
|
||||
# To avoid using data from future, we use buy/sell signals shifted
|
||||
# from the previous candle
|
||||
df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
|
||||
df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1)
|
||||
df_analyzed.loc[:, 'buy_tag'] = df_analyzed.loc[:, 'buy_tag'].shift(1)
|
||||
df_analyzed.loc[:, 'enter_long'] = df_analyzed.loc[:, 'enter_long'].shift(1)
|
||||
df_analyzed.loc[:, 'enter_short'] = df_analyzed.loc[:, 'enter_short'].shift(1)
|
||||
df_analyzed.loc[:, 'exit_long'] = df_analyzed.loc[:, 'exit_long'].shift(1)
|
||||
df_analyzed.loc[:, 'exit_short'] = df_analyzed.loc[:, 'exit_short'].shift(1)
|
||||
df_analyzed.loc[:, 'long_tag'] = df_analyzed.loc[:, 'long_tag'].shift(1)
|
||||
|
||||
# Update dataprovider cache
|
||||
self.dataprovider._set_cached_df(pair, self.timeframe, df_analyzed)
|
||||
@ -351,10 +365,13 @@ class Backtesting:
|
||||
def _get_sell_trade_entry_for_candle(self, trade: LocalTrade,
|
||||
sell_row: Tuple) -> Optional[LocalTrade]:
|
||||
sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
|
||||
sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], # type: ignore
|
||||
sell_candle_time, sell_row[BUY_IDX],
|
||||
sell_row[SELL_IDX],
|
||||
low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX])
|
||||
enter = sell_row[SHORT_IDX] if trade.is_short else sell_row[LONG_IDX]
|
||||
exit_ = sell_row[ESHORT_IDX] if trade.is_short else sell_row[ELONG_IDX]
|
||||
sell = self.strategy.should_exit(
|
||||
trade, sell_row[OPEN_IDX], sell_candle_time, # type: ignore
|
||||
enter=enter, exit_=exit_,
|
||||
low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX]
|
||||
)
|
||||
|
||||
if sell.sell_flag:
|
||||
trade.close_date = sell_candle_time
|
||||
@ -390,9 +407,12 @@ class Backtesting:
|
||||
if len(detail_data) == 0:
|
||||
# Fall back to "regular" data if no detail data was found for this candle
|
||||
return self._get_sell_trade_entry_for_candle(trade, sell_row)
|
||||
detail_data['buy'] = sell_row[BUY_IDX]
|
||||
detail_data['sell'] = sell_row[SELL_IDX]
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
|
||||
detail_data['enter_long'] = sell_row[LONG_IDX]
|
||||
detail_data['exit_long'] = sell_row[ELONG_IDX]
|
||||
detail_data['enter_short'] = sell_row[SHORT_IDX]
|
||||
detail_data['exit_short'] = sell_row[ESHORT_IDX]
|
||||
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
|
||||
'enter_short', 'exit_short']
|
||||
for det_row in detail_data[headers].values.tolist():
|
||||
res = self._get_sell_trade_entry_for_candle(trade, det_row)
|
||||
if res:
|
||||
@ -403,7 +423,7 @@ class Backtesting:
|
||||
else:
|
||||
return self._get_sell_trade_entry_for_candle(trade, sell_row)
|
||||
|
||||
def _enter_trade(self, pair: str, row: List) -> Optional[LocalTrade]:
|
||||
def _enter_trade(self, pair: str, row: List, direction: str) -> Optional[LocalTrade]:
|
||||
try:
|
||||
stake_amount = self.wallets.get_trade_stake_amount(pair, None)
|
||||
except DependencyException:
|
||||
@ -442,7 +462,8 @@ class Backtesting:
|
||||
fee_close=self.fee,
|
||||
is_open=True,
|
||||
buy_tag=row[BUY_TAG_IDX] if has_buy_tag else None,
|
||||
exchange='backtesting',
|
||||
exchange=self._exchange_name,
|
||||
is_short=(direction == 'short'),
|
||||
)
|
||||
return trade
|
||||
return None
|
||||
@ -476,6 +497,20 @@ class Backtesting:
|
||||
self.rejected_trades += 1
|
||||
return False
|
||||
|
||||
def check_for_trade_entry(self, row) -> Optional[str]:
|
||||
enter_long = row[LONG_IDX] == 1
|
||||
exit_long = row[ELONG_IDX] == 1
|
||||
enter_short = row[SHORT_IDX] == 1
|
||||
exit_short = row[ESHORT_IDX] == 1
|
||||
|
||||
if enter_long == 1 and not any([exit_long, enter_short]):
|
||||
# Long
|
||||
return 'long'
|
||||
if enter_short == 1 and not any([exit_short, enter_long]):
|
||||
# Short
|
||||
return 'short'
|
||||
return None
|
||||
|
||||
def backtest(self, processed: Dict,
|
||||
start_date: datetime, end_date: datetime,
|
||||
max_open_trades: int = 0, position_stacking: bool = False,
|
||||
@ -538,15 +573,15 @@ class Backtesting:
|
||||
# without positionstacking, we can only have one open trade per pair.
|
||||
# max_open_trades must be respected
|
||||
# don't open on the last row
|
||||
trade_dir = self.check_for_trade_entry(row)
|
||||
if (
|
||||
(position_stacking or len(open_trades[pair]) == 0)
|
||||
and self.trade_slot_available(max_open_trades, open_trade_count_start)
|
||||
and tmp != end_date
|
||||
and row[BUY_IDX] == 1
|
||||
and row[SELL_IDX] != 1
|
||||
and trade_dir is not None
|
||||
and not PairLocks.is_pair_locked(pair, row[DATE_IDX])
|
||||
):
|
||||
trade = self._enter_trade(pair, row)
|
||||
trade = self._enter_trade(pair, row, trade_dir)
|
||||
if trade:
|
||||
# TODO: hacky workaround to avoid opening > max_open_trades
|
||||
# This emulates previous behaviour - not sure if this is correct
|
||||
|
@ -386,8 +386,9 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
|
||||
)
|
||||
fig.add_trace(candles, 1, 1)
|
||||
|
||||
if 'buy' in data.columns:
|
||||
df_buy = data[data['buy'] == 1]
|
||||
# TODO-lev: Needs short equivalent
|
||||
if 'enter_long' in data.columns:
|
||||
df_buy = data[data['enter_long'] == 1]
|
||||
if len(df_buy) > 0:
|
||||
buys = go.Scatter(
|
||||
x=df_buy.date,
|
||||
@ -405,8 +406,8 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
|
||||
else:
|
||||
logger.warning("No buy-signals found.")
|
||||
|
||||
if 'sell' in data.columns:
|
||||
df_sell = data[data['sell'] == 1]
|
||||
if 'exit_long' in data.columns:
|
||||
df_sell = data[data['exit_long'] == 1]
|
||||
if len(df_sell) > 0:
|
||||
sells = go.Scatter(
|
||||
x=df_sell.date,
|
||||
|
@ -51,6 +51,7 @@ class HyperOptResolver(IResolver):
|
||||
if not hasattr(hyperopt, 'populate_sell_trend'):
|
||||
logger.info("Hyperopt class does not provide populate_sell_trend() method. "
|
||||
"Using populate_sell_trend from the strategy.")
|
||||
# TODO-lev: Short equivelents?
|
||||
return hyperopt
|
||||
|
||||
|
||||
|
@ -13,7 +13,7 @@ from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import SellType, SignalTagType, SignalType
|
||||
from freqtrade.enums import SellType, SignalDirection, SignalTagType, SignalType
|
||||
from freqtrade.exceptions import OperationalException, StrategyError
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.exchange.exchange import timeframe_to_next_date
|
||||
@ -166,7 +166,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
|
||||
def check_buy_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
|
||||
"""
|
||||
Check buy enter timeout function callback.
|
||||
Check buy timeout function callback.
|
||||
This method can be used to override the enter-timeout.
|
||||
It is called whenever a limit buy/short order has been created,
|
||||
and is not yet fully filled.
|
||||
@ -209,6 +209,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
"""
|
||||
pass
|
||||
|
||||
# TODO-lev: add side
|
||||
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, current_time: datetime, **kwargs) -> bool:
|
||||
"""
|
||||
@ -343,6 +344,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
"""
|
||||
return None
|
||||
|
||||
# TODO-lev: add side
|
||||
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
|
||||
proposed_stake: float, min_stake: float, max_stake: float,
|
||||
**kwargs) -> float:
|
||||
@ -461,7 +463,10 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
logger.debug("Skipping TA Analysis for already analyzed candle")
|
||||
dataframe['buy'] = 0
|
||||
dataframe['sell'] = 0
|
||||
dataframe['enter_short'] = 0
|
||||
dataframe['exit_short'] = 0
|
||||
dataframe['buy_tag'] = None
|
||||
dataframe['short_tag'] = None
|
||||
|
||||
# Other Defs in strategy that want to be called every loop here
|
||||
# twitter_sell = self.watch_twitter_feed(dataframe, metadata)
|
||||
@ -521,6 +526,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
if dataframe is None:
|
||||
message = "No dataframe returned (return statement missing?)."
|
||||
elif 'buy' not in dataframe:
|
||||
# TODO-lev: Something?
|
||||
message = "Buy column not set."
|
||||
elif df_len != len(dataframe):
|
||||
message = message_template.format("length")
|
||||
@ -534,25 +540,22 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
else:
|
||||
raise StrategyError(message)
|
||||
|
||||
def get_signal(
|
||||
def get_latest_candle(
|
||||
self,
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
dataframe: DataFrame
|
||||
) -> Tuple[bool, bool, Optional[str]]:
|
||||
dataframe: DataFrame,
|
||||
) -> Tuple[Optional[DataFrame], Optional[arrow.Arrow]]:
|
||||
"""
|
||||
Calculates current signal based based on the buy/short or sell/exit_short
|
||||
columns of the dataframe.
|
||||
Used by Bot to get the signal to buy, sell, short, or exit_short
|
||||
Get the latest candle. Used only during real mode
|
||||
:param pair: pair in format ANT/BTC
|
||||
:param timeframe: timeframe to use
|
||||
:param dataframe: Analyzed dataframe to get signal from.
