Improve doc wording
This commit is contained in:
parent
545ff6f9f1
commit
e01c0ab4d6
@ -213,19 +213,22 @@ to find optimal parameter values for your stategy.
|
||||
|
||||
```
|
||||
usage: freqtrade hyperopt [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE]
|
||||
[--max_open_trades MAX_OPEN_TRADES]
|
||||
[--max_open_trades INT]
|
||||
[--stake_amount STAKE_AMOUNT] [-r]
|
||||
[--customhyperopt NAME] [--eps] [--dmmp] [-e INT]
|
||||
[--customhyperopt NAME] [--eps] [-e INT]
|
||||
[-s {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]]
|
||||
[--print-all] [-j JOBS]
|
||||
[--dmmp] [--print-all] [-j JOBS]
|
||||
[--random-state INT] [--min-trades INT] [--continue]
|
||||
[--hyperopt-loss-class NAME]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
|
||||
Specify ticker interval (1m, 5m, 30m, 1h, 1d).
|
||||
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
|
||||
`1d`).
|
||||
--timerange TIMERANGE
|
||||
Specify what timerange of data to use.
|
||||
--max_open_trades MAX_OPEN_TRADES
|
||||
--max_open_trades INT
|
||||
Specify max_open_trades to use.
|
||||
--stake_amount STAKE_AMOUNT
|
||||
Specify stake_amount.
|
||||
@ -235,18 +238,18 @@ optional arguments:
|
||||
run your optimization commands with up-to-date data.
|
||||
--customhyperopt NAME
|
||||
Specify hyperopt class name (default:
|
||||
DefaultHyperOpts).
|
||||
`DefaultHyperOpts`).
|
||||
--eps, --enable-position-stacking
|
||||
Allow buying the same pair multiple times (position
|
||||
stacking).
|
||||
-e INT, --epochs INT Specify number of epochs (default: 100).
|
||||
-s {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...], --spaces {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]
|
||||
Specify which parameters to hyperopt. Space-separated
|
||||
list. Default: `all`.
|
||||
--dmmp, --disable-max-market-positions
|
||||
Disable applying `max_open_trades` during backtest
|
||||
(same as setting `max_open_trades` to a very high
|
||||
number).
|
||||
-e INT, --epochs INT Specify number of epochs (default: 100).
|
||||
-s {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...], --spaces {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]
|
||||
Specify which parameters to hyperopt. Space separate
|
||||
list. Default: all.
|
||||
--print-all Print all results, not only the best ones.
|
||||
-j JOBS, --job-workers JOBS
|
||||
The number of concurrently running jobs for
|
||||
@ -254,6 +257,19 @@ optional arguments:
|
||||
(default), all CPUs are used, for -2, all CPUs but one
|
||||
are used, etc. If 1 is given, no parallel computing
|
||||
code is used at all.
|
||||
--random-state INT Set random state to some positive integer for
|
||||
reproducible hyperopt results.
|
||||
--min-trades INT Set minimal desired number of trades for evaluations
|
||||
in the hyperopt optimization path (default: 1).
|
||||
--continue Continue hyperopt from previous runs. By default,
|
||||
temporary files will be removed and hyperopt will
|
||||
start from scratch.
|
||||
--hyperopt-loss-class NAME
|
||||
Specify the class name of the hyperopt loss function
|
||||
class (IHyperOptLoss). Different functions can
|
||||
generate completely different results, since the
|
||||
target for optimization is different. (default:
|
||||
`DefaultHyperOptLoss`).
|
||||
```
|
||||
|
||||
## Edge commands
|
||||
|
@ -144,7 +144,7 @@ it will end with telling you which paramter combination produced the best profit
|
||||
|
||||
The search for best parameters starts with a few random combinations and then uses a
|
||||
regressor algorithm (currently ExtraTreesRegressor) to quickly find a parameter combination
|
||||
that minimizes the value of the objective function `calculate_loss` in `hyperopt.py`.
|
||||
that minimizes the value of the [loss function](#loss-functions).
|
||||
|
||||
The above setup expects to find ADX, RSI and Bollinger Bands in the populated indicators.
|
||||
When you want to test an indicator that isn't used by the bot currently, remember to
|
||||
@ -152,17 +152,19 @@ add it to the `populate_indicators()` method in `hyperopt.py`.
|
||||
|
||||
## Loss-functions
|
||||
|
||||
Each hyperparameter tuning requires a target. This is usually defined as a loss function, which get's closer to 0 for increasing values.
|
||||
Each hyperparameter tuning requires a target. This is usually defined as a loss function (sometimes also called objective function), which should decrease for more desirable results, and increase for bad results.
|
||||
|
||||
FreqTrade uses a default loss function, which has been with freqtrade since the beginning and optimizes mostly for short trade duration and avoiding losses.
|
||||
By default, FreqTrade uses a loss function, which has been with freqtrade since the beginning and optimizes mostly for short trade duration and avoiding losses.
