sanity checks before plotting, cleanup

This commit is contained in:
Matthias 2019-05-28 20:23:16 +02:00
parent 6df0b39f81
commit e0a1e5417f
2 changed files with 52 additions and 40 deletions

View File

@ -25,8 +25,7 @@ def generate_row(fig, row, indicators: List[str], data: pd.DataFrame) -> tools.m
"""
for indicator in indicators:
if indicator in data:
# TODO: Replace all Scatter with Scattergl for performance!!
scattergl = go.Scatter(
scattergl = go.Scattergl(
x=data['date'],
y=data[indicator],
mode='lines',
@ -48,7 +47,7 @@ def plot_trades(fig, trades: pd.DataFrame):
Plot trades to "fig"
"""
# Trades can be empty
if trades is not None:
if trades is not None and len(trades) > 0:
trade_buys = go.Scatter(
x=trades["open_time"],
y=trades["open_rate"],
@ -123,44 +122,50 @@ def generate_graph(
if 'buy' in data.columns:
df_buy = data[data['buy'] == 1]
buys = go.Scatter(
x=df_buy.date,
y=df_buy.close,
mode='markers',
name='buy',
marker=dict(
symbol='triangle-up-dot',
size=9,
line=dict(width=1),
color='green',
if len(df_buy) > 0:
buys = go.Scattergl(
x=df_buy.date,
y=df_buy.close,
mode='markers',
name='buy',
marker=dict(
symbol='triangle-up-dot',
size=9,
line=dict(width=1),
color='green',
)
)
)
fig.append_trace(buys, 1, 1)
fig.append_trace(buys, 1, 1)
else:
logger.warning("No buy-signals found.")
if 'sell' in data.columns:
df_sell = data[data['sell'] == 1]
sells = go.Scatter(
x=df_sell.date,
y=df_sell.close,
mode='markers',
name='sell',
marker=dict(
symbol='triangle-down-dot',
size=9,
line=dict(width=1),
color='red',
if len(df_sell) > 0:
sells = go.Scattergl(
x=df_sell.date,
y=df_sell.close,
mode='markers',
name='sell',
marker=dict(
symbol='triangle-down-dot',
size=9,
line=dict(width=1),
color='red',
)
)
)
fig.append_trace(sells, 1, 1)
fig.append_trace(sells, 1, 1)
else:
logger.warning("No sell-signals found.")
if 'bb_lowerband' in data and 'bb_upperband' in data:
bb_lower = go.Scatter(
bb_lower = go.Scattergl(
x=data.date,
y=data.bb_lowerband,
name='BB lower',
line={'color': 'rgba(255,255,255,0)'},
)
bb_upper = go.Scatter(
bb_upper = go.Scattergl(
x=data.date,
y=data.bb_upperband,
name='BB upper',

View File

@ -51,11 +51,18 @@ _CONF: Dict[str, Any] = {}
timeZone = pytz.UTC
def load_trades(args: Namespace, pair: str) -> pd.DataFrame:
trades: pd.DataFrame = pd.DataFrame()
if args.db_url:
persistence.init(args.db_url, clean_open_orders=False)
def load_trades(db_url: str = None, exportfilename: str = None) -> pd.DataFrame:
"""
Load trades, either from a DB (using dburl) or via a backtest export file.
:param db_url: Sqlite url (default format sqlite:///tradesv3.dry-run.sqlite)
:param exportfilename: Path to a file exported from backtesting
:returns: Dataframe containing Trades
"""
# TODO: Document and move to btanalysis
trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS)
if db_url:
persistence.init(db_url, clean_open_orders=False)
columns = ["pair", "profit", "open_time", "close_time",
"open_rate", "close_rate", "duration"]
@ -68,18 +75,15 @@ def load_trades(args: Namespace, pair: str) -> pd.DataFrame:
t.open_rate, t.close_rate,
t.close_date.timestamp() - t.open_date.timestamp()
if t.close_date else None)
for t in Trade.query.filter(Trade.pair.is_(pair)).all()],
for t in Trade.query.all()],
columns=columns)
elif args.exportfilename:
elif exportfilename:
file = Path(args.exportfilename)
file = Path(exportfilename)
if file.exists():
trades = load_backtest_data(file)
else:
trades = pd.DataFrame([], columns=BT_DATA_COLUMNS)
return trades
@ -181,6 +185,7 @@ def extract_trades_of_period(dataframe, trades) -> pd.DataFrame:
Compare trades and backtested pair DataFrames to get trades performed on backtested period
:return: the DataFrame of a trades of period
"""
# TODO: Document and move to btanalysis (?)
trades = trades.loc[(trades['open_time'] >= dataframe.iloc[0]['date']) &
(trades['close_time'] <= dataframe.iloc[-1]['date'])]
return trades
@ -211,7 +216,9 @@ def analyse_and_plot_pairs(args: Namespace):
tickers[pair] = data
dataframe = generate_dataframe(strategy, tickers, pair)
trades = load_trades(args, pair)
trades = load_trades(pair, db_url=args.db_url,
exportfilename=args.exportfilename)
trades = trades.loc[trades['pair'] == pair]
trades = extract_trades_of_period(dataframe, trades)
fig = generate_graph(