|
||||
:return: (Buy, Sell)/(Short, Exit_short) A bool-tuple indicating
|
||||
(buy/sell)/(short/exit_short) signal
|
||||
:return: (None, None) or (Dataframe, latest_date) - corresponding to the last candle
|
||||
"""
|
||||
if not isinstance(dataframe, DataFrame) or dataframe.empty:
|
||||
logger.warning(f'Empty candle (OHLCV) data for pair {pair}')
|
||||
return False, False, None
|
||||
return None, None
|
||||
|
||||
latest_date = dataframe['date'].max()
|
||||
latest = dataframe.loc[dataframe['date'] == latest_date].iloc[-1]
|
||||
@ -567,27 +570,89 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
'Outdated history for pair %s. Last tick is %s minutes old',
|
||||
pair, int((arrow.utcnow() - latest_date).total_seconds() // 60)
|
||||
)
|
||||
return False, False, None
|
||||
return None, None
|
||||
return latest, latest_date
|
||||
|
||||
enter = latest[SignalType.BUY.value] == 1
|
||||
def get_exit_signal(
|
||||
self,
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
dataframe: DataFrame,
|
||||
is_short: bool = None
|
||||
) -> Tuple[bool, bool]:
|
||||
"""
|
||||
Calculates current exit signal based based on the buy/short or sell/exit_short
|
||||
columns of the dataframe.
|
||||
Used by Bot to get the signal to exit.
|
||||
depending on is_short, looks at "short" or "long" columns.
|
||||
:param pair: pair in format ANT/BTC
|
||||
:param timeframe: timeframe to use
|
||||
:param dataframe: Analyzed dataframe to get signal from.
|
||||
:param is_short: Indicating existing trade direction.
|
||||
:return: (enter, exit) A bool-tuple with enter / exit values.
|
||||
"""
|
||||
latest, latest_date = self.get_latest_candle(pair, timeframe, dataframe)
|
||||
if latest is None:
|
||||
return False, False
|
||||
|
||||
exit = False
|
||||
if SignalType.SELL.value in latest:
|
||||
exit = latest[SignalType.SELL.value] == 1
|
||||
if is_short:
|
||||
enter = latest.get(SignalType.ENTER_SHORT.value, 0) == 1
|
||||
exit_ = latest.get(SignalType.EXIT_SHORT.value, 0) == 1
|
||||
else:
|
||||
enter = latest[SignalType.ENTER_LONG.value] == 1
|
||||
exit_ = latest.get(SignalType.EXIT_LONG.value, 0) == 1
|
||||
|
||||
buy_tag = latest.get(SignalTagType.BUY_TAG.value, None)
|
||||
logger.debug(f"exit-trigger: {latest['date']} (pair={pair}) "
|
||||
f"enter={enter} exit={exit_}")
|
||||
|
||||
return enter, exit_
|
||||
|
||||
def get_entry_signal(
|
||||
self,
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
dataframe: DataFrame,
|
||||
) -> Tuple[Optional[SignalDirection], Optional[str]]:
|
||||
"""
|
||||
Calculates current entry signal based based on the buy/short or sell/exit_short
|
||||
columns of the dataframe.
|
||||
Used by Bot to get the signal to buy, sell, short, or exit_short
|
||||
:param pair: pair in format ANT/BTC
|
||||
:param timeframe: timeframe to use
|
||||
:param dataframe: Analyzed dataframe to get signal from.
|
||||
:return: (SignalDirection, entry_tag)
|
||||
"""
|
||||
latest, latest_date = self.get_latest_candle(pair, timeframe, dataframe)
|
||||
if latest is None or latest_date is None:
|
||||
return None, None
|
||||
|
||||
enter_long = latest[SignalType.ENTER_LONG.value] == 1
|
||||
exit_long = latest.get(SignalType.EXIT_LONG.value, 0) == 1
|
||||
enter_short = latest.get(SignalType.ENTER_SHORT.value, 0) == 1
|
||||
exit_short = latest.get(SignalType.EXIT_SHORT.value, 0) == 1
|
||||
|
||||
enter_signal: Optional[SignalDirection] = None
|
||||
enter_tag_value: Optional[str] = None
|
||||
if enter_long == 1 and not any([exit_long, enter_short]):
|
||||
enter_signal = SignalDirection.LONG
|
||||
enter_tag_value = latest.get(SignalTagType.BUY_TAG.value, None)
|
||||
if enter_short == 1 and not any([exit_short, enter_long]):
|
||||
enter_signal = SignalDirection.SHORT
|
||||
enter_tag_value = latest.get(SignalTagType.SHORT_TAG.value, None)
|
||||
|
||||
logger.debug('trigger: %s (pair=%s) buy=%s sell=%s',
|
||||
latest['date'], pair, str(enter), str(exit))
|
||||
timeframe_seconds = timeframe_to_seconds(timeframe)
|
||||
|
||||
if self.ignore_expired_candle(
|
||||
latest_date=latest_date,
|
||||
latest_date=latest_date.datetime,
|
||||
current_time=datetime.now(timezone.utc),
|
||||
timeframe_seconds=timeframe_seconds,
|
||||
enter=enter
|
||||
enter=bool(enter_signal)
|
||||
):
|
||||
return False, exit, buy_tag
|
||||
return enter, exit, buy_tag
|
||||
return None, enter_tag_value
|
||||
|
||||
logger.debug(f"entry trigger: {latest['date']} (pair={pair}) "
|
||||
f"enter={enter_long} enter_tag_value={enter_tag_value}")
|
||||
return enter_signal, enter_tag_value
|
||||
|
||||
def ignore_expired_candle(
|
||||
self,
|
||||
@ -602,8 +667,9 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
else:
|
||||
return False
|
||||
|
||||
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool,
|
||||
sell: bool, low: float = None, high: float = None,
|
||||
def should_exit(self, trade: Trade, rate: float, date: datetime, *,
|
||||
enter: bool, exit_: bool,
|
||||
low: float = None, high: float = None,
|
||||
force_stoploss: float = 0) -> SellCheckTuple:
|
||||
"""
|
||||
This function evaluates if one of the conditions required to trigger a sell/exit_short
|
||||
@ -613,6 +679,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
:param force_stoploss: Externally provided stoploss
|
||||
:return: True if trade should be exited, False otherwise
|
||||
"""
|
||||
|
||||
current_rate = rate
|
||||
current_profit = trade.calc_profit_ratio(current_rate)
|
||||
|
||||
@ -627,7 +694,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
current_profit = trade.calc_profit_ratio(current_rate)
|
||||
|
||||
# if enter signal and ignore_roi is set, we don't need to evaluate min_roi.
|
||||
roi_reached = (not (buy and self.ignore_roi_if_buy_signal)
|
||||
roi_reached = (not (enter and self.ignore_roi_if_buy_signal)
|
||||
and self.min_roi_reached(trade=trade, current_profit=current_profit,
|
||||
current_time=date))
|
||||
|
||||
@ -640,10 +707,11 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
if (self.sell_profit_only and current_profit <= self.sell_profit_offset):
|
||||
# sell_profit_only and profit doesn't reach the offset - ignore sell signal
|
||||
pass
|
||||
elif self.use_sell_signal and not buy:
|
||||
if sell:
|
||||
elif self.use_sell_signal and not enter:
|
||||
if exit_:
|
||||
sell_signal = SellType.SELL_SIGNAL
|
||||
else:
|
||||
trade_type = "exit_short" if trade.is_short else "sell"
|
||||
custom_reason = strategy_safe_wrapper(self.custom_sell, default_retval=False)(
|
||||
pair=trade.pair, trade=trade, current_time=date, current_rate=current_rate,
|
||||
current_profit=current_profit)
|
||||
@ -651,9 +719,9 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
sell_signal = SellType.CUSTOM_SELL
|
||||
if isinstance(custom_reason, str):
|
||||
if len(custom_reason) > CUSTOM_SELL_MAX_LENGTH:
|
||||
logger.warning(f'Custom sell reason returned from custom_sell is too '
|
||||
f'long and was trimmed to {CUSTOM_SELL_MAX_LENGTH} '
|
||||
f'characters.')
|
||||
logger.warning(f'Custom {trade_type} reason returned from '
|
||||
f'custom_{trade_type} is too long and was trimmed'
|
||||
f'to {CUSTOM_SELL_MAX_LENGTH} characters.')
|
||||
custom_reason = custom_reason[:CUSTOM_SELL_MAX_LENGTH]
|
||||
else:
|
||||
custom_reason = None
|
||||
@ -699,7 +767,12 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
# Initiate stoploss with open_rate. Does nothing if stoploss is already set.
|
||||
trade.adjust_stop_loss(trade.open_rate, stop_loss_value, initial=True)
|
||||
|
||||
if self.use_custom_stoploss and trade.stop_loss < (low or current_rate):
|
||||
dir_correct = (trade.stop_loss < (low or current_rate)
|
||||
if not trade.is_short else
|
||||
trade.stop_loss > (high or current_rate)
|
||||
)
|
||||
|
||||
if self.use_custom_stoploss and dir_correct:
|
||||
stop_loss_value = strategy_safe_wrapper(self.custom_stoploss, default_retval=None
|
||||
)(pair=trade.pair, trade=trade,
|
||||
current_time=current_time,
|
||||
@ -717,6 +790,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
sl_offset = self.trailing_stop_positive_offset
|
||||
|
||||
# Make sure current_profit is calculated using high for backtesting.
|
||||
# TODO-lev: Check this function - high / low usage must be inversed for short trades!
|
||||
high_profit = current_profit if not high else trade.calc_profit_ratio(high)
|
||||
|
||||
# Don't update stoploss if trailing_only_offset_is_reached is true.
|
||||
@ -825,7 +899,11 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
"the current function headers!", DeprecationWarning)
|
||||
return self.populate_buy_trend(dataframe) # type: ignore
|
||||
else:
|
||||
return self.populate_buy_trend(dataframe, metadata)
|
||||
df = self.populate_buy_trend(dataframe, metadata)
|
||||
if 'enter_long' not in df.columns:
|
||||
df = df.rename({'buy': 'enter_long', 'buy_tag': 'long_tag'}, axis='columns')
|
||||
|
||||
return df
|
||||
|
||||
def advise_sell(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
@ -843,4 +921,24 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
"the current function headers!", DeprecationWarning)
|
||||
return self.populate_sell_trend(dataframe) # type: ignore
|
||||
else:
|
||||
return self.populate_sell_trend(dataframe, metadata)
|
||||
df = self.populate_sell_trend(dataframe, metadata)
|
||||
if 'exit_long' not in df.columns:
|
||||
df = df.rename({'sell': 'exit_long'}, axis='columns')
|
||||
return df
|
||||
|
||||
def leverage(self, pair: str, current_time: datetime, current_rate: float,
|
||||
proposed_leverage: float, max_leverage: float, side: str,
|
||||
**kwargs) -> float:
|
||||
"""
|
||||
Customize leverage for each new trade. This method is not called when edge module is
|
||||
enabled.