|
||||
|
||||
A different version this can be used by using the `--hyperopt-loss <Class-name>` argument.
|
||||
A different version this can be used by using the `--hyperopt-loss-class <Class-name>` argument.
|
||||
This class should be in it's own file within the `user_data/hyperopts/` directory.
|
||||
|
||||
### Using a custom loss function
|
||||
Currently, the following loss-functions are builtin: `SharpeHyperOptLoss` and `DefaultHyperOptLoss`.
|
||||
|
||||
To use a custom loss Class, make sure that the function `hyperopt_loss_function` is defined in your custom hyperopt loss class.
|
||||
For the sample below, you then need to add the command line parameter `--hyperoptloss SuperDuperHyperOptLoss` to your hyperopt call so this fuction is being used.
|
||||
### Creating and using a custom loss function
|
||||
|
||||
To use a custom loss function class, make sure that the function `hyperopt_loss_function` is defined in your custom hyperopt loss class.
|
||||
For the sample below, you then need to add the command line parameter `--hyperopt-loss-class SuperDuperHyperOptLoss` to your hyperopt call so this fuction is being used.
|
||||
|
||||
A sample of this can be found below, which is identical to the Default Hyperopt loss implementation. A full sample can be found [user_data/hyperopts/](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_loss.py)
|
||||
|
||||
@ -209,7 +211,7 @@ Currently, the arguments are:
|
||||
* `min_date`: Start date of the hyperopting TimeFrame
|
||||
* `min_date`: End date of the hyperopting TimeFrame
|
||||
|
||||
This function needs to return a floating point number (`float`). The smaller that number, the better is the result. The parameters and balancing for this are up to you.
|
||||
This function needs to return a floating point number (`float`). Smaller numbers will be interpreted as better results. The parameters and balancing for this is up to you.
|
||||
|
||||
!!! Note
|
||||
This function is called once per iteration - so please make sure to have this as optimized as possible to not slow hyperopt down unnecessarily.
|
||||
@ -220,7 +222,7 @@ This function needs to return a floating point number (`float`). The smaller tha
|
||||
## Execute Hyperopt
|
||||
|
||||
Once you have updated your hyperopt configuration you can run it.
|
||||
Because hyperopt tries a lot of combinations to find the best parameters it will take time you will have the result (more than 30 mins).
|
||||
Because hyperopt tries a lot of combinations to find the best parameters it will take time to get a good result. More time usually results in better results.
|
||||
|
||||
We strongly recommend to use `screen` or `tmux` to prevent any connection loss.
|
||||
|
||||
@ -235,8 +237,11 @@ running at least several thousand evaluations.
|
||||
|
||||
The `--spaces all` flag determines that all possible parameters should be optimized. Possibilities are listed below.
|
||||
|
||||
!!! Note
|
||||
By default, hyperopt will erase previous results and start from scratch. Continuation can be archived by using `--continue`.
|
||||
|
||||
!!! Warning
|
||||
When switching parameters or changing configuration options, the file `user_data/hyperopt_results.pickle` should be removed. It's used to be able to continue interrupted calculations, but does not detect changes to settings or the hyperopt file.
|
||||
When switching parameters or changing configuration options, make sure to not use the argument `--continue` so temporary results can be removed.
|
||||
|
||||
### Execute Hyperopt with Different Ticker-Data Source
|
||||
|
||||
@ -246,12 +251,11 @@ use data from directory `user_data/data`.
|
||||
|
||||
### Running Hyperopt with Smaller Testset
|
||||
|
||||
Use the `--timerange` argument to change how much of the testset
|
||||
you want to use. The last N ticks/timeframes will be used.
|
||||
Example:
|
||||
Use the `--timerange` argument to change how much of the testset you want to use.
|
||||
To use one month of data, use the following parameter:
|
||||
|
||||
```bash
|
||||
freqtrade hyperopt --timerange -200
|
||||
freqtrade hyperopt --timerange 20180401-20180501
|
||||
```
|
||||
|
||||
### Running Hyperopt with Smaller Search Space
|
||||
@ -319,7 +323,7 @@ method, what those values match to.
|
||||
|
||||
So for example you had `rsi-value: 29.0` so we would look at `rsi`-block, that translates to the following code block:
|
||||
|
||||
```
|
||||
``` python
|
||||
(dataframe['rsi'] < 29.0)
|
||||
```
|
||||
|
||||
|
@ -232,7 +232,8 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
),
|
||||
"hyperopt_loss": Arg(
|
||||
'--hyperopt-loss-class',
|
||||
help='Specify hyperopt loss class name. Can generate completely different results, '
|
||||
help='Specify the class name of the hyperopt loss function class (IHyperOptLoss). '
|
||||
'Different functions can generate completely different results, '
|
||||
'since the target for optimization is different. (default: `%(default)s`).',
|
||||
metavar='NAME',
|
||||
default=constants.DEFAULT_HYPEROPT_LOSS,
|
||||
|
Loading…
Reference in New Issue
Block a user