|
||||
|
||||
:param pair: Pair that's currently analyzed
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
|
||||
:param proposed_leverage: A leverage proposed by the bot.
|
||||
:param max_leverage: Max leverage allowed on this pair
|
||||
:param side: 'long' or 'short' - indicating the direction of the proposed trade
|
||||
:return: A leverage amount, which is between 1.0 and max_leverage.
|
||||
"""
|
||||
return 1.0
|
||||
|
@ -1,5 +1,6 @@
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
|
||||
|
||||
@ -58,7 +59,11 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
return dataframe
|
||||
|
||||
|
||||
def stoploss_from_open(open_relative_stop: float, current_profit: float) -> float:
|
||||
def stoploss_from_open(
|
||||
open_relative_stop: float,
|
||||
current_profit: float,
|
||||
for_short: bool = False
|
||||
) -> float:
|
||||
"""
|
||||
|
||||
Given the current profit, and a desired stop loss value relative to the open price,
|
||||
@ -79,7 +84,16 @@ def stoploss_from_open(open_relative_stop: float, current_profit: float) -> floa
|
||||
if current_profit == -1:
|
||||
return 1
|
||||
|
||||
if for_short is True:
|
||||
# TODO-lev: How would this be calculated for short
|
||||
raise OperationalException(
|
||||
"Freqtrade hasn't figured out how to calculated stoploss on shorts")
|
||||
# stoploss = 1-((1+open_relative_stop)/(1+current_profit))
|
||||
else:
|
||||
stoploss = 1-((1+open_relative_stop)/(1+current_profit))
|
||||
|
||||
# negative stoploss values indicate the requested stop price is higher than the current price
|
||||
if for_short:
|
||||
return min(stoploss, 0.0)
|
||||
else:
|
||||
return max(stoploss, 0.0)
|
||||
|
379
freqtrade/templates/sample_short_strategy.py
Normal file
379
freqtrade/templates/sample_short_strategy.py
Normal file
@ -0,0 +1,379 @@
|
||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||
# flake8: noqa: F401
|
||||
# isort: skip_file
|
||||
# --- Do not remove these libs ---
|
||||
import numpy as np # noqa
|
||||
import pandas as pd # noqa
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
|
||||
IStrategy, IntParameter)
|
||||
|
||||
# --------------------------------
|
||||
# Add your lib to import here
|
||||
import talib.abstract as ta
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
|
||||
|
||||
# This class is a sample. Feel free to customize it.
|
||||
class SampleStrategy(IStrategy):
|
||||
"""
|
||||
This is a sample strategy to inspire you.
|
||||
More information in https://www.freqtrade.io/en/latest/strategy-customization/
|
||||
|
||||
You can:
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
- Rename the class name (Do not forget to update class_name)
|
||||
- Add any methods you want to build your strategy
|
||||
- Add any lib you need to build your strategy
|
||||
|
||||
You must keep:
|
||||
- the lib in the section "Do not remove these libs"
|
||||
- the methods: populate_indicators, populate_buy_trend, populate_sell_trend
|
||||
You should keep:
|
||||
- timeframe, minimal_roi, stoploss, trailing_*
|
||||
"""
|
||||
# Strategy interface version - allow new iterations of the strategy interface.
|
||||
# Check the documentation or the Sample strategy to get the latest version.
|
||||
INTERFACE_VERSION = 2
|
||||
|
||||
# Minimal ROI designed for the strategy.
|
||||
# This attribute will be overridden if the config file contains "minimal_roi".
|
||||
minimal_roi = {
|
||||
"60": 0.01,
|
||||
"30": 0.02,
|
||||
"0": 0.04
|
||||
}
|
||||
|
||||
# Optimal stoploss designed for the strategy.
|
||||
# This attribute will be overridden if the config file contains "stoploss".
|
||||
stoploss = -0.10
|
||||
|
||||
# Trailing stoploss
|
||||
trailing_stop = False
|
||||
# trailing_only_offset_is_reached = False
|
||||
# trailing_stop_positive = 0.01
|
||||
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
|
||||
|
||||
# Hyperoptable parameters
|
||||
short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True)
|
||||
exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
|
||||
|
||||
# Optimal timeframe for the strategy.
|
||||
timeframe = '5m'
|
||||
|
||||
# Run "populate_indicators()" only for new candle.
|
||||
process_only_new_candles = False
|
||||
|
||||
# These values can be overridden in the "ask_strategy" section in the config.
|
||||
use_sell_signal = True
|
||||
sell_profit_only = False
|
||||
ignore_roi_if_buy_signal = False
|
||||
|
||||
# Number of candles the strategy requires before producing valid signals
|
||||
startup_candle_count: int = 30
|
||||
|
||||
# Optional order type mapping.
|
||||
order_types = {
|
||||
'buy': 'limit',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'market',
|
||||
'stoploss_on_exchange': False
|
||||
}
|
||||
|
||||
# Optional order time in force.
|
||||
order_time_in_force = {
|
||||
'buy': 'gtc',
|
||||
'sell': 'gtc'
|
||||
}
|
||||
|
||||
plot_config = {
|
||||
'main_plot': {
|
||||
'tema': {},
|
||||
'sar': {'color': 'white'},
|
||||
},
|
||||
'subplots': {
|
||||
"MACD": {
|
||||
'macd': {'color': 'blue'},
|
||||
'macdsignal': {'color': 'orange'},
|
||||
},
|
||||
"RSI": {
|
||||
'rsi': {'color': 'red'},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
def informative_pairs(self):
|
||||
"""
|
||||
Define additional, informative pair/interval combinations to be cached from the exchange.
|
||||
These pair/interval combinations are non-tradeable, unless they are part
|
||||
of the whitelist as well.
|
||||
For more information, please consult the documentation
|
||||
:return: List of tuples in the format (pair, interval)
|
||||
Sample: return [("ETH/USDT", "5m"),
|
||||
("BTC/USDT", "15m"),
|
||||
]
|
||||
"""
|
||||
return []
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
:param dataframe: Dataframe with data from the exchange
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
|
||||
# Momentum Indicators
|
||||
# ------------------------------------
|
||||
|
||||
# ADX
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
|
||||
# # Plus Directional Indicator / Movement
|
||||
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
||||
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||
|
||||
# # Minus Directional Indicator / Movement
|
||||
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
||||
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
|
||||
# # Aroon, Aroon Oscillator
|
||||
# aroon = ta.AROON(dataframe)
|
||||
# dataframe['aroonup'] = aroon['aroonup']
|
||||
# dataframe['aroondown'] = aroon['aroondown']
|
||||
# dataframe['aroonosc'] = ta.AROONOSC(dataframe)
|
||||
|
||||
# # Awesome Oscillator
|
||||
# dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
||||
|
||||
# # Keltner Channel
|
||||
# keltner = qtpylib.keltner_channel(dataframe)
|
||||
# dataframe["kc_upperband"] = keltner["upper"]
|
||||
# dataframe["kc_lowerband"] = keltner["lower"]
|
||||
# dataframe["kc_middleband"] = keltner["mid"]
|
||||
# dataframe["kc_percent"] = (
|
||||
# (dataframe["close"] - dataframe["kc_lowerband"]) /
|
||||
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
|
||||
# )
|
||||
# dataframe["kc_width"] = (
|
||||
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
|
||||
# )
|
||||
|
||||
# # Ultimate Oscillator
|
||||
# dataframe['uo'] = ta.ULTOSC(dataframe)
|
||||
|
||||
# # Commodity Channel Index: values [Oversold:-100, Overbought:100]
|
||||
# dataframe['cci'] = ta.CCI(dataframe)
|
||||
|
||||
# RSI
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
|
||||
# # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||
# rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
|
||||
|
||||
# # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||||
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||||
|
||||
# # Stochastic Slow
|
||||
# stoch = ta.STOCH(dataframe)
|
||||
# dataframe['slowd'] = stoch['slowd']
|
||||
# dataframe['slowk'] = stoch['slowk']
|
||||
|
||||
# Stochastic Fast
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['fastk'] = stoch_fast['fastk']
|
||||
|
||||
# # Stochastic RSI
|
||||
# Please read https://github.com/freqtrade/freqtrade/issues/2961 before using this.
|
||||
# STOCHRSI is NOT aligned with tradingview, which may result in non-expected results.
|
||||
# stoch_rsi = ta.STOCHRSI(dataframe)
|
||||
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
||||
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
||||
|
||||
# MACD
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['macdhist'] = macd['macdhist']
|
||||
|
||||
# MFI
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
|
||||
# # ROC
|
||||
# dataframe['roc'] = ta.ROC(dataframe)
|
||||
|
||||
# Overlap Studies
|
||||
# ------------------------------------
|
||||
|
||||
# Bollinger Bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['bb_middleband'] = bollinger['mid']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
dataframe["bb_percent"] = (
|
||||
(dataframe["close"] - dataframe["bb_lowerband"]) /
|
||||
(dataframe["bb_upperband"] - dataframe["bb_lowerband"])
|
||||
)
|
||||
dataframe["bb_width"] = (
|
||||
(dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
|
||||
)
|
||||
|
||||
# Bollinger Bands - Weighted (EMA based instead of SMA)
|
||||
# weighted_bollinger = qtpylib.weighted_bollinger_bands(
|
||||
# qtpylib.typical_price(dataframe), window=20, stds=2
|
||||
# )
|
||||
# dataframe["wbb_upperband"] = weighted_bollinger["upper"]
|
||||
# dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
|
||||
# dataframe["wbb_middleband"] = weighted_bollinger["mid"]
|
||||
# dataframe["wbb_percent"] = (
|
||||
# (dataframe["close"] - dataframe["wbb_lowerband"]) /
|
||||
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
|
||||
# )
|
||||
# dataframe["wbb_width"] = (
|
||||
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
|
||||
# dataframe["wbb_middleband"]
|
||||
# )
|
||||
|
||||
# # EMA - Exponential Moving Average
|
||||
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
||||
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||||
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||
# dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
|
||||
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
||||
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
||||
|
||||
# # SMA - Simple Moving Average
|
||||
# dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
|
||||
# dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
|
||||
# dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
|
||||
# dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
|
||||
# dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
|
||||
# dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)
|
||||
|
||||
# Parabolic SAR
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
# TEMA - Triple Exponential Moving Average
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||
|
||||
# Cycle Indicator
|
||||
# ------------------------------------
|
||||
# Hilbert Transform Indicator - SineWave
|
||||
hilbert = ta.HT_SINE(dataframe)
|
||||
dataframe['htsine'] = hilbert['sine']
|
||||
dataframe['htleadsine'] = hilbert['leadsine']
|
||||
|
||||
# Pattern Recognition - Bullish candlestick patterns
|
||||
# ------------------------------------
|
||||
# # Hammer: values [0, 100]
|
||||
# dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
||||
# # Inverted Hammer: values [0, 100]
|
||||
# dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
|
||||
# # Dragonfly Doji: values [0, 100]
|
||||
# dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
|
||||
# # Piercing Line: values [0, 100]
|
||||
# dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
|
||||
# # Morningstar: values [0, 100]
|
||||
# dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
|
||||
# # Three White Soldiers: values [0, 100]
|
||||
# dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
|
||||
|
||||
# Pattern Recognition - Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
# # Hanging Man: values [0, 100]
|
||||
# dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
|
||||
# # Shooting Star: values [0, 100]
|
||||
# dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
|
||||
# # Gravestone Doji: values [0, 100]
|
||||
# dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
|
||||
# # Dark Cloud Cover: values [0, 100]
|
||||
# dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
|
||||
# # Evening Doji Star: values [0, 100]
|
||||
# dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
|
||||
# # Evening Star: values [0, 100]
|
||||
# dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
|
||||
|
||||
# Pattern Recognition - Bullish/Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
# # Three Line Strike: values [0, -100, 100]
|
||||
# dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
|
||||
# # Spinning Top: values [0, -100, 100]
|
||||
# dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
|
||||
# # Engulfing: values [0, -100, 100]
|
||||
# dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
|
||||
# # Harami: values [0, -100, 100]
|
||||
# dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
|
||||
# # Three Outside Up/Down: values [0, -100, 100]
|
||||
# dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
|
||||
# # Three Inside Up/Down: values [0, -100, 100]
|
||||
# dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
|
||||
|
||||
# # Chart type
|
||||
# # ------------------------------------
|
||||
# # Heikin Ashi Strategy
|
||||
# heikinashi = qtpylib.heikinashi(dataframe)
|
||||
# dataframe['ha_open'] = heikinashi['open']
|
||||
# dataframe['ha_close'] = heikinashi['close']
|
||||
# dataframe['ha_high'] = heikinashi['high']
|
||||
# dataframe['ha_low'] = heikinashi['low']
|
||||
|
||||
# Retrieve best bid and best ask from the orderbook
|
||||
# ------------------------------------
|
||||
"""
|
||||
# first check if dataprovider is available
|
||||
if self.dp:
|
||||
if self.dp.runmode.value in ('live', 'dry_run'):
|
||||
ob = self.dp.orderbook(metadata['pair'], 1)
|
||||
dataframe['best_bid'] = ob['bids'][0][0]
|
||||
dataframe['best_ask'] = ob['asks'][0][0]
|
||||
"""
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the buy signal for the given dataframe
|
||||
:param dataframe: DataFrame populated with indicators
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
|
||||
dataframe.loc[
|
||||
(
|
||||
# Signal: RSI crosses above 70
|
||||
(qtpylib.crossed_above(dataframe['rsi'], self.short_rsi.value)) &
|
||||
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
|
||||
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
|
||||
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
||||
),
|
||||
'enter_short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame populated with indicators
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: DataFrame with sell column
|
||||
"""
|
||||
|
||||
dataframe.loc[
|
||||
(
|
||||
# Signal: RSI crosses above 30
|
||||
(qtpylib.crossed_above(dataframe['rsi'], self.exit_short_rsi.value)) &
|
||||
# Guard: tema below BB middle
|
||||
(dataframe['tema'] <= dataframe['bb_middleband']) &
|
||||
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising
|
||||
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
||||
),
|
||||
'exit_short'] = 1
|
||||
|
||||
return dataframe
|
@ -6,6 +6,7 @@ from copy import deepcopy
|
||||
from datetime import datetime, timedelta
|
||||
from functools import reduce
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from unittest.mock import MagicMock, Mock, PropertyMock
|
||||
|
||||
import arrow
|
||||
@ -18,6 +19,7 @@ from freqtrade.commands import Arguments
|
||||
from freqtrade.data.converter import ohlcv_to_dataframe
|
||||
from freqtrade.edge import Edge, PairInfo
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.enums.signaltype import SignalDirection
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.freqtradebot import FreqtradeBot
|
||||
from freqtrade.persistence import LocalTrade, Trade, init_db
|
||||
@ -182,13 +184,35 @@ def get_patched_worker(mocker, config) -> Worker:
|
||||
return Worker(args=None, config=config)
|
||||
|
||||
|
||||
def patch_get_signal(freqtrade: FreqtradeBot, value=(True, False, None)) -> None:
|
||||
def patch_get_signal(freqtrade: FreqtradeBot, enter_long=True, exit_long=False,
|
||||
enter_short=False, exit_short=False, enter_tag: Optional[str] = None) -> None:
|
||||
"""
|
||||
:param mocker: mocker to patch IStrategy class
|
||||
:param value: which value IStrategy.get_signal() must return
|
||||
(buy, sell, buy_tag)
|
||||
:return: None
|
||||
"""
|
||||
freqtrade.strategy.get_signal = lambda e, s, x: value
|
||||
# returns (Signal-direction, signaname)
|
||||
def patched_get_entry_signal(*args, **kwargs):
|
||||
direction = None
|
||||
if enter_long and not any([exit_long, enter_short]):
|
||||
direction = SignalDirection.LONG
|
||||
if enter_short and not any([exit_short, enter_long]):
|
||||
direction = SignalDirection.SHORT
|
||||
|
||||
return direction, enter_tag
|
||||
|
||||
freqtrade.strategy.get_entry_signal = patched_get_entry_signal
|
||||
|
||||
def patched_get_exit_signal(pair, timeframe, dataframe, is_short):
|
||||
if is_short:
|
||||
return enter_short, exit_short
|
||||
else:
|
||||
return enter_long, exit_long
|
||||
|
||||
# returns (enter, exit)
|
||||
freqtrade.strategy.get_exit_signal = patched_get_exit_signal
|
||||
|
||||
freqtrade.exchange.refresh_latest_ohlcv = lambda p: None
|
||||
|
||||
|
||||
|
@ -44,14 +44,20 @@ def _get_frame_time_from_offset(offset):
|
||||
|
||||
|
||||
def _build_backtest_dataframe(data):
|
||||
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
|
||||
columns = columns + ['buy_tag'] if len(data[0]) == 9 else columns
|
||||
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'enter_long', 'exit_long',
|
||||
'enter_short', 'exit_short']
|
||||
if len(data[0]) == 8:
|
||||
# No short columns
|
||||
data = [d + [0, 0] for d in data]
|
||||
columns = columns + ['long_tag'] if len(data[0]) == 11 else columns
|
||||
|
||||
frame = DataFrame.from_records(data, columns=columns)
|
||||
frame['date'] = frame['date'].apply(_get_frame_time_from_offset)
|
||||
# Ensure floats are in place
|
||||
for column in ['open', 'high', 'low', 'close', 'volume']:
|
||||
frame[column] = frame[column].astype('float64')
|
||||
if 'buy_tag' not in columns:
|
||||
frame['buy_tag'] = None
|
||||
if 'long_tag' not in columns:
|
||||
frame['long_tag'] = None
|
||||
if 'short_tag' not in columns:
|
||||
frame['short_tag'] = None
|
||||
return frame
|
||||
|
271
tests/optimize/hyperopts/short_hyperopt.py
Normal file
271
tests/optimize/hyperopts/short_hyperopt.py
Normal file
@ -0,0 +1,271 @@
|
||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||
|
||||
from functools import reduce
|
||||
from typing import Any, Callable, Dict, List
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from skopt.space import Categorical, Dimension, Integer
|
||||
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||
|
||||
|
||||
class DefaultHyperOpt(IHyperOpt):
|
||||
"""
|
||||
Default hyperopt provided by the Freqtrade bot.
|
||||
You can override it with your own Hyperopt
|
||||
"""
|
||||
@staticmethod
|
||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Add several indicators needed for buy and sell strategies defined below.
|
||||
"""
|
||||
# ADX
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
# MACD
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
# MFI
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
# RSI
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
# Stochastic Fast
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
# Minus-DI
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
# SAR
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
return dataframe
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use.
|
||||
"""
|
||||
long_conditions = []
|
||||
short_conditions = []
|
||||
|
||||
# GUARDS AND TRENDS
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
long_conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||||
short_conditions.append(dataframe['mfi'] > params['short-mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
long_conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||||
short_conditions.append(dataframe['fastd'] > params['short-fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
long_conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
short_conditions.append(dataframe['adx'] < params['short-adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
long_conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
short_conditions.append(dataframe['rsi'] > params['short-rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if 'trigger' in params:
|
||||
if params['trigger'] == 'boll':
|
||||
long_conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
short_conditions.append(dataframe['close'] > dataframe['bb_upperband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
long_conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'],
|
||||
dataframe['macdsignal']
|
||||
))
|
||||
short_conditions.append(qtpylib.crossed_below(
|
||||
dataframe['macd'],
|
||||
dataframe['macdsignal']
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
long_conditions.append(qtpylib.crossed_above(
|
||||
dataframe['close'],
|
||||
dataframe['sar']
|
||||
))
|
||||
short_conditions.append(qtpylib.crossed_below(
|
||||
dataframe['close'],
|
||||
dataframe['sar']
|
||||
))
|
||||
|
||||
if long_conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, long_conditions),
|
||||
'buy'] = 1
|
||||
|
||||
if short_conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, short_conditions),
|
||||
'enter_short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
@staticmethod
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching buy strategy parameters.
|
||||
"""
|
||||
return [
|
||||
Integer(10, 25, name='mfi-value'),
|
||||
Integer(15, 45, name='fastd-value'),
|
||||
Integer(20, 50, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Integer(75, 90, name='short-mfi-value'),
|
||||
Integer(55, 85, name='short-fastd-value'),
|
||||
Integer(50, 80, name='short-adx-value'),
|
||||
Integer(60, 80, name='short-rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['boll', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the sell strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Sell strategy Hyperopt will build and use.
|
||||
"""
|
||||
exit_long_conditions = []
|
||||
exit_short_conditions = []
|
||||
|
||||
# GUARDS AND TRENDS
|
||||
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
|
||||
exit_long_conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
|
||||
exit_short_conditions.append(dataframe['mfi'] < params['exit-short-mfi-value'])
|
||||
if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
|
||||
exit_long_conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
|
||||
exit_short_conditions.append(dataframe['fastd'] < params['exit-short-fastd-value'])
|
||||
if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
|
||||
exit_long_conditions.append(dataframe['adx'] < params['sell-adx-value'])
|
||||
exit_short_conditions.append(dataframe['adx'] > params['exit-short-adx-value'])
|
||||
if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
|
||||
exit_long_conditions.append(dataframe['rsi'] > params['sell-rsi-value'])
|
||||
exit_short_conditions.append(dataframe['rsi'] < params['exit-short-rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if 'sell-trigger' in params:
|
||||
if params['sell-trigger'] == 'sell-boll':
|
||||
exit_long_conditions.append(dataframe['close'] > dataframe['bb_upperband'])
|
||||
exit_short_conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['sell-trigger'] == 'sell-macd_cross_signal':
|
||||
exit_long_conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macdsignal'],
|
||||
dataframe['macd']
|
||||
))
|
||||
exit_short_conditions.append(qtpylib.crossed_below(
|
||||
dataframe['macdsignal'],
|
||||
dataframe['macd']
|
||||
))
|
||||
if params['sell-trigger'] == 'sell-sar_reversal':
|
||||
exit_long_conditions.append(qtpylib.crossed_above(
|
||||
dataframe['sar'],
|
||||
dataframe['close']
|
||||
))
|
||||
exit_short_conditions.append(qtpylib.crossed_below(
|
||||
dataframe['sar'],
|
||||
dataframe['close']
|
||||
))
|
||||
|
||||
if exit_long_conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, exit_long_conditions),
|
||||
'sell'] = 1
|
||||
|
||||
if exit_short_conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, exit_short_conditions),
|
||||
'exit-short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_sell_trend
|
||||
|
||||
@staticmethod
|
||||
def sell_indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching sell strategy parameters.
|
||||
"""
|
||||
return [
|
||||
Integer(75, 100, name='sell-mfi-value'),
|
||||
Integer(50, 100, name='sell-fastd-value'),
|
||||
Integer(50, 100, name='sell-adx-value'),
|
||||
Integer(60, 100, name='sell-rsi-value'),
|
||||
Integer(1, 25, name='exit-short-mfi-value'),
|
||||
Integer(1, 50, name='exit-short-fastd-value'),
|
||||
Integer(1, 50, name='exit-short-adx-value'),
|
||||
Integer(1, 40, name='exit-short-rsi-value'),
|
||||
Categorical([True, False], name='sell-mfi-enabled'),
|
||||
Categorical([True, False], name='sell-fastd-enabled'),
|
||||
Categorical([True, False], name='sell-adx-enabled'),
|
||||
Categorical([True, False], name='sell-rsi-enabled'),
|
||||
Categorical(['sell-boll',
|
||||
'sell-macd_cross_signal',
|
||||
'sell-sar_reversal'],
|
||||
name='sell-trigger')
|
||||
]
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators. Should be a copy of same method from strategy.
|
||||
Must align to populate_indicators in this file.
|
||||
Only used when --spaces does not include buy space.
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['close'] < dataframe['bb_lowerband']) &
|
||||
(dataframe['mfi'] < 16) &
|
||||
(dataframe['adx'] > 25) &
|
||||
(dataframe['rsi'] < 21)
|
||||
),
|
||||
'buy'] = 1
|
||||
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['close'] > dataframe['bb_upperband']) &
|
||||
(dataframe['mfi'] < 84) &
|
||||
(dataframe['adx'] > 75) &
|
||||
(dataframe['rsi'] < 79)
|
||||
),
|
||||
'enter_short'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators. Should be a copy of same method from strategy.
|
||||
Must align to populate_indicators in this file.
|
||||
Only used when --spaces does not include sell space.
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(qtpylib.crossed_above(
|
||||
dataframe['macdsignal'], dataframe['macd']
|
||||
)) &
|
||||
(dataframe['fastd'] > 54)
|
||||
),
|
||||
'sell'] = 1
|
||||
|
||||
dataframe.loc[
|
||||
(
|
||||
(qtpylib.crossed_below(
|
||||
dataframe['macdsignal'], dataframe['macd']
|
||||
)) &
|
||||
(dataframe['fastd'] < 46)
|
||||
),
|
||||
'exit_short'] = 1
|
||||
|
||||
return dataframe
|
@ -519,12 +519,12 @@ tc32 = BTContainer(data=[
|
||||
# Test 33: trailing_stop should be triggered immediately on trade open candle.
|
||||
# stop-loss: 1%, ROI: 10% (should not apply)
|
||||
tc33 = BTContainer(data=[
|
||||
# D O H L C V B S BT
|
||||
[0, 5000, 5050, 4950, 5000, 6172, 1, 0, 'buy_signal_01'],
|
||||
[1, 5000, 5500, 5000, 4900, 6172, 0, 0, None], # enter trade (signal on last candle) and stop
|
||||
[2, 4900, 5250, 4500, 5100, 6172, 0, 0, None],
|
||||
[3, 5100, 5100, 4650, 4750, 6172, 0, 0, None],
|
||||
[4, 4750, 4950, 4350, 4750, 6172, 0, 0, None]],
|
||||
# D O H L C V EL XL ES Xs BT
|
||||
[0, 5000, 5050, 4950, 5000, 6172, 1, 0, 0, 0, 'buy_signal_01'],
|
||||
[1, 5000, 5500, 5000, 4900, 6172, 0, 0, 0, 0, None], # enter trade and stop
|
||||
[2, 4900, 5250, 4500, 5100, 6172, 0, 0, 0, 0, None],
|
||||
[3, 5100, 5100, 4650, 4750, 6172, 0, 0, 0, 0, None],
|
||||
[4, 4750, 4950, 4350, 4750, 6172, 0, 0, 0, 0, None]],
|
||||
stop_loss=-0.01, roi={"0": 0.10}, profit_perc=-0.01, trailing_stop=True,
|
||||
trailing_only_offset_is_reached=True, trailing_stop_positive_offset=0.02,
|
||||
trailing_stop_positive=0.01, use_custom_stoploss=True,
|
||||
@ -571,6 +571,7 @@ TESTS = [
|
||||
tc31,
|
||||
tc32,
|
||||
tc33,
|
||||
# TODO-lev: Add tests for short here
|
||||
]
|
||||
|
||||
|
||||
|
@ -123,12 +123,14 @@ def _trend(signals, buy_value, sell_value):
|
||||
n = len(signals['low'])
|
||||
buy = np.zeros(n)
|
||||
sell = np.zeros(n)
|
||||
for i in range(0, len(signals['buy'])):
|
||||
for i in range(0, len(signals['date'])):
|
||||
if random.random() > 0.5: # Both buy and sell signals at same timeframe
|
||||
buy[i] = buy_value
|
||||
sell[i] = sell_value
|
||||
signals['buy'] = buy
|
||||
signals['sell'] = sell
|
||||
signals['enter_long'] = buy
|
||||
signals['exit_long'] = sell
|
||||
signals['enter_short'] = 0
|
||||
signals['exit_short'] = 0
|
||||
return signals
|
||||
|
||||
|
||||
@ -143,8 +145,10 @@ def _trend_alternate(dataframe=None, metadata=None):
|
||||
buy[i] = 1
|
||||
else:
|
||||
sell[i] = 1
|
||||
signals['buy'] = buy
|
||||
signals['sell'] = sell
|
||||
signals['enter_long'] = buy
|
||||
signals['exit_long'] = sell
|
||||
signals['enter_short'] = 0
|
||||
signals['exit_short'] = 0
|
||||
return dataframe
|
||||
|
||||
|
||||
@ -508,41 +512,47 @@ def test_backtest__enter_trade(default_conf, fee, mocker) -> None:
|
||||
0.0012, # High
|
||||
'', # Buy Signal Name
|
||||
]
|
||||
trade = backtesting._enter_trade(pair, row=row)
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='long')
|
||||
assert isinstance(trade, LocalTrade)
|
||||
assert trade.stake_amount == 495
|
||||
|
||||
# Fake 2 trades, so there's not enough amount for the next trade left.
|
||||
LocalTrade.trades_open.append(trade)
|
||||
LocalTrade.trades_open.append(trade)
|
||||
trade = backtesting._enter_trade(pair, row=row)
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='long')
|
||||
assert trade is None
|
||||
LocalTrade.trades_open.pop()
|
||||
trade = backtesting._enter_trade(pair, row=row)
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='long')
|
||||
assert trade is not None
|
||||
|
||||
backtesting.strategy.custom_stake_amount = lambda **kwargs: 123.5
|
||||
trade = backtesting._enter_trade(pair, row=row)
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='long')
|
||||
assert trade
|
||||
assert trade.stake_amount == 123.5
|
||||
|
||||
# In case of error - use proposed stake
|
||||
backtesting.strategy.custom_stake_amount = lambda **kwargs: 20 / 0
|
||||
trade = backtesting._enter_trade(pair, row=row)
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='long')
|
||||
assert trade
|
||||
assert trade.stake_amount == 495
|
||||
assert trade.is_short is False
|
||||
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='short')
|
||||
assert trade
|
||||
assert trade.stake_amount == 495
|
||||
assert trade.is_short is True
|
||||
|
||||
# Stake-amount too high!
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=600.0)
|
||||
|
||||
trade = backtesting._enter_trade(pair, row=row)
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='long')
|
||||
assert trade is None
|
||||
|
||||
# Stake-amount throwing error
|
||||
mocker.patch("freqtrade.wallets.Wallets.get_trade_stake_amount",
|
||||
side_effect=DependencyException)
|
||||
|
||||
trade = backtesting._enter_trade(pair, row=row)
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='long')
|
||||
assert trade is None
|
||||
|
||||
backtesting.cleanup()
|
||||
@ -560,47 +570,54 @@ def test_backtest__get_sell_trade_entry(default_conf, fee, mocker) -> None:
|
||||
pair = 'UNITTEST/BTC'
|
||||
row = [
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=4, minute=55, tzinfo=timezone.utc),
|
||||
1, # Buy
|
||||
200, # Open
|
||||
201, # Close
|
||||
0, # Sell
|
||||
195, # Low
|
||||
201.5, # High
|
||||
'', # Buy Signal Name
|
||||
195, # Low
|
||||
201, # Close
|
||||
1, # enter_long
|
||||
0, # exit_long
|
||||
0, # enter_short
|
||||
0, # exit_hsort
|
||||
'', # Long Signal Name
|
||||
'', # Short Signal Name
|
||||
]
|
||||
|
||||
trade = backtesting._enter_trade(pair, row=row)
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='long')
|
||||
assert isinstance(trade, LocalTrade)
|
||||
|
||||
row_sell = [
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0, tzinfo=timezone.utc),
|
||||
0, # Buy
|
||||
200, # Open
|
||||
201, # Close
|
||||
0, # Sell
|
||||
195, # Low
|
||||
210.5, # High
|
||||
'', # Buy Signal Name
|
||||
195, # Low
|
||||
201, # Close
|
||||
0, # enter_long
|
||||
0, # exit_long
|
||||
0, # enter_short
|
||||
0, # exit_short
|
||||
'', # long Signal Name
|
||||
'', # Short Signal Name
|
||||
]
|
||||
row_detail = pd.DataFrame(
|
||||
[
|
||||
[
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0, tzinfo=timezone.utc),
|
||||
1, 200, 199, 0, 197, 200.1, '',
|
||||
200, 200.1, 197, 199, 1, 0, 0, 0, '', '',
|
||||
], [
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=1, tzinfo=timezone.utc),
|
||||
0, 199, 199.5, 0, 199, 199.7, '',
|
||||
199, 199.7, 199, 199.5, 0, 0, 0, 0, '', ''
|
||||
], [
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=2, tzinfo=timezone.utc),
|
||||
0, 199.5, 200.5, 0, 199, 200.8, '',
|
||||
199.5, 200.8, 199, 200.9, 0, 0, 0, 0, '', ''
|
||||
], [
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=3, tzinfo=timezone.utc),
|
||||
0, 200.5, 210.5, 0, 193, 210.5, '', # ROI sell (?)
|
||||
200.5, 210.5, 193, 210.5, 0, 0, 0, 0, '', '' # ROI sell (?)
|
||||
], [
|
||||
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=4, tzinfo=timezone.utc),
|
||||
0, 200, 199, 0, 193, 200.1, '',
|
||||
200, 200.1, 193, 199, 0, 0, 0, 0, '', ''
|
||||
],
|
||||
], columns=["date", "buy", "open", "close", "sell", "low", "high", "buy_tag"]
|
||||
], columns=['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
|
||||
'enter_short', 'exit_short', 'long_tag', 'short_tag']
|
||||
)
|
||||
|
||||
# No data available.
|
||||
@ -610,11 +627,12 @@ def test_backtest__get_sell_trade_entry(default_conf, fee, mocker) -> None:
|
||||
assert res.close_date_utc == datetime(2020, 1, 1, 5, 0, tzinfo=timezone.utc)
|
||||
|
||||
# Enter new trade
|
||||
trade = backtesting._enter_trade(pair, row=row)
|
||||
trade = backtesting._enter_trade(pair, row=row, direction='long')
|
||||
assert isinstance(trade, LocalTrade)
|
||||
# Assign empty ... no result.
|
||||
backtesting.detail_data[pair] = pd.DataFrame(
|
||||
[], columns=["date", "buy", "open", "close", "sell", "low", "high", "buy_tag"])
|
||||
[], columns=['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
|
||||
'enter_short', 'exit_short', 'long_tag', 'short_tag'])
|
||||
|
||||
res = backtesting._get_sell_trade_entry(trade, row)
|
||||
assert res is None
|
||||
@ -857,8 +875,10 @@ def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir)
|
||||
multi = 20
|
||||
else:
|
||||
multi = 18
|
||||
dataframe['buy'] = np.where(dataframe.index % multi == 0, 1, 0)
|
||||
dataframe['sell'] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
|
||||
dataframe['enter_long'] = np.where(dataframe.index % multi == 0, 1, 0)
|
||||
dataframe['exit_long'] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
|
||||
dataframe['enter_short'] = 0
|
||||
dataframe['exit_short'] = 0
|
||||
return dataframe
|
||||
|
||||
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
|
||||
|
@ -25,6 +25,9 @@ from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
|
||||
from .hyperopts.hyperopt_test_sep_file import HyperoptTestSepFile
|
||||
|
||||
|
||||
# TODO-lev: This file
|
||||
|
||||
|
||||
def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
@ -448,6 +451,10 @@ def test_buy_strategy_generator(hyperopt, testdatadir) -> None:
|
||||
'fastd-value': 20,
|
||||
'mfi-value': 20,
|
||||
'rsi-value': 20,
|
||||
'short-adx-value': 80,
|
||||
'short-fastd-value': 80,
|
||||
'short-mfi-value': 80,
|
||||
'short-rsi-value': 80,
|
||||
'adx-enabled': True,
|
||||
'fastd-enabled': True,
|
||||
'mfi-enabled': True,
|
||||
@ -473,6 +480,10 @@ def test_sell_strategy_generator(hyperopt, testdatadir) -> None:
|
||||
'sell-fastd-value': 75,
|
||||
'sell-mfi-value': 80,
|
||||
'sell-rsi-value': 20,
|
||||
'exit-short-adx-value': 80,
|
||||
'exit-short-fastd-value': 25,
|
||||
'exit-short-mfi-value': 20,
|
||||
'exit-short-rsi-value': 80,
|
||||
'sell-adx-enabled': True,
|
||||
'sell-fastd-enabled': True,
|
||||
'sell-mfi-enabled': True,
|
||||
|
@ -42,5 +42,6 @@ def test_strategy_test_v2(result, fee):
|
||||
rate=20000, time_in_force='gtc', sell_reason='roi',
|
||||
current_time=datetime.utcnow()) is True
|
||||
|
||||
# TODO-lev: Test for shorts?
|
||||
assert strategy.custom_stoploss(pair='ETH/BTC', trade=trade, current_time=datetime.now(),
|
||||
current_rate=20_000, current_profit=0.05) == strategy.stoploss
|
||||
|
@ -1,4 +1,5 @@
|
||||
# pragma pylint: disable=missing-docstring, C0103
|
||||
from freqtrade.enums.signaltype import SignalDirection
|
||||
import logging
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
@ -30,28 +31,56 @@ _STRATEGY = StrategyTestV2(config={})
|
||||
_STRATEGY.dp = DataProvider({}, None, None)
|
||||
|
||||
|
||||
def test_returns_latest_signal(mocker, default_conf, ohlcv_history):
|
||||
def test_returns_latest_signal(ohlcv_history):
|
||||
ohlcv_history.loc[1, 'date'] = arrow.utcnow()
|
||||
# Take a copy to correctly modify the call
|
||||
mocked_history = ohlcv_history.copy()
|
||||
mocked_history['sell'] = 0
|
||||
mocked_history['buy'] = 0
|
||||
mocked_history.loc[1, 'sell'] = 1
|
||||
mocked_history['enter_long'] = 0
|
||||
mocked_history['exit_long'] = 0
|
||||
mocked_history['enter_short'] = 0
|
||||
mocked_history['exit_short'] = 0
|
||||
mocked_history.loc[1, 'exit_long'] = 1
|
||||
|
||||
assert _STRATEGY.get_signal('ETH/BTC', '5m', mocked_history) == (False, True, None)
|
||||
mocked_history.loc[1, 'sell'] = 0
|
||||
mocked_history.loc[1, 'buy'] = 1
|
||||
assert _STRATEGY.get_entry_signal('ETH/BTC', '5m', mocked_history) == (None, None)
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (False, True)
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False)
|
||||
mocked_history.loc[1, 'exit_long'] = 0
|
||||
mocked_history.loc[1, 'enter_long'] = 1
|
||||
|
||||
assert _STRATEGY.get_signal('ETH/BTC', '5m', mocked_history) == (True, False, None)
|
||||
mocked_history.loc[1, 'sell'] = 0
|
||||
mocked_history.loc[1, 'buy'] = 0
|
||||
assert _STRATEGY.get_entry_signal('ETH/BTC', '5m', mocked_history
|
||||
) == (SignalDirection.LONG, None)
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (True, False)
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False)
|
||||
mocked_history.loc[1, 'exit_long'] = 0
|
||||
mocked_history.loc[1, 'enter_long'] = 0
|
||||
|
||||
assert _STRATEGY.get_signal('ETH/BTC', '5m', mocked_history) == (False, False, None)
|
||||
mocked_history.loc[1, 'sell'] = 0
|
||||
mocked_history.loc[1, 'buy'] = 1
|
||||
assert _STRATEGY.get_entry_signal('ETH/BTC', '5m', mocked_history) == (None, None)
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (False, False)
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False)
|
||||
mocked_history.loc[1, 'exit_long'] = 0
|
||||
mocked_history.loc[1, 'enter_long'] = 1
|
||||
mocked_history.loc[1, 'buy_tag'] = 'buy_signal_01'
|
||||
|
||||
assert _STRATEGY.get_signal('ETH/BTC', '5m', mocked_history) == (True, False, 'buy_signal_01')
|
||||
assert _STRATEGY.get_entry_signal(
|
||||
'ETH/BTC', '5m', mocked_history) == (SignalDirection.LONG, 'buy_signal_01')
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (True, False)
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, False)
|
||||
|
||||
mocked_history.loc[1, 'exit_long'] = 0
|
||||
mocked_history.loc[1, 'enter_long'] = 0
|
||||
mocked_history.loc[1, 'enter_short'] = 1
|
||||
mocked_history.loc[1, 'exit_short'] = 0
|
||||
assert _STRATEGY.get_entry_signal(
|
||||
'ETH/BTC', '5m', mocked_history) == (SignalDirection.SHORT, None)
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (False, False)
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (True, False)
|
||||
|
||||
mocked_history.loc[1, 'enter_short'] = 0
|
||||
mocked_history.loc[1, 'exit_short'] = 1
|
||||
assert _STRATEGY.get_entry_signal(
|
||||
'ETH/BTC', '5m', mocked_history) == (None, None)
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history) == (False, False)
|
||||
assert _STRATEGY.get_exit_signal('ETH/BTC', '5m', mocked_history, True) == (False, True)
|
||||
|
||||
|
||||
def test_analyze_pair_empty(default_conf, mocker, caplog, ohlcv_history):
|
||||
@ -67,18 +96,18 @@ def test_analyze_pair_empty(default_conf, mocker, caplog, ohlcv_history):
|
||||
assert log_has('Empty dataframe for pair ETH/BTC', caplog)
|
||||
|
||||
|
||||
def test_get_signal_empty(default_conf, mocker, caplog):
|
||||
assert (False, False, None) == _STRATEGY.get_signal(
|
||||
def test_get_signal_empty(default_conf, caplog):
|
||||
assert (None, None) == _STRATEGY.get_latest_candle(
|
||||
'foo', default_conf['timeframe'], DataFrame()
|
||||
)
|
||||
assert log_has('Empty candle (OHLCV) data for pair foo', caplog)
|
||||
caplog.clear()
|
||||
|
||||
assert (False, False, None) == _STRATEGY.get_signal('bar', default_conf['timeframe'], None)
|
||||
assert (None, None) == _STRATEGY.get_latest_candle('bar', default_conf['timeframe'], None)
|
||||
assert log_has('Empty candle (OHLCV) data for pair bar', caplog)
|
||||
caplog.clear()
|
||||
|
||||
assert (False, False, None) == _STRATEGY.get_signal(
|
||||
assert (None, None) == _STRATEGY.get_latest_candle(
|
||||
'baz',
|
||||
default_conf['timeframe'],
|
||||
DataFrame([])
|
||||
@ -86,7 +115,7 @@ def test_get_signal_empty(default_conf, mocker, caplog):
|
||||
assert log_has('Empty candle (OHLCV) data for pair baz', caplog)
|
||||
|
||||
|
||||
def test_get_signal_exception_valueerror(default_conf, mocker, caplog, ohlcv_history):
|
||||
def test_get_signal_exception_valueerror(mocker, caplog, ohlcv_history):
|
||||
caplog.set_level(logging.INFO)
|
||||
mocker.patch.object(_STRATEGY.dp, 'ohlcv', return_value=ohlcv_history)
|
||||
mocker.patch.object(
|
||||
@ -111,14 +140,14 @@ def test_get_signal_old_dataframe(default_conf, mocker, caplog, ohlcv_history):
|
||||
ohlcv_history.loc[1, 'date'] = arrow.utcnow().shift(minutes=-16)
|
||||
# Take a copy to correctly modify the call
|
||||
mocked_history = ohlcv_history.copy()
|
||||
mocked_history['sell'] = 0
|
||||
mocked_history['buy'] = 0
|
||||
mocked_history.loc[1, 'buy'] = 1
|
||||
mocked_history['exit_long'] = 0
|
||||
mocked_history['enter_long'] = 0
|
||||
mocked_history.loc[1, 'enter_long'] = 1
|
||||
|
||||
caplog.set_level(logging.INFO)
|
||||
mocker.patch.object(_STRATEGY, 'assert_df')
|
||||
|
||||
assert (False, False, None) == _STRATEGY.get_signal(
|
||||
assert (None, None) == _STRATEGY.get_latest_candle(
|
||||
'xyz',
|
||||
default_conf['timeframe'],
|
||||
mocked_history
|
||||
@ -134,13 +163,13 @@ def test_get_signal_no_sell_column(default_conf, mocker, caplog, ohlcv_history):
|
||||
mocked_history = ohlcv_history.copy()
|
||||
# Intentionally don't set sell column
|
||||
# mocked_history['sell'] = 0
|
||||
mocked_history['buy'] = 0
|
||||
mocked_history.loc[1, 'buy'] = 1
|
||||
mocked_history['enter_long'] = 0
|
||||
mocked_history.loc[1, 'enter_long'] = 1
|
||||
|
||||
caplog.set_level(logging.INFO)
|
||||
mocker.patch.object(_STRATEGY, 'assert_df')
|
||||
|
||||
assert (True, False, None) == _STRATEGY.get_signal(
|
||||
assert (SignalDirection.LONG, None) == _STRATEGY.get_entry_signal(
|
||||
'xyz',
|
||||
default_conf['timeframe'],
|
||||
mocked_history
|
||||
@ -452,27 +481,35 @@ def test_custom_sell(default_conf, fee, caplog) -> None:
|
||||
)
|
||||
|
||||
now = arrow.utcnow().datetime
|
||||
res = strategy.should_sell(trade, 1, now, False, False, None, None, 0)
|
||||
res = strategy.should_exit(trade, 1, now,
|
||||
enter=False, exit_=False,
|
||||
low=None, high=None)
|
||||
|
||||
assert res.sell_flag is False
|
||||
assert res.sell_type == SellType.NONE
|
||||
|
||||
strategy.custom_sell = MagicMock(return_value=True)
|
||||
res = strategy.should_sell(trade, 1, now, False, False, None, None, 0)
|
||||
res = strategy.should_exit(trade, 1, now,
|
||||
enter=False, exit_=False,
|
||||
low=None, high=None)
|
||||
assert res.sell_flag is True
|
||||
assert res.sell_type == SellType.CUSTOM_SELL
|
||||
assert res.sell_reason == 'custom_sell'
|
||||
|
||||
strategy.custom_sell = MagicMock(return_value='hello world')
|
||||
|
||||
res = strategy.should_sell(trade, 1, now, False, False, None, None, 0)
|
||||
res = strategy.should_exit(trade, 1, now,
|
||||
enter=False, exit_=False,
|
||||
low=None, high=None)
|
||||
assert res.sell_type == SellType.CUSTOM_SELL
|
||||
assert res.sell_flag is True
|
||||
assert res.sell_reason == 'hello world'
|
||||
|
||||
caplog.clear()
|
||||
strategy.custom_sell = MagicMock(return_value='h' * 100)
|
||||
res = strategy.should_sell(trade, 1, now, False, False, None, None, 0)
|
||||
res = strategy.should_exit(trade, 1, now,
|
||||
enter=False, exit_=False,
|
||||
low=None, high=None)
|
||||
assert res.sell_type == SellType.CUSTOM_SELL
|
||||
assert res.sell_flag is True
|
||||
assert res.sell_reason == 'h' * 64
|
||||
|
@ -118,10 +118,12 @@ def test_strategy(result, default_conf):
|
||||
assert 'adx' in df_indicators
|
||||
|
||||
dataframe = strategy.advise_buy(df_indicators, metadata=metadata)
|
||||
assert 'buy' in dataframe.columns
|
||||
assert 'buy' not in dataframe.columns
|
||||
assert 'enter_long' in dataframe.columns
|
||||
|
||||
dataframe = strategy.advise_sell(df_indicators, metadata=metadata)
|
||||
assert 'sell' in dataframe.columns
|
||||
assert 'sell' not in dataframe.columns
|
||||
assert 'exit_long' in dataframe.columns
|
||||
|
||||
|
||||
def test_strategy_override_minimal_roi(caplog, default_conf):
|
||||
@ -394,7 +396,7 @@ def test_call_deprecated_function(result, monkeypatch, default_conf, caplog):
|
||||
caplog)
|
||||
|
||||
|
||||
def test_strategy_interface_versioning(result, monkeypatch, default_conf):
|
||||
def test_strategy_interface_versioning(result, default_conf):
|
||||
default_conf.update({'strategy': 'StrategyTestV2'})
|
||||
strategy = StrategyResolver.load_strategy(default_conf)
|
||||
metadata = {'pair': 'ETH/BTC'}
|
||||
@ -411,8 +413,11 @@ def test_strategy_interface_versioning(result, monkeypatch, default_conf):
|
||||
|
||||
enterdf = strategy.advise_buy(result, metadata=metadata)
|
||||
assert isinstance(enterdf, DataFrame)
|
||||
assert 'buy' in enterdf.columns
|
||||
|
||||
assert 'buy' not in enterdf.columns
|
||||
assert 'enter_long' in enterdf.columns
|
||||
|
||||
exitdf = strategy.advise_sell(result, metadata=metadata)
|
||||
assert isinstance(exitdf, DataFrame)
|
||||
assert 'sell' in exitdf
|
||||
assert 'sell' not in exitdf
|
||||
assert 'exit_long' in exitdf
|
||||
|
@ -256,7 +256,7 @@ def test_edge_overrides_stoploss(limit_buy_order, fee, caplog, mocker, edge_conf
|
||||
|
||||
# stoploss shoud be hit
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert log_has('Executing Sell for NEO/BTC. Reason: stop_loss', caplog)
|
||||
assert log_has('Exit for NEO/BTC detected. Reason: stop_loss', caplog)
|
||||
assert trade.sell_reason == SellType.STOP_LOSS.value
|
||||
|
||||
|
||||
@ -542,7 +542,7 @@ def test_create_trade_no_signal(default_conf, fee, mocker) -> None:
|
||||
)
|
||||
default_conf['stake_amount'] = 10
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
patch_get_signal(freqtrade, value=(False, False, None))
|
||||
patch_get_signal(freqtrade, enter_long=False)
|
||||
|
||||
Trade.query = MagicMock()
|
||||
Trade.query.filter = MagicMock()
|
||||
@ -763,9 +763,10 @@ def test_process_informative_pairs_added(default_conf, ticker, mocker) -> None:
|
||||
refresh_latest_ohlcv=refresh_mock,
|
||||
)
|
||||
inf_pairs = MagicMock(return_value=[("BTC/ETH", '1m'), ("ETH/USDT", "1h")])
|
||||
mocker.patch(
|
||||
'freqtrade.strategy.interface.IStrategy.get_signal',
|
||||
return_value=(False, False, '')
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.strategy.interface.IStrategy',
|
||||
get_exit_signal=MagicMock(return_value=(False, False)),
|
||||
get_entry_signal=MagicMock(return_value=(None, None))
|
||||
)
|
||||
mocker.patch('time.sleep', return_value=None)
|
||||
|
||||
@ -1944,7 +1945,7 @@ def test_handle_trade(default_conf, limit_buy_order, limit_sell_order_open, limi
|
||||
assert trade.is_open is True
|
||||
freqtrade.wallets.update()
|
||||
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert trade.open_order_id == limit_sell_order['id']
|
||||
|
||||
@ -1972,7 +1973,7 @@ def test_handle_overlapping_signals(default_conf, ticker, limit_buy_order_open,
|
||||
)
|
||||
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
patch_get_signal(freqtrade, value=(True, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=True, exit_long=True)
|
||||
freqtrade.strategy.min_roi_reached = MagicMock(return_value=False)
|
||||
|
||||
freqtrade.enter_positions()
|
||||
@ -1991,7 +1992,7 @@ def test_handle_overlapping_signals(default_conf, ticker, limit_buy_order_open,
|
||||
assert trades[0].is_open is True
|
||||
|
||||
# Buy and Sell are not triggering, so doing nothing ...
|
||||
patch_get_signal(freqtrade, value=(False, False, None))
|
||||
patch_get_signal(freqtrade, enter_long=False)
|
||||
assert freqtrade.handle_trade(trades[0]) is False
|
||||
trades = Trade.query.all()
|
||||
nb_trades = len(trades)
|
||||
@ -1999,7 +2000,7 @@ def test_handle_overlapping_signals(default_conf, ticker, limit_buy_order_open,
|
||||
assert trades[0].is_open is True
|
||||
|
||||
# Buy and Sell are triggering, so doing nothing ...
|
||||
patch_get_signal(freqtrade, value=(True, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=True, exit_long=True)
|
||||
assert freqtrade.handle_trade(trades[0]) is False
|
||||
trades = Trade.query.all()
|
||||
nb_trades = len(trades)
|
||||
@ -2007,7 +2008,7 @@ def test_handle_overlapping_signals(default_conf, ticker, limit_buy_order_open,
|
||||
assert trades[0].is_open is True
|
||||
|
||||
# Sell is triggering, guess what : we are Selling!
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
trades = Trade.query.all()
|
||||
assert freqtrade.handle_trade(trades[0]) is True
|
||||
|
||||
@ -2041,7 +2042,7 @@ def test_handle_trade_roi(default_conf, ticker, limit_buy_order_open,
|
||||
# we might just want to check if we are in a sell condition without
|
||||
# executing
|
||||
# if ROI is reached we must sell
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade)
|
||||
assert log_has("ETH/BTC - Required profit reached. sell_type=SellType.ROI",
|
||||
caplog)
|
||||
@ -2071,10 +2072,10 @@ def test_handle_trade_use_sell_signal(default_conf, ticker, limit_buy_order_open
|
||||
trade = Trade.query.first()
|
||||
trade.is_open = True
|
||||
|
||||
patch_get_signal(freqtrade, value=(False, False, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=False)
|
||||
assert not freqtrade.handle_trade(trade)
|
||||
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade)
|
||||
assert log_has("ETH/BTC - Sell signal received. sell_type=SellType.SELL_SIGNAL",
|
||||
caplog)
|
||||
@ -3196,7 +3197,7 @@ def test_sell_profit_only_enable_profit(default_conf, limit_buy_order, limit_buy
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
freqtrade.wallets.update()
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade) is False
|
||||
|
||||
freqtrade.strategy.sell_profit_offset = 0.0
|
||||
@ -3234,7 +3235,7 @@ def test_sell_profit_only_disable_profit(default_conf, limit_buy_order, limit_bu
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
freqtrade.wallets.update()
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert trade.sell_reason == SellType.SELL_SIGNAL.value
|
||||
|
||||
@ -3268,7 +3269,7 @@ def test_sell_profit_only_enable_loss(default_conf, limit_buy_order, limit_buy_o
|
||||
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade) is False
|
||||
|
||||
|
||||
@ -3303,7 +3304,7 @@ def test_sell_profit_only_disable_loss(default_conf, limit_buy_order, limit_buy_
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
freqtrade.wallets.update()
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert trade.sell_reason == SellType.SELL_SIGNAL.value
|
||||
|
||||
@ -3335,7 +3336,7 @@ def test_sell_not_enough_balance(default_conf, limit_buy_order, limit_buy_order_
|
||||
trade = Trade.query.first()
|
||||
amnt = trade.amount
|
||||
trade.update(limit_buy_order)
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
mocker.patch('freqtrade.wallets.Wallets.get_free', MagicMock(return_value=trade.amount * 0.985))
|
||||
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
@ -3460,11 +3461,11 @@ def test_ignore_roi_if_buy_signal(default_conf, limit_buy_order, limit_buy_order
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
freqtrade.wallets.update()
|
||||
patch_get_signal(freqtrade, value=(True, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=True, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade) is False
|
||||
|
||||
# Test if buy-signal is absent (should sell due to roi = true)
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert trade.sell_reason == SellType.ROI.value
|
||||
|
||||
@ -3745,11 +3746,11 @@ def test_disable_ignore_roi_if_buy_signal(default_conf, limit_buy_order, limit_b
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
# Sell due to min_roi_reached
|
||||
patch_get_signal(freqtrade, value=(True, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=True, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
|
||||
# Test if buy-signal is absent
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert trade.sell_reason == SellType.SELL_SIGNAL.value
|
||||
|
||||
@ -4297,7 +4298,7 @@ def test_order_book_ask_strategy(default_conf, limit_buy_order_open, limit_buy_o
|
||||
freqtrade.wallets.update()
|
||||
assert trade.is_open is True
|
||||
|
||||
patch_get_signal(freqtrade, value=(False, True, None))
|
||||
patch_get_signal(freqtrade, enter_long=False, exit_long=True)
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert trade.close_rate_requested == order_book_l2.return_value['asks'][0][0]
|
||||
|
||||
|
@ -72,7 +72,7 @@ def test_may_execute_exit_stoploss_on_exchange_multi(default_conf, ticker, fee,
|
||||
create_stoploss_order=MagicMock(return_value=True),
|
||||
_notify_sell=MagicMock(),
|
||||
)
|
||||
mocker.patch("freqtrade.strategy.interface.IStrategy.should_sell", should_sell_mock)
|
||||
mocker.patch("freqtrade.strategy.interface.IStrategy.should_exit", should_sell_mock)
|
||||
wallets_mock = mocker.patch("freqtrade.wallets.Wallets.update", MagicMock())
|
||||
mocker.patch("freqtrade.wallets.Wallets.get_free", MagicMock(return_value=1000))
|
||||
|
||||
@ -163,7 +163,7 @@ def test_forcebuy_last_unlimited(default_conf, ticker, fee, limit_buy_order, moc
|
||||
SellCheckTuple(sell_type=SellType.NONE),
|
||||
SellCheckTuple(sell_type=SellType.NONE)]
|
||||
)
|
||||
mocker.patch("freqtrade.strategy.interface.IStrategy.should_sell", should_sell_mock)
|
||||
mocker.patch("freqtrade.strategy.interface.IStrategy.should_exit", should_sell_mock)
|
||||
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
rpc = RPC(freqtrade)
|
||||
|
@ -201,8 +201,8 @@ def test_generate_candlestick_graph_no_signals_no_trades(default_conf, mocker, t
|
||||
timerange = TimeRange(None, 'line', 0, -1000)
|
||||
data = history.load_pair_history(pair=pair, timeframe='1m',
|
||||
datadir=testdatadir, timerange=timerange)
|
||||
data['buy'] = 0
|
||||
data['sell'] = 0
|
||||
data['enter_long'] = 0
|
||||
data['exit_long'] = 0
|
||||
|
||||
indicators1 = []
|
||||
indicators2 = []
|
||||
@ -261,12 +261,12 @@ def test_generate_candlestick_graph_no_trades(default_conf, mocker, testdatadir)
|
||||
buy = find_trace_in_fig_data(figure.data, "buy")
|
||||
assert isinstance(buy, go.Scatter)
|
||||
# All buy-signals should be plotted
|
||||
assert int(data.buy.sum()) == len(buy.x)
|
||||
assert int(data['enter_long'].sum()) == len(buy.x)
|
||||
|
||||
sell = find_trace_in_fig_data(figure.data, "sell")
|
||||
assert isinstance(sell, go.Scatter)
|
||||
# All buy-signals should be plotted
|
||||
assert int(data.sell.sum()) == len(sell.x)
|
||||
assert int(data['exit_long'].sum()) == len(sell.x)
|
||||
|
||||
assert find_trace_in_fig_data(figure.data, "Bollinger Band")
